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Some Families of the Eulerian Integrals Involving Generalized Hypergeometric Functions
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ABSTRACT: In this paper, we established a family of unified Eulerian integrals involving generalized hy-
pergeometric function by employing generalized summation theorems for the series 3F» such as generalized
Watson’s theorem, generalized Dixon’s theorem and generalized Whipple’s theorem. Various special cases are
deduced as consequences of our main theorems.
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1. Introduction

The generalized hypergeometric function ,.F[z] (r, s € Ny ) for which the infinite series form reads
[19]
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where (a)r = a(a+1)---(a+ k — 1) signifies the Pochhammer symbol and a; € C,b; € C\ Z; . The
series converges for all z € C if r < s. It is divergent for all z # 0 when r > s+ 1. Finally, if r = s + 1,
the series converges on the unit circle [z| = 1 when R( > b; — Y a;) > 0.

In the theory of hypergeometric and generalized hypergeometric functions, there exist a remarkably
large number of hypergeometric summation formulas which can be expressed in terms of the Gamma
functions. In particular, for specified values of the argument, usually, 1, —1 and 1/2, the hypergeometric
function o F7 and generalized hypergeometric function 3Fs, 4 F3 and 5F reduce to the well-known classical
summation theorems such as the Gauss, Gauss second, Bailey and Kummer ones for the 5 F} series, as
well as the Watson, Dixon, Whipple for the 3F5, second Whipple for the 4F5 and Dougall’s summation
for the 5 Fy series play an important role in the theory of generalized hypergeometric functions (cf. [19]).

In 1961, for R(e) > 0, R(g) > 0, MacRobert [14] defined the extension of the classical Beta integral as
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/Oz (1-2)°"{l4+mz+n(l-2)} dz=(1+m)"(1+n) Teto) (1.1)
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where the constants m and n are such that none of the expressions 1+ m, 1+ n, and 1 +mz + n(l — 2)
(where z € [0, 1]) are zero and the term I'(x) refers to the second-kind Eulerian integral, also known as
the gamma function, and is defined as

Ix) = /000 e "2 ldz (R(x) > 0). (1.2)

By making use of the substitution z = % such that dz = gf—tk in (1.1), we obtain

/< (t—3) Mg —t)e? g = Lm0 +n) "L (E)(o)
s [(6=2) +m(t — ) +n(c —t)]7+e (€ =) I(e+eo)’

(R(e) > 0,R(0) > 0,(s — 3¢) + m(t — 5) +n(s —t) #0,t € [5,5], 5 # <),

which is the well known generalization of the MacRobert integral [8, p.287, eq.(3.198)].

The well known Watson’s theorem (see [1], [3, pp. 449, Eq. (1.1)], [7, Section 4.4]) for hypergeometric
function of unit argument with the aid of the duplication formula can be written

y b, INES A +l (etd+\T + 1—a—b
3F2(Z+3H 2 1) FEZ ( +21)( s e ) (1.4)

provided that ®(2¢—a—b) > —1 and all the parameters are such that the series 3 F5 in the left is defined.
For R(a — 2b — 2¢) > —2, the classical Dixon’s theorem [1, pp. 13, Eq. (1)], we have
b, c

a, B
3F2( l1+a—-0b, 1+a—c 1) -

F(1+ 4 TA+a-b)T(1+a-e)T(1+%—b—c)
Tl+a) T+ TA+2—c)T(1+a—b—c)

The well known Whipple’s theorem [1, pp. 16, Eq. (3.4.1)] for hypergeometric function of unit
argument when a +b =1 and e + f = 2c¢+ 1 and for £(a) > 0,R(b) > 0,R(c) > 0,R(e) > 0,R(f) >0

can be written
a, b, ¢
F ) b)
’ 2< e, f

In the present paper, we derive a family of unified Eulerian integrals involving generalized hyperge-
ometric function by employing generalized summation theorems for the series 3F» such as generalized
Watson’s theorem, generalized Dixon’s theorem and generalized Whipple’s theorem. Various special cases
are deduced as consequences of our main theorems.

(1.6)

1) =
) 92c—1 F(aJre)F(a-‘r
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2. Integrals Involving Hypergeometric Functions

In this section, we investigate the generalized Watson’s theorem, generalized Dixon’s theorem and
generalizations of Whipple’s theorem. Moreover, we present some integrals involving generalized hyper-
geometric functions.

