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Reversible Cyclic Codes Over F, + uF, + u?F, + u*F, and Applications to DNA Codes
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ABSTRACT: In this paper, we investigate the structure of reversible and reversible-complement cyclic codes of
length n over the ring R = Fq +uFy +u?Fq +u3Fq, u* = 0, when n and q are coprime. We give the necessary
and sufficient conditions for the cyclic codes of length n over R to be reversible and reversible-compliment
cyclic codes, when (n,q) = 1 over R. We also study the dual of cyclic codes over R when (n,¢) = 1 and obtain
the reversibility condition for dual of cyclic codes. Additionally, we explore cyclic DNA codes over nucleotide
4-base pair. First, we establish a one-to-one correspondence between R, where R1 = F4+uF}y +u2lFy +u3IF4,
u* = 0 and 4-mers and then cyclic DNA codes constructed as the images of reversible-complement cyclic codes
over R1.
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1. Introduction

Numerous combinatorial problems are addressed by DNA computing, such as the Maximal Clique
problem [16], the Hamiltonian path problem [4] and others. It was demonstrated by Mansuripur et al.
[13] the use of DNA codes for storage media. Adleman et al. [5] cracked the Data Encryption Standard
(DES) cryptosystem using DNA computing techniques.

In the area of error-correcting codes, cyclic codes over finite rings played a vital role [1,3,9,18,22]. Since
then, good error-correcting codes have been constructed using the DNA structure as a model, and error-
correcting codes with properties similar to DNA structure have also been utilized for understanding DNA.
The linear construction of DNA codes was studied by Gaborit and King [11]. Abualrub et al. studied the
DNA codes over the finite field of four elements [2]. Later, Siap et al. discussed DNA codes over the ring
Fy[u]/(u? — 1) with four elements [21]. DNA codes over the ring Fy[u]/{(u* — 1) with 16 elements were
studied by Yildiz and Siap [23]. Liang and Wang [12] studied cyclic DNA codes over the ring Fy + uFs,
u? = 0. Subsequently, Mostafanasab and Darani [14] explored the cyclic DNA codes over the ring
R = Fy+uF; +u?Fy, v®> = 0. One of the major problems in the theory of DNA coding is the reversibility
problem. The reversibility problem has been addressed by many authors over different algebraic structures
such as Oztas et al. [17] identified the DNA k-bases with the elements of the ring Fa[u]/(u?* —1) and used
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coterm polynomials for solving the reversibility problem. In [8] Ashraf et al. addressed the reversibility
problem over a non-chain ring. In [10] Dinh et al. studied the reversibility problem over the ring
Zg[u,v])/{(u? — 2,uv — 2,v%, 2u, 2v). Further, Alali [6] and coauthors addressed the reversibility problem
over a non-chain ring Ry = Zg[u, ua, . . ., ug)/(u? —u;, wju; —uju;), where 1 < i, j < k, k> 1. Motivated
by these works, we study reversible cyclic codes over R = F, + uF, + u?F, + u*F,, u* = 0, when the
length of the code is coprime to ¢ and construct DNA codes over the set of all DNA strings of length 4
as images of cyclic reversible-complement codes over Ry = Fy + uFy + u?Fy + u3Fy, u* = 0. Moreover,
we study dual C* of cyclic code C over R of length n and obtain the conditions for the dual of cyclic
code to be reversible when (n,q) = 1. This paper is organized as follows: In Section 2, we discuss some
basic definitions and results which are used in later sections and a relationship between the elements of
the ring Ry and DNA strings of length 4 is presented. In Section 3, we discuss the structure of cyclic
codes over R. In Section 4, reversiblilty conditions for cyclic codes of length n over R are discussed,
when (n,q) = 1. Section 5 presents the study of dual of cyclic codes of length n over R and reversiblity
condition for dual of cyclic codes is discussed. Reversibile-complement codes over R; are discussed in
Section 6. In Section 7, some examples are presented. Finally, Section 8 concludes the paper.

