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Analytic study of the pine wilt disease epidemic model

A. Said, Y. Massoun, C. Cesarano, P. Agrawal

ABSTRACT: This paper presents an analytical study of the pine wilt disease epidemic model, a significant
threat to forest ecosystems and agricultural economies. The model is formulated using Caputo fractional
differential equations to account for memory-dependent dynamics and anomalous diffusion processes. We first
establish the fundamental properties of the system, including existence, uniqueness, and stability criteria. By
employing a semi-analytical approach combining the Laplace transform with iterative techniques, we derive
approximate solutions and analyze their convergence. Numerical simulations for different fractional orders a
demonstrate how fractional derivatives influence disease spread, providing valuable insights for more effective
containment strategies.

Key Words: Pine wilt disease model, Laplace transform method, fractional epidemic modeling,
homotopy analysis method, nonlinear biological systems.
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1. Introduction

Pine wilt disease is a devastating phytosanitary threat affecting pine forests across East Asia, North
America, and Europe. The disease is caused by the invasive pine wood nematode (Bursaphelenchus
xylophilus), which colonizes and obstructs the vascular systems of host trees, leading to rapid mortality
within 30 days of infection [1,2,3]. Dead trees subsequently become breeding grounds for nematodes and
attract insect vectors (e.g., Monochamus beetles), which facilitate further dispersal. The ecological and
economic severity of this disease has driven extensive modeling efforts to understand its dynamics and
control its spread.

The evolution of pine wilt disease modeling reflects advancements in both mathematical biology and
computational tools. Early studies (1970s—-1980s) focused on empirical observations, while later epidemi-
ological models (1980s—1990s) adapted compartmental frameworks like SIR models to tree populations
[5,6]. By the 2000s, models incorporated environmental factors, spatial heterogeneity via GIS, and man-
agement strategies such as targeted tree removal. Recent approaches integrate climate change projections
[7] and data-driven techniques, including machine learning and fractional calculus, to capture memory
effects and anomalous diffusion in nematode dispersal [8]. Fractional operators, such as the Caputo
derivative, have proven particularly effective in modeling complex biological processes with non-local
dynamics, as demonstrated in analogous systems [4,9]. Recent advances in fractional modeling and
numerical methods have shown significant potential in biomedical and diffusion processes like Hassani
and al. [10,11,12] proposed various optimization techniques and polynomial-based approaches for solving
nonlinear fractional optimal control problems, including applications in cancer treatment, tumor immune
interaction, and HIV infection modeling. Avazzadeh et al. [13] applied the generalized Laguerre polyno-
mials to approximate fractional order brain tumor models efficiently. Moreover, Irandoust-Pakchin et al.
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[14] developed an accurate and stable numerical method for distributed order for time fractional diffusion
equations, providing valuable tools for modeling anomalous diffusion in biological systems.

This paper extends these efforts by formulating a fractional-order model of pine wilt disease transmis-
sion, analyzing its dynamics through semi-analytical methods, and evaluating the impact of fractional
parameters on outbreak trajectories. Our work builds on recent advances in fractional calculus appli-
cations to ecological and epidemiological systems [15], aiming to provide actionable insights for forest
management.

At present, many epidemic models have been represented using fractional differential equations, ex-
emplified by the work of Muhammad Altaf and Yongjin Li. [16],Khan [17], and Khan, M [18].

The epidemic model is given as [16]

Sp(t) = g —eaSy(t)I,(t) — K1SK(t),

Ey(t) = paSp(t)1u(t) — (B+ K1) En(t),

I(t) = BER(t) — Kiln(t) (1.1)
Sll) (t) = by — leSU(t)Ih(t) - K2Sv(t)a

I{;(t) = ’YVIh(t)SU(t) - KQIv(t)v

Here, we’ve utilized the homotopy analysis transform method (HATM) to obtain approximate solutions
for the epidemic model under consideration.