The following generalization of the well-known classical Watson’s theorem (1.4) on the sum of a 3F5,
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was obtained in 1992 by Lavoie et al. [11] as

7 b’ c 1
fa+b+p+1), 2c+q

D) D(e+ [§) + e — 252 - 12 1 4 4 )

_ a+b+p—2
= Apq 2

L(3)T(a)l(b)
o
Ple—g+4+4) - EUCE (e +14))
F( FCETC 1)‘”)) (5L
+Cpq F(C—2 |_q+1J+( 1)(1( —(=1)r )F( _g_’_LquJ)}
:\I/p,qa

for p,q = —2,—1,0,1,2. The largest integer less than or equal to z is also |z|. A, 4, Bp,q, and Cp 4 have
the coefficient tables provided in [11].

In the theory of the generalized hypergeometric series, closely related to Dixon’s theorem (1.5), Lavoie
et al. [12] obtained its generalization in 1994. The general form for ®(a — 2b — 2¢) > —2 — 2u — v such
that p = —3,-2,—-1,0,1,2,3 and » = 0,1, 2, 3, can be written

a, b, c
3F2(1+u+a—b, l+pu+vta—c 1)
V=21 4+ pu+a—-b)T(1+pu+v+a—-c)
FNa—2c+pu+v+DT(a-b—c+pu+v+1)
DO § DT — (vt |ptv)
L'(b)I'(c) (2.2)
X{A D(¢—c+d+ | EHNT(E—b—c+1+p+ [2EL])
- C§+ DI -0+ 1+ )
L
P($T(s —b+3+(5])

+ By

32

where |z| is the greatest integer less than or equal to x, and its modulus is denoted by |z| and the
coefficients A, ,, and B, , are appeared in [12].

Two years after the generalization of Dixon’s theorem, in 1996, Lavoie, Grondin, and Rathie [13]
generalized the classical Whipple’s theorem (1.6) as following

(")
D(e) ()P (¢~ D) P (e — o — et ) p (g - (rutluren)
22a—u=v (e —a)T(f —a)T'(e — ¢)T(a)l'(c)

S O R Rt 23
sty + [ T (L + (S2) (0 - )+ [32)

P o R ) r(5-5+3)
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where u, v take values in a subset of 0,£1,+2, £3 and a+b=14+u+v, e+ f =2c+ 1+ u. Also |z]
is the greatest integer less than or equal to = and its modulus is denoted by |z|. The coeflicients A, ,,
and B, , are given in [13]. In the same paper [13], for u+v = 0,+1, +2, +3, £4 after a simple change of
variables, the limiting case of the generalized Whipple’s theorem (2.3) constructed by

JF) ( a, 1—2k—a ;)
I(3)T(O)(1 - a) { Ok
ob—k—1 F(l —a+ (k+2|k|)> (

n VY }
FG-9TG+s—-3-1sD)
where ¢y, and vy are given in [13] and the values have been extended to include k = £5.

2.1. Main Results

Theorem 2.1 Let R(2a—a—0b) > —1—p—2q forp,q=—-2,-1,0,1,2 and R(a) > 0 for ¢ =0,1,2 and
R(a) > —q for ¢ = —2,—1. Then the following integral holds

J N Sl SR

s (6= 3¢) + m(t — ») + n(c — t)]2xta

a, b (1+m)(t — )
X ol ( %(a+b+p+l) [(C_%)‘Fm(t—%)—i—n(g—t)}) dt (2.5)
['(a) (o +q) .
(1 +m)e(1+n)oFe(c—)T2a+q) 77

provided m and n are constants such that 1 +m;1+n #0 and (¢ — ) + m(t — ) + n(c — t) # 0 where
t e [].

Proof: If we consider the MacRobert integral, which involves the hypergeometric function, and designate
the left-hand side of (2.5) by A, express the oF; function as a series, and alter the order of integration
and summation, which is readily justified given the series’ uniform convergence in the interval (¢ — ),
we conclude that

a) 1 + m) S (t _ ;{)O"H“_l(g i t)a+q_1
A= Zkl (% a—|—b—|—p—|—l)) /% [(C_%)+m(t—%)—|—n(g—t)]2a+q+k dt.

Following additional simplification and integral evaluation, we arrive at

_ [(e) I'(a+ Q) c- )k (b)k (@)
A= (1+m)*(1+n)ota(c —2)T(2a + q) Zk' (3( a+b+p+1))k(2a+q)k'

1).