2. Preliminaries

Consider the set R = F, + ulF, + uqu + u?’IE‘q7 u* = 0, where ¢ = p*, pis a prime, k € N. Then
R is a finite commutative ring with ¢* elements and characteristic p. The ring R is isomorphic to the
quotient ring F,[u]/(u?) and (0), (1), (u), (u?), (u®) are ideals of R. Also, (0) = (u*) C (u?) C (u?) C
(uy C (1) = R. We can see that R is a finite local chain ring with maximal ideal (u). A linear code C
over R of length n is an R—submodule of R™. Elements of C are called codewords. A code of length n
is cyclic if it is closed under cyclic shift i.e., (¢,—1,c¢o,...,¢cn—2) € C whenever (co,c1,...,¢p—1) € C. It
is well known that a cyclic code of length n over a ring R can be identified with an ideal in the quotient
ring R[s]/(3" — 1) via the R—module isomorphism as follows:

R" — R[x]|/(s" — 1)

-1

(Co,Cl, Ce ,Cn_l) =cy+cix+---+ Cn_l%n .
For any vector v = (vg,v1,...,v,—1) € R™, the reverse of v denoted as v" is the reversal of the components
of v ie., v" = (vp—1,Vp—2,...,01,09). The number of non-zero components in any codeword ¢ € C is

the hamming weight of ¢ denoted as wp(c¢) and minimum of weight of all codewords is defined as the
hamming weight of the code i.e., wg(C) = min{wg(c)|c € C}. The hamming distance (dy) between
two codewords is the number of components in which they differ. The distance of code is defined as
d(C) = min{dg(c,c)|c,d € C,c # '}. For a linear code, distance of the code is weight of the code.
The Lee weight of = a + ub + u?c + u3d € R is defined as wr(z) = wr(a + ub + u?c + u?d) =
wg(a+b+c+d,c+d,b+d,d). This definition of Lee weight immediately leads to a Gray map ¢ from
R to JF; defined as

p:R— IF;1
p(a+ub+v’c+udd) = (a+b+c+d,c+db+d,d).
This Gray map can naturally be extended to R™ as
?:R"—>F,"
D(ap,ar,...,an-1) = (d(ap),d(ar),...,d(an—1)).

The Lee distance between any two codewords ¢,¢’ € C is given by dr(c1,c2) = dg(®(c1), ®(c2)) and
minimum of Lee distance of all codewords is defined as the Lee distance of the code i.e., d.(C) =
min{dr(c,c')|c,c’ € C,c # '}

Theorem 2.1 The Gray map ® is a linear isometry from (R™, Lee distance)to(F,", Hamming distance).

Theorem 2.2 If C is a linear [n, k,dr] code over R, then ®(C) is a linear code [4n, k, dg) over F,.
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Table 1 Correspondence of DNA base pair with elements of the ring Ry