In this section, we mathematically represent this epidemic model by formulating it as a system of
fractional differential equations, as demonstrated below. [17][19] :

CDYSy(t) = Ty — @asSy(t)1,(t) — K1Sh(t)

CDEL(t) = paSu(t)L,(t) — (B + Ki)Ey(t)

DI (1) BEL(t) — K14 (t) (1.2)
DS, (t) = by, —11Su(O)In(t) — K25,(1)

CDYL(t) = wIn(t)S,(t) — Kal,(t)

with initial condition
Sp(0) =m En(0)=mn2 I4(0)=n3 S,(0)=mns I,(0) =ns

Where Sp(t) represents the total number of trees, while Ey(¢), Iy (t), and Sy (t) denote the suscepti-
ble, infected, and the total number of beetles in three different classes, respectively. Additionally, I1g
signifies the continuous growth rate for the tree population, and Il corresponds to the vector popula-
tion. Finally, K7 stands for the atrophy or natural death rate of pine trees, Ky The natural death rate
of beetles is considered as vectors. g the natural death rates of pine trees, 7y represents the death
rate of the population, v signifies the natural death rate of uninfected pine trees. #; and 05 denote the
saturation constants, while g indicates the rate at which exposed pine trees transition to the infected
class. Similarly, dy, represents the rate at which an exposed vector becomes an infected vector, and [,
stands for the contact rate between susceptible vectors and infected pine trees.

2. Essential principles of fractional calculus

In this section, we provide fundamental definitions of the fractional calculus theory utilized in this
paper:

Definition 2.1 A real function h(t) is said C,, p € R if there exists a real number p > p, such that
h(t) = tPhy(t) where hi(t) € C(0,00) and it is said to be in space C, if and only if K™ € C\,n € N

Definition 2.2 The Riemann-Liouville fractional operator of order o > 0, of a function h € Cp,, p > —1
is defined as [20]

I°n(t) = = ﬁ fot(t —5)( @ Yh(s)ds, p > 0,t > 0

I°h(t) = h(t)

where I'(.) is the Gamma function.
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Definition 2.3 The Caputo fractional derivative of h, h € C™, is defined as

CDo‘h(t) = ) /Ot(t — g)(m*afl)h(m)(g)dg’

'im-—a
wherem —1 < a<m,méeN

Definition 2.4 The Laplace transform for the function h(t) of the Caputo fractional derivative is [20]:

|
—

LICDh(t)] =5 =Y s kDp®), n—1<a<n (2.1)
0

b
I

3. Basic idea of the homotopy analysis transform method

We analyze the given fractional differential equation to exemplify the utilization of the HATM in
solving fractional differential equations:

CDh(t) + Rh(t) + Nh(t) = f(t), 0<a<1 (3.1)

Where “D®h(t) denotes the Caputo fractional derivative of h(t) with order o, ] and 91 represent the
linear and nonlinear operators, respectively, and f(t) is the source term. To start, upon applying the
Laplace transform to equation (2.1), we acquire the following:

s*L[h(t)] — s*7h(0) + LIRA(t)] + LINA(t)] = L[f(t)], 0<a<1 (3.2)
After simplifying, the result is:

ummzémm+34uﬂm—mem—mem% O<a<i (3.3)

sll

Utilizing the homotopy analysis method as demonstrated in [21], [24], [25], and [26], we define the
nonlinear operator as follows:

1

N[9(t.a)] = LIB(t,a)] ~ h(0) — —(LLF(#)] + LIRA()] + LIA(H) (3.9

where ¢(t, q) is real function of ¢ and ¢ € [0, 1], the zeroth order deformation [24] [25] is

(1 =) L[¢(t, q) — ho(t)] = hgH () N[¢(t, )] (3.5)

Here, L represents a linear operator, with our choice being the Laplace operator denoted as L. h is a
non-zero auxiliary parameter, and the auxiliary function H(¢) is non-zero as well. We define ho(t) as the
initial guess for h(t), and ¢(¢,q) is an unknown function. Notably, ¢(¢,0) = ug(t) and ¢(¢,1) = h(t). We
proceed by expanding ¢(t,q) in a Taylor series with respect to g,

n

¢(t,q) =Y hi(t)g’
i=0
where L omé(t.a)
5 q
hi(t) = MW'FO

Through differentiation(3.5) m times with respect ¢, and by performing ¢ = 0, we get the m-th order
deformation equation