Finally, by using the generalized Watson’s theorem (defined in (2.1)) in the above expression, the right-
hand side of (2.5) can easily be obtained. This completes the pf of (2.5). O

k=0
Summing up the series, we have

_ ['(a) I'(a +q) ( , b, «
(1 m)e(1+n)ta(s — ) T2+ q) ° La+b+p+1), 2a+q

Theorem 2.2 The more general integral also holds with its twenty-five results hold for y € Z and p,q =
0,£1,4+2 and R2a —a —b) > =1 —p —2q; R(a) > 0 fory = 0,1,2,3,... and R(a) > —y fory =
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~1,-2,-3,...

[ (t— 501 (s — 1y
> [(§ - %) + m(t — J{) + n(g _ t)]2a+y+1

a, b, 2a+y+1, ¢ (I4+m)(t — ) )
X F dt 2.6
F( b o e o [T o e 20
Fa)(a+y+1) o
AT me(+n)e (s T Raty+1) Po
provided m and n are constants such that 1 +m;1+n #0 and (¢ — ) + m(t — ) + n(c — t) # 0 where
t € [,¢].

Proof: If we consider the MacRobert integral, which involves the hypergeometric function, and designate
the left-hand side of (2.6) by €, express the 4F3 function as a series, and alter the order of integration
and summation, which is readily justified given the series’ uniform convergence in the interval (¢ — »),
we conclude that

— (0)r(0)x(2a 4+ y + Dp(c)p (1 + m)*
Q= kz=0 ! %a+b+p+1)) (@)r(2¢+ q)k
)a+k 1(§—t)o‘+y

></% +m(t7 ) + n(s — t)|20tuth+ dt.

Following the integral evaluation with additional simplification and summing up the series, we obtain
Ma)'a+y+1) (@ b, ¢ |y
(T+m)e(1+n)etvtic—)TRa+y+1) > *\ sa+b+p+1), 2¢+q | )"

By using the generalized Watson’s theorem (defined in (2.1)) in the above expression, the right-hand side
of (2.6) can easily be obtained. This completes the pf of (2.6) O

Q:

Theorem 2.3 Let R(a—2b—2¢) > —2—2u—v such that p = —3,-2,-1,0,1,2,3 and v =0,1,2,3 and
R(a) > 0,R(b) > 0. Then the following integral holds
/g (t _ %)671(§ o t)aJrlHerQc
s [(6 = 20) +m(t —5) + (s —p)]otntviize
a. b (IT+m)(t—») )

X F; ’ dt 2.7

2 1( T+p+a—>b|[(c— ) +mt— ) +n(s—1t) @7)

(I+m) (L4 n)> ot Tlla+p+rv+1-20) _
(¢ — ) Ta+p+v+1—rc) T

provided m and n are constants such that 1 +m;1+n #0 and (¢ — ) + m(t — 3¢) + n(s — t) # 0 where
t e [].

Proof: If we consider the MacRobert integral, which involves the hypergeometric function, and designate
the left-hand side of (2.7) by A, express the o F} function as a series, and alter the order of integration
and summation, which is readily justified given the series’ uniform convergence in the interval (¢ — ),
we conclude that

1 + m) S (t _ %)c-i-r—l(g _ t)a+u+y—20
A= Z 5 / dt.

1 + pwta—=>0) J, [(¢—3)+m(t—sx)+n(c—t)etrtvri-ctr

Following the integral evaluation with additional simplification and summing up the series, we obtain

(1+m)=¢(1+n)2e v 1D (a+p+v+1-—2c)

A:
¢ — Pla+p+rv+1l—c)
a, b, c
x 3F2<1—|—,u—+—a—b7 1+pu+v+a—c 1)'
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Using generalized Dixon’s theorem (defined in (2.2)) in the above expression, the desired result (2.7) can
easily be obtained. O

Theorem 2.4 Let 8 =i—j+1+wu and a+b=1+u+v such that R(i) > 0,R(j) > 0,R(a) > 0,R(b) >0
for which w+v =0,+1,4+2 +£3,+4. Then the following integral holds

/< (=) =ty
L (s = 2) +m(t — ») +n(s —t)])iti
X2F1< s ‘[(C_ )+m(t—%)+n(g—t)]> dt

L)
T (Tt m)i(I+n)i(s — )i+ j)

PB)TG + )0 (i = R P (g — i — Lt ) p( - Lot )
22T (B = a) (i +j — ) T(3 — ) (@I (D)
(3 -5+ 5 rey -9
X {Au,v — .
P2 ) o (e 4 (5) (e -1+ 15)
5 F(g_%+(1+(4—1)“)) L D(— s 4 1) },
Cor(ega ) (e (SR a- o+ L)

X

+

where |x] is the greatest integer less than or equal to x, and its modulus is denoted by |x| and provided
m and n are constants such that 14+m;1+n # 0 and (¢ — 3¢) + m(t — ») + n(s —t) # 0 where t € [5,5].