Elements of Ry  DNA string Elements of Ry DNA string
0 AAAA u’ TTTT
« AAAT ud + TTTA
a? AAAG ud + a? TTTC
1 AAAC ud 41 TTTG
au ATCA ud + au TAGT
au + « ATCT wWHou+ta TAGA
au + o? ATCG ud + au + o? TAGC
au+ 1 ACGG wHou+1 TGCC
o’u ATCC ud + o?u TAGG
lu+a ACGA uwd +lu+a TGCT
o’y + o? ACGC ud + a?u + o? TGCG
?u+1 AATA ud + a’u+1 TTAT
U AATT ud+u TTAA
U+« AATG ud+u+ TTAC
u+ a? AATC ud +u+ o? TTAG
u+1 AGAA ud+u+1 TCTT
ou? ATTA ud + au? TAAT
au’® + « TAAA wd + au? 4+ ATTT
au® + o? AGAG ud + au? 4 o? TCTC
ou? +1 AGAC w+au?+1 TCTG
au® + au ACCT ud + au? + au TGGA
au® + au+ « ACCG u® + ou® + au + « TGGC
au® + au + o ACCC ud + au? 4+ ou + o? TGGG
au?® + au+1 TTGA wWHau+aou+1 AACT
ou? + o’u TTGT ud + au? 4+ a’u AACA
au® + u+a TTGG ud +au? 4+ Pu+a AACC
au? + ou + o2 TTGC u? + oau? + ou + a? AACG
au’® + a®u+1 AAGT wd + au? 4+ oPu+1 TTCA
au® +u AT AT wd+au? +u TATA
ou® +u+a CATT wWHau+u+a GTAA
oau? +u+ a? AAGG uw+au®+u+a? TrCC
ou? +u+1 CAGG u? +ou® +u+1 GTCC
o2u? ACCA ud + o?u? TGGT
o?u? + o CAGC w4+l +a GTCG
a?u? 4 o? GAAA ud + ou? + o CTTT
o?u? +1 CAGA uw+alu?+1 GTCT
o?u? + au GTGC ud + o?u? + au CACG
au? 4+ au + o CACC ud + a?u? + au+ « GTGG
o2u? 4+ ou+ o? GGTC ud + o?u? + au + o CCAG
a?u? +ou+1 GAAC wd + o?u? +au+1 CTTG
o?u? + ou TACA ud + a2u? + oPu ATGT
o?u? +dlu+a GGTA ud + a?u? + aPu+ « CCAT
a?u? + o®u+ a? CACT u? + o?u? + o?u + a? GTGA
a?u? +u+1 CTCA u? + o?u? + Pu+ 1 GAGT
a?u? +u ACGT ud + o?u? +u TGCA
o?u? +u+ o GCTC w4+t +u+ o CGAG
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Elements of Ry DNA string Elements of Ry DNA string
o?u? + u+ o? GATT W+t Fu+a? CTAA
a?u +u+1 CCTG w4 otur+u+1 GGAC
u? GGGG ud + u? ccec
w4+ CGAC wHu+a GCTG
u? + o? GAGA ud +u? +a? CTCT
u? +1 CAAA ud +u? +1 GTTT
u? + au GAGG w4 w4 au GAGG
w4+ au+a cGoc w+u? +au+ o GCGG
u? + au + o? GATG ud +u? + au + o? CTAC
w4 ou+1 Ggeooc wHur+au+1 CGGG
u? + a’u CGTA ud +u? + aPu GCAT
u? 4+ ou+ « CACA u? +u? 4 o’u+ o GTGT
u? + o?u + o? GATA w+u? + aPu+a? CTAT
w4+ au+1 GACT wHu+alu+1 CTGA
uw?+u AGCT w+u?+u TCGA
u? +u+ GAGC W+ +u+a CTCG
u? 4+ u+ o? CCTT u? +u? 4+ u+a? GGAA
u? +u+1 TTCT w+u?+u+1 AAGA
au’ AGGA oud TCCT
aud + « CTGC a?ud + o GACG
au® + o? AAGC ou? + o? TTCG
aud +1 AGTA ou + 1 TCAT
oud + au ACTA a?u? 4 ou TGAT
aud + au+ a GCCA 2w 4+ ou+ o CGGT
ou® + au + o CTGG a?u 4 ou + o? GACC
aud + au + 1 CcCCG o?ud 4+ ou+1 GGGC
au® + a’u GGAT o?ud + a’u CCTA
oud + Pu+ o CCAA a?u® + odPu+ a GGTT
au? + o?u + o? AGTG a?ud + ?u + a? TCAC
oud + aPu+1 AGTC a2+ alu+1 TCAG
aud +u CATG oud +u GTAC
o +u+a TAAG 2ud Fu+a ATTC
aud + u+ a? TAAC a?ud 4+ u+ a? ATTG
aud +u+1 AGGG a?ud+u+1 TCCC
aud + au? CAAC ou? + ou? GTTG
oud + au? + o CGTC a?u? 4+ ou® + o GCAG
oud + au® + o? AGGC o?u? + ou? + o TCCG
oud + au? +1 TATG au® 4+ ou? + 1 ATAC
oud + au® + au TCCA a?u? + ou® + au AGGT
aud + o’ +au+a TCTA o2ud 4+ ou? + ou+ AGAT
oud + au® + au + o? GTAG a?u? + ou® + au + o CATC
aud + au® +ou+1 CAAG o?ud 4+ ou? +ou+1 GTTC
ou® + au? + au ACAA o?ud + au? + a’u TGTT
oud + au® + Pu+ o TCGT a?u® 4+ ou® + Pu+a AGCA
aud + au? + a’u + o? TATC o?u? + ou? + o?u + o ATAG
oud + au? + o®u+1 TGAG a?u 4+ ou? + oPu+1 ACTC
aud + au? +u CTAG oud + ou? +u GATC
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Elements of Ry DNA string Elements of Ry DNA string
au’ + au® +u+ o CTTA 2P+ o Fu+ta GAAT
oud + au® +u+ o? TGAC o?u? + ou? + u+ a? ACTG
aud +au?+u+1 AGCG a?u +ou® +u+1 TCGC