L[hm(t> - thm—l(t)] - hH(t)Rm(hm—l(t)) (36)
Applying L=t in (3.6) we get:

Bon(t) = Xonhme1 () + BL ™ [Bun (1 ()] (3.7)
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where

/0, m<1
Xm=311, m>1

For our epidemic model (1.2), we establish a set of nonlinear operators as follows:

Ni[¢1, ¢2, 03,04, b5, 6] = Ll¢1] — % — L (L[y] — L[(padi¢s + K1¢1)
Na[¢1, ¢2, 03,04, b5, 6] = Llgo] — 2 — L Llpagigs — (B + K1)¢2]
Na[¢1, ¢2, ¢3,0a, b5, 6] = Llgs] — 2 — L L[Bs — K1¢s]
Nylo1, ¢2, b3, 04,05, 06] = Llpa) — 2 — L L[b, — 10403 — Kagpa]
Ns[¢1, b2, B3, da, b5, 0] = L[ds] — > — ZL[(ywsda) — Kaohs)

The corresponding mth order deformation equation is:

Sum@® = XmShmo1(t) + L Ry n[S hms E s L s S voms L vm]

Enm®) = YoBhn() + hL ™ Romn[S hms E s Livms S vms L o]

Dm® = XonTnm (&) + hL R u[ S s Eons L S v L] (3.8)
Som(®) = XmSomn(t) + AL Ry S noms E s L s S vms 1 vm

Iu,m(t) = XmIv,m(t) +hL_1R6,m yh m7ﬁhm ? ?v,ma?v,m]

where L~! represents the inverse Laplace transform operator, and it should be noted that each of S, (t),
En(t), In(t), Sy(t), and I,(¢) can be expressed as a convergent series:

Sh(t) = Zgo Shi(t) En(t) = Zgo Eni(t) In(t) = 3720 In,i(t)
Sy(t) = Zi:o Soi (t) L(t) = Zi:o Iv,i(t)
4. Analysis of Convergence
Theorem 4.1 [28],[29] If the series solutions .~ o Shi(t), Y ieo En,i(t), Yieo In,i(t), Doieo Svi(t), and
Soeo Eu,i(t), determined by equation (3.8) converge, then they are indeed solutions of equation (1.2).

Proof: Assuming that both > .2 Shi(¢), > ieg Eni(t), Yoieg In,i(t),
o0 Su,i(t), Yoo Eu.i(t) are convergent, i.e

lim Sy,(t)= lim Eg,(t)= lim Iy,(t)= lm Sy,(t)= lm Ey,(t)=0

n—o0 n—:o0 n—ro0 n—o0 n—o0

Based on equation (??), we obtain:

hHl Zm 1 Rl mo = khl)nm Zm 0 [Sh m XmSh,mfl]
= L[ lim 3¢ _[Shwm — XmSnm-1]] = [ lim Sp k]
k—> 00 k—s00

Given that L is a Laplace operator, and considering that limy_,oc S = 0, H; # 0, and h # 0, we can
conclude that Y °_| Ry, = 0.
Now, let’s expand Nl[ i(t,q)],i=1,...,5, about ¢ = 0, and then set ¢ = 1.