Proof: If we consider the MacRobert integral, which involves the hypergeometric function, and designate
the left-hand side of (2.8) by Y, express the o F} function as a series, and alter the order of integration
and summation, which is readily justified given the series’ uniform convergence in the interval (¢ — ),
we conclude that

— e 1(b) l 1 +m) (t — s0)i =1 (g — )i}
-y /,{ G

1=0 i — 2) +m(t — 3) +n(c —t)]itit+"

Following additional simplification and integral evaluation, we arrive at

_ INOING: 2 (a)(b)i(i)
T AT ik - TG ) ;zw G+

1)

By making use of the generalized Whipple’s theorem (defined in (2.3)) in the above expression, the desired
result (2.8) can easily be obtained. O

Summing up the series, we obtain

INQINE) a, b, 1
T= it >r<z'+j>3F2(,8, i+

Remark 2.1 If we set »r = 0,¢ = 1 such that ¢ € [0,1] in (2.5) and (2.6), then we are led to the results
found in [16] and [10], respectively.

3. Applications of Integrals

More than fifty intriguing special cases in the form of integrals that are also general in nature will be
discussed in this section.
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3.1. Special Cases of (2.5)

Let b = —2n and substitute a with a +2n or let b = —2n — 1 and substitute a with a +2n+ 1, where n
is either zero or a positive integer. Each of the two words that occur on the right-hand sides of (2.5) will
disappear in each instance, giving us fifty intriguing special cases that are shown below as two corollaries
under the identical convergence conditions.

Corollary 3.1 Forp,q=—-2,-1,0,1,2 and R(a) > 0 for ¢ =0,1,2 and R(a) > —q for ¢ = —2,—1 the
following twenty-five results hold true,

/c (t _ %)afl(g _ t)oc«f»q—l
s (s =30) +m(t — ») + n(c — t)]2xta

—2n, a+2n (IT+m)(t—»)
- 2F1( slatp+1) [(§—%)+m(t—%)—|—n(g—t)}> di (3.1)

Dy T@)Tla+q) (i (5 —a+ 3-S5 - 4+ F0])
(L+m)(1+n)*+a(c =) T2a+q) (a+3+[3]), (§+30+(D),

7

where the coefficients Dy, , are given in [11] and the Pochhammer symbol (x)i = F%)ch_)k)

Corollary 3.2 Forp,q=—-2,-1,0,1,2 and R(a) > 0 for ¢ =0,1,2 and R(a) > —q for ¢ = —2,—1 the
following twenty-five results hold true,

/§ (t _ %)ozfl(g _ t)aJrqfl
e L6 =5) +m(t = 5) + (s — t)2eta
—2n—1, a+2n+1 (T4+m)(t — )
' QE( sa+p+1) ‘W%)HMt@+n&m>dt (8:2)
Epq D) Dla+a) (B (§ —a+ i+ 0 — |4+ GG
(L+m)(1+n)etalc =) T2a+q) (a+§+[9F), (§+ 168 (1),

)

where the coefficients &, 4 are given in [11].

Remark 3.1 If we set »r = 0,¢ = 1 such that ¢ € [0,1] in (3.1) and (3.2), then we are led to the results
found in [16].

Corollary 3.3 Let b= a— A+1 and substitute p with X\ where A =0,+1,£2. Forq=—2,-1,0,1,2 and
R(a) > 0 for g =0,1,2 and R(a) > —q for ¢ = —2,—1 then the following limiting case of (2.5) holds
true

/g (t —2)* (¢ —t)rta?
w (6= 30) +m(t — ») + n(s — t)]2ote

a, a—A+1
x 2F1< a+1

(1+m)(t — s)

o e (33)
I'(a)T(a+q) a, a—X+1, «

(1+m)a(1+n)“+q(<—%)1“(2a+q)3F2< a+1, 2a+q 1)'

3.2. Special Cases of (2.6)

Let b = —2n and substitute a with a +2n or let b = —2n — 1 and substitute a with a +2n+ 1, where n
is either zero or a positive integer. Each of the two words that occur on the right-hand sides of (2.6) will
disappear in each instance, giving us fifty intriguing special cases that are shown below as two corollaries
under the identical convergence conditions.
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Corollary 3.4 Fory € Z and p,q = 0,%1,£2 the integral having twenty-five results hold true,
/C (t =) —t)*H?
o 16 = 2) +m(t — 5) + n(c —t)]Patvt!