au® + ou? CGGC a?u? + a?u? GCCG

aud + a?u? + o AGCC a?ud + o + a TCGG
oud + a?u? + o? CGAA o?u? + o?u? + o? GCTT
aud + o?u? + 1 GTAT au® 4+ o2u? +1 CATA
au® + o?u? + au CGTG a?u? + o?u? + au GCAC
oud + a?u? + ou+ o cCcGae 2w 4+ o2l +ou+ o GGCG
aud + a?u? + au + o? GCTA a?u? 4 o?u? + au + o? CGAT
oud + a?u? +ou+1 AGTT 2w+ o2l +ou+1 TCAA
oud + a?u? + ou TGTA o?u? + o?u? + o?u ACAT
aud + o?u? + Pu+ o TGTG a?u? + o?u? + o®u+ o ACAC
ou® + a?u? + oPu + o GCGT o?u? + o?u? + o®u + o? CGCA
au® + o?u? + Pu+1 ACTT a?ud + a2 +alu+1 TGAA
aud + o2u? +u CCGG aud + a?u? +u GGCC
oud + a?ul +u+a TGTC P+’ +u+ta ACAG
oud + o?u? + u + a? GTTA a?ud + a?u? + u+ o? CAAT
oud + aPu? +u+1 CGCT Pt +oul+u+1 GCGA
ou® + u? GAAG o?u 4 u? CTTC

aud +u? 4« CCGA a?u? +u? +a GGCT

au® +u? 4+ a? CGGA a?ud + u? + o? GCCT
oud +u?+1 ATGA 2wt +ul+1 TACT

ou® + u? 4 ou GGAG o2 +u? + au ccrc
au® + u? + au + o CCAC a?ud +u? + oau+ o GGTG
ou® + u? + au + o? CCCA o?ud +u? + au+a? GGGT
aud +u? +ou+1 GGCA a?ud +u? +ou+1 CCGT
oud + u? 4 o?u TACG o2u? +u? + a?u ATGC
oud +u? 4 Pu+a TACC Pt + v+ Pu+ o ATGG
ou® + u? + o?u + o? GCAA o?u +u? + o?u + o? CGTT
ou® +u? 4+ Pu+1 TATT 2+l +aPu+1 ATAA
awd +ul+u CGCG a?u? +u? +u GCGC
awl+ 1l +u+ta GACA ?ud+u+u+a CTGT
aud + u? + u+ a? GTCA a2t +ul +u+ao? CAGT
oud +ul4+u+1 cccr 2+ ul+u+1 GGGA

3. Structure of Cyclic Codes Over R

and therefore, D is given by

2

D = {g(5) +up1(5) + u2p2(%),ua1(%) + u2q1(%), u“as

This Section provides the algebraic structure of cyclic codes over the ring R. Al-Ashker and Chen
[14] obtained the structure of cyclic codes over general ring F[u]/(u*). Cyclic codes over R of length n
are precisely the ideals in the quotient ring R[»]/(»™ — 1). Let R = F, + uF,, where > = 0 and & =
F,+uF,+u?F,, where u® = 0 be subrings of R. Let § : & — R be a map defined as 0(a+ub+u?c) = a+ub
for a,b,c € Fy. Then, 6 is a ring homomorphism. Let D be a cyclic code over &. Then, we can extend
this map to © : D — R[s]/(»" — 1) such that O(ag + a1 + -+ + an_1""1) = 0(ag) + 0(a1) >+ - +
0(an—1)»""', where a; € & and ker® = {u?t(5)|t(s) € F,[»]}. Let I = {t(3) € Fy[s]|u’t(5) € ker©}.
Then, I is a cyclic code over F, and hence I = (as(3)) and ker® = (u2az(x)), also ©(D) is cyclic code
over R and hence, O(D) is given by [19]

O(D) = (9(0) + up1(5), uai (),

(),
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where a;(3¢), pi(3¢), g(5¢), q1(32) € Fyl2] and aa(3¢)]a1(5¢)|g(s¢)|5™ — L.