N[(I)i(t7 1)] =0,

Indeed, it is evident that Sy (t) = ®1(¢,1) = > .o Sh,i(t) is a solution to the equation (1.2). O

Theorem 4.2 [30] The series solution Y-, Sp.m(t) converges if there exists a constant 0 < v < 1
such that for all m > mg, where mg is a natural number, the following condition holds:

[Sh,m41 (O < AShm (@)l

where |Spm (t)| represents the norm or magnitude of the solution component S, m,(t).
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Proof: Define the sequence (Ty,)nen as: Ty, = Sho + Sp1 + ... + Sh.n. We prove that T,, is a Cauchy
sequence in R.
For every p,q € N,p > ¢ > mg, we have

H Tp - Tq ” ” (Sh,p - Shypfl) + (Sh,pfl - Sh-,p72) +.t (Sh,qul - Sh,q) H

< N Shp = Shp-1) | + | (Shp—1 = Shp—2) | +-4 || (Shig+1 — Sh.e) |l

< AP | Shmo | 7P| Shumg | A+ YO Spum |l (4.1)
< (ypmme +7p‘m°‘1 + AT | Sk |l

< ,Yq m0+1"/

Given that 0 < v < 1, we conclude

lim |1, -1, |=0
Jim || T, ~ T, |

Thus, (T},) forms a Cauchy sequence in R, signifying the convergence of (T},). This, in turn, indicates
the convergence of the series solution > S, ;(t) O

Theorem 4.3 [30] Suppose that the series solution Y °_; Shm(t) is convergent to the solution Sy (t).

If the truncated series anzo Sh.m(t) is used as approzimation to the solution Sy (t), then the truncated
error satisfies

1
| Sn(t Z Sh,m (t) 1< jv’““ ISno(®) -

Proof: Considering n and m as natural numbers, we apply the following inequality:

—m
| To = T, H<vm+1} | Sho

5. Numerical result and discussion

In this section, we prove that HAM is a powerful semi-analytical method for solving nonlinear differ-
ential equations and has been applied to solve the above system of fractional differential equations. with
the initial conditions,

Sh70(0) =m = 300 Ehﬁo(O) =172 = 40 Ih 0( ) =TnN3 = 20
Sp0(0) =14 =70 E,0(0)=mn5=20 B =0.0571
we solve (1.2) using (3.8), we obtain :

Spa(t) = r[1+T] t*(—6000ap — 300K + I13,)

Eni(t) = F[1+‘r] ht*(6000ap — 40(5 + K1))

Ina(t) = r[1+r] ht*(408 — 20K))

Spi(t) = F[1+T ht("( 1400y, + b, — 70K3)

ht" K, _ 1400ht®
La(t) = rf1+a] [lja],yz

and for

B =0.0571,~ = 0.0405, K1 = 0.003, \ = 0.01166, ¢ = 0.06, K5 = 0.011,1I, = 10,b, = 4

and h = —1 we obtain:
Spa(t) = [1+a] 4.9024ht*
Ena(t) = [1+a] 1.7936ht*
Ina(t) = F[1+a] 2.224ht*
Spa(t) = F[1+ ]53 ATht
I,1(t) = F[1+ ]56 48ht™
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and :
Sh.a(t) F[1+ ]4 9024ht™ + h(— F[1+ ]4 9024ht™ — ta(r[ua] + F[1+2a]
Epa(t) F[1+ ]1 .7936Aht* + h( 1 7936ht* + F[1+2 ]11 8148ht2a)
Ino(t) = F[1+a] 2.224ht" + h(r[1+ ]2 224ht™ PHQ]O 0670254ht2a)
Spa(t) = {1+a] 53.47ht™ + h( [1+a] 53.47ht™ + F[1+2a] 37. 5938ht2")
I,2(t) = ]."[1+a] 56.48ht* F[1+a] 56.48h 2t F[1+2a] 37.6269h2t2

The HAM solution of Sy, Ej, I, S, and I, for a = 1 is presented in figl, and for different values of
« in the figure2 it’s clear that the HAM solution is dependent on the fractional order « of the derivative.

Concluding remarks

By investigating the epidemic model and its transformation into a system of fractional differential
equations, we have effectively employed the homotopy analysis transform method to solve the model. This
has been demonstrated through the presentation of the first terms of the solution series, accompanied by

graphical representations.

(e=1)
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Figure 1: The HATM solution of Sy, Ej, Iy, S, and I,
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Figure 2: The HATM solution of Sy, Ej, I, S, and I, for different value of «
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