—2n, a+2n, 2a+y+1, ¢ (IT+m)(t— )
X 4F3 1 dt
sla+p+1), a, 2¢+q |[(s— ) +m(t— ) +n(s—1t)

Dpy D@Tla+y+1) (3 (§ -+ - GF - [4+ EF2])
(1+m)o(1 +n)etvti(c — )T (20 +y + 1) (CJF%JF[%])k (%Jr%(lJr(il)p))k?

where the coefficients Dy, , are given in [11].

Corollary 3.5 Fory € Z and p,q = 0,%1,+£2 the integral having twenty-five results hold true,
[t
o 16 = 2) +m(t — 50) + n(c — t)]Potvt!

A —2n—1,a+2n+1, 2a+y+1, ¢ (L4+m)(t — ) it
453 %(a—l—p—i—l), a, 2¢+q [(c = 2) + m(t — ») + n(s — t)]

Epg T(@)T(a+y+1) (L) (nggf#, [g+w])k
(14+m)o(1 +n)etvtli(c — )T 20+ y + 1) (C+%+[%])k (2+13- (71)17))1@)

where the coefficients &, 4 are given in [11].
Specifically, if we let p = ¢ =0 in (3.4), we obtain the following result:
/< (t =) —t)*
s [(6 = 2) +m(t —3) +n(c —t)]Potvtt
" 4F3<—2n,a—|—2n, 2a+y+1, ¢ (L +m)(t— ) )dt

s(a+1), a, 2 [(s = 2¢) + m(t — ») + n(s —t)]

[(@)C(a+y+1) (3), (
L+ m) (L4 n) (s — )0 2a+y+1) (c+ 1

Further, if we substitute y = —1, it reduces to

[ L

s [(6 = 2) +m(t — ) +n(s — 1)

—2n, a+2n, 2a, c (IT+m)(t— )
g d%< Ha+1), a, 2 [@w+mam+n@m>“
I'(a)T'(a) (3), (5 —c+3),

(L+m)*(1+n)*(c—2)T(2a) (c+1), (2+1),

Similarly, in (3.5), if we set p = ¢ = 0, we obtain the following proficient result,

/< (t =) (¢ —t)*tv

s [(6 = 2) +m(t — 3) +n(s —t)]2atyrl

y —2n—1, a+2n+1, 2a+y+1, ¢ (L+m)(t — )
4&< Yat1), a 2 [«—m+mu—m+n«—m)“
= 0.

We note that result (3.8) is remarkable.

(3.8)

Remark 3.2 If we set s = 0,¢ = 1 such that ¢ € [0,1] in (3.4), (3.5), (3.6) and (3.7), then we are led

to the results found in [10].
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3.3. Limiting Case of (2.8)

Let (i) > 0,R(j) > 0,R(a) > 0 and R(b) > 0 such that j = a+i—1—k. Then the following limiting

case of (2.8) holds

[

s (6 =2) +m(t =) +n(c =)

a (L+m)(t — )
g 1F0< - ‘2[(<—%)+m(t—%)+n(<_t)]> dt (3.9)
— F(Z_J)F(J) a, 1+k—a 1

4. Conclusion

In the theory of hypergeometric and generalized hypergeometric functions, there exist a remarkably

large number of hypergeometric summation formulas which can be expressed in terms of the Gamma
functions. The importance of the generalized hypergeometric function lies in the fact that almost all ele-
mentary functions such as exponential, binomial, trigonometric, hyperbolic, logarithmic etc. are special
case of this function. Thus the well known classical summation theorems such as those of generalized
Watson’s theorem, generalized Dixon’s theorem and generalized Whipple’s theorem for the series 3F5.
In our present investigation, we established a family of unified Eulerian integrals involving generalized
hypergeometric function by employing generalized summation theorems for the series 3Fs such as gen-
eralized Watson’s theorem, generalized Dixon’s theorem and generalized Whipple’s theorem. Various
special cases are deduced as consequences of our main theorems. The results derived in this papers can
be applied to some other Euler type integrals and other special functions|[2,4,5,6,9,17,18,20,21].
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