Let ¢ : R — & defined as p(a+ub+u®c+u3d) = a+ub+u’c for a, b, c,d € F, be a ring homomorphism.
Suppose, C be a cyclic code over R. Then we can extend this map to ¢ : C — &[»]/(3"™ — 1) such
that ¥(co + c1sc + -+ + o121 = p(co) + ¢(c1)se + -+ + @(cn_1)" "1, where ¢; € R. The kery =
{udl(3)|l(5) € Fy»]}. Let J = {l(5) € Fy[s]|ul(s) € kery}. Then, J is a cyclic code over F, and
hence J = (a3(3)) and kery = (udas(3)); also, ¥(C) is cyclic code over & and hence C is given by the
following results:

Theorem 3.1 [7, Theorem 3.6] Consider that C is a cyclic code over R of length n. Then,
C =(g() + up1(32) + u’p2(5¢) + u’ps(50), ua1 (32) + u’qu(5¢) + u’qa(5), u’az(50) + u’li (32), u’as(32)) with

%n

562) a2 (9 () g ()| (" = 1)(mod ). a1 (9l (S —50), aaG0las () st) amd

xt =1, " —1 xt =1 =1, ,x" =1

)G ) asCA G0, sl (o (s

IS0, Moreover, deg(ps(20) < deglas (). deg(aa(:9) < deg(as(:9).

deg(l () < deg(as(5)), deg(pa(x)) < deg(az(3)), deg(qi(x)) < deg(az(5)),deg(pi(>)) < deg(ai(x)).

az(>)|p2(>)( ) and

a(5)|pa (>)(

Lemma 3.1 [7, Lemma 3.4] Let C = (g(3¢) +up1 (5¢) +u’p2 () +u’ps(5), uai (52) + uq1 (5¢) + uq2 (5¢), uaz (5) +
u?ly (), uPas(3¢)) over R and as(s) = g(3). Then C = (g(5) +up1 (s¢) +u’p2(5¢) +u’ps(3¢)) and (g(s¢) +up1(3)+
W2ps(5¢) + u'ps (39))|" — 1 in R.
Lemma 3.2 [7, Lemma 3.5] If n is relatively prime to q, then C can be written as

C = (g9(3), uai (), u”az(50), w’as(5)) = (9(5) + uai(3) + u’az(5) + u’as()).
Lemma 3.3 Suppose f;(s),g;(3¢) € Fy[s] fori=1,2,3,4 if

Fi(5) + ufo(50) +u? fa(5¢) + 1 fa(5¢) = g1(30) + uga(s¢) + u’ga(5) +u’ga(),
then fi(») = gi(>) fori=1,2,3,4.
Definition 3.1 Suppose that C is a cyclic code over R. Define a subcode of C' as

Cus = {k(5)| ©®k(x) € C}.

Theorem 3.2 Consider C = (g(5) + upi(3¢) + u?pa(3¢) + ups (), uai (3) + u?qy (3¢) + uqa(5), u?as(5)
+ udly (), uaz(x)) be a cyclic code over R with conditions in Theorem 3.1. Then, C,s = (a3(3)) and
’LUH(C) = wH(Cus),

Proof: Since udaz(3) € C, we have (a3(»)) C Cys.
Conversely, suppose k(»x) € C,s. Then, u®k(x) € C and hence we must have polynomials
b(s¢), c(x),d(s) and e(s) in Fy[»] such that
uk(3¢) = uPb(50)g(5¢) + ubc(s)ays (5¢) + uPd(3)as () + ue(x)asz ().

Since az(s) divides as(sr), a1(5) and g(sr), we have, k(sc) = t(sr)az(sr) for some t(sr) € Fy[s]. This means
C.3 C (as(5)) hence, Cys = (a3(5)).

Further v®C is a subcode of C with wg(u3C) < wg(C) it is sufficient to focus on the subcode u3C
to compute hamming weight of of C. Since, u>C = (u?a3(x)), thus wy (C) = wy (Cys). O

Lemma 3.4 [2, Lemma 4] Let f(3), g(5¢) be two polynomials in R[> with deg(g(>)) < deg(f(3c)). Then,
(i) (f()g())™ = (5097 (%),
(it) (f(50) +9(30))" = f7(50) + 100 0N =deal0CD g= (50).
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Lemma 3.5 Let fi(») € Fylx] for i = 1,2,3,4. Assume that, deg(f1(»)) = r,
deg(fa(5)) = s,deg(f3(5)) = t,deg(fa(>)) = v where r > max{s,t,v}. Then

(f1(5) + ufa(s) +u? fa(32) + u® fa(30))* = f7 (32) + use" = f3(3¢) + uPs" 7" 3 (30) + uls" 0 f1(50).
Proof: Without loss of generality, we may assume that s > ¢ > v. From the Lemma 3.4, we deduce that
(f1(30) + ufa(50) + u? fa(32) +u® fa(50))* =F7 (3¢) + 25 (ufa(5¢) + u? f3(3¢) + u® fa(52))*
=11 (5) + 5" (uf5 (50) + 2" (U f3(50) + u® fa(2))")
=[1(50) + usr" " ufy () + (WP 5 (50) + 500 [ ()
=f1(5) f3(50) + 3 P f5 (36) + 7000 £ ().

~—_

) +ux" " Cu

4. Reversible Codes

In this section, we give necessary and sufficient condition for a cyclic code C over R to be reversible
when the length of the code is coprime with q.

Definition 4.1 For a linear code C over a ring R and length n, if the reverse of every codeword is again
in C, then C is said to be reversible i.e., Y™ € C for all Y € C.

For any polynomial f() = fo+ fise+- -+ frre® with fi # 0, f*(5¢) = 5 f(1/5) = fr+ fr_1c4+- -+ foscF
is its reciprocal polynomial. Clearly, deg(f*(3¢)) < deg(f(5¢)) and if fo # 0, then deg(f*(5¢)) = deg(f(3)).
If f*(5¢) = f(5¢), then f(5) is said to be self-reciprocal. It is easy to check that if f(s), g(s) are two
polynomials such that f(s)|g(s¢), then f*(»)|g*(3). Also, let R be a commutative ring and f(s) =
fo+ fizxe+- -+ fs3¢° be a polynomial in R[»]/(3™ —1). Then the reverse of f(s) is defined as polynomial
f(%)r — fs%n—s—l 4+t fI%n_2 + fO%n_l-

Lemma 4.1 [14] Suppose that R is a commutative ring and f(3) € R[]/ (" — 1) with deg(f(3c)) = m.
Then,

(1) =™ THf (o)™ = f*(30) in R[]/ (5" — 1),

(2) "M (50) = f(3)" in R[] /(5" — 1).
Proposition 4.1 Let C be a cyclic code over a commutative ring R with length n and f(s) € R[»]/(s"—
1). Then, f(>)" € C iff f*(») € C

Proof: The proof is straightforward using the Lemma 4.1. O

Corollary 4.1 Suppose that C is a cyclic code over R. Then, C is reversible if and only if f*(») € C
for all f(5) € C

Lemma 4.2 [15] The cyclic code over F, generated by the monic polynomial f(s) is reversible if and
only if f(5) is self-reciprocal.

Lemma 4.3 [19] Let € = (f(5) + um(s),ua(s)) be a reversible cyclic code over R. Then (f(x)) and
(a()) are reversible cyclic codes over F,,.

Lemma 4.4 [20] Let D be a reversible cyclic code of length n over & and © : D — R[s]/(»" — 1) be a
homomorphism as defined earlier in Section 3. Then ©(D) is also a reversible cyclic code over R.

Lemma 4.5 Let D = {g(5) 4+ umq(3¢) +u?ma(5), uay (5) + u?q1(3¢), u?az(3)) be a reversible cyclic code
over &. Then (g(x)), (a1(3)) and {(az(sc)) are reversible cyclic codes over F,.
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Proof: Let © : D — R[x]/(»"™ — 1) be the homomorphism defined in Section 3. Then, from Lemma
4.4, O(D) is a reversible cyclic code and from Lemma 4.3, {(g(5)) and (a;(5)) are reversible cyclic codes
over F,. From the discussion in the previous section, we have ker® = {u?t(sx)|t(x) € Fy[»]} and
I = {t(5) € Fy[s]|ut(5) € ker®} = (as(5)). Let t(s) = to+t1sc+ -+ +t,—12" "+ € I. Then, we have
t(») € Fyl] is a polynomial in D. Since D is reversible t*(») € D and u?t*(x) € ker®, this means
t*(5) € I. Therefore, from Corollary 4.1, (az(5)) is reversible. O

Theorem 4.1 Let C be a reversible cyclic code over R and ¢ : C — S[s]/ (3™ — 1) be the ring homo-
morphism defined in Sec 3. Then ¥(C) is also a reversible cyclic code.

Proof: Let ¢ = (¢o,c1,...,¢n—1) € C. Then, from the definition of ¢ in Section 3, we have
¥(c) = (p(co), (1), -, p(en-1)) € Y(C).
Since C is reversible, ¢" = (¢,—1,¢n—2,...,¢0) € C. Let

((e))" =(¢(co), plcr)s - plen-1))"
:(¢(Cn—1)v (p(Cn_z), ceey 90(00))
=¥(cn—1,Cn_2,---,¢0) € P(C).

Hence, ¢(C) is a reversible cyclic code. O

Theorem 4.2 Let C = (g(3) + up1(32) + upa() + ups(5), uar (3) + u?qy(3¢) + udqa(5), uas () +
u3ly (), ua3(x)) be a reversible cyclic code of length n over R. Then {(g(x)), (a1(x)), (az(5)) and
(as(s)) are also reversible cyclic codes over Fy.

Proof: Consider the homomorphism 1 : C — &[x]/(3™ — 1) in Section 3. Then, from Theorem 4.1,
(C) is also a reversible cyclic code and from Lemma 4.5, (g(3)), (a1(5¢)) and (a2(sr)) are reversible
cyclic codes over F,. From the discussion in the previous section, we have kery = {u3l()|l(5) € F,[»]}
and J = {l(») € F,[#][udl(3) € kerip} = (az(s)). Let (%) = lop + lyse+ -+ + l,—1%""1 € J. Then
I(5) € Fy[5] is a polynomial in C. Since C is reversible [* () € C and u3l* () € keri, we have [*(3) € J.
Therefore, from Corollary 4.1, (ag(s)) is reversible. O

Theorem 4.3 Let C = (g(3),uay(x),uas(5),uasz(s)) be a cyclic code of length n over R, where
(n,q) =1, g(5),a;(5) € Fy[»]/ (5" — 1) and az(3)|az(5)|a1(5)|g(s¢). Then C is reversible cyclic code if
and only if g(>),a1(),a2(3) and as(s) are self-reciprocal polynomials.

Proof: Let C = (g(5), ua1(x),uaz (), uaz(»)) be a cyclic code of length n over R, where (n,q) = 1.
Then by Lemma 4.2 and Theorem 4.2, g(5¢), a1(),as2(3¢) and as(3) are self-reciprocal polynomials.

Conversely suppose that g(),a1(3¢),a2(5) and as(s) are self-reciprocal polynomials. Then for any
¢(x) € C, there exist f1(3), fo(32), f3(>¢) and fa(3¢) € Fy[5] such that

c(5) = f1(3)9(30) +ufa(3)ar(5) + u® f3(3)az(5) + u’ fa(5)az(s0).
Now, from Lemma 3.4 and 3.5, we have
¢t (32) =(f1(3)9(5¢) + ufa(3)ar () + u® f3(30)az(5¢) + u® fa(5)az(>))*
=11 (30)g" (30) + us' 3 (3)ai (5¢) + w?sd f5 (50)a3 () + u’ 5 [ (50) a5 (),

where i = deg(g(>)) — deg(a1(x)),j = deg(g(s)) — deg(az(3¢)) and k = deg(g(>)) — deg(as(>)). Since
g(5),a1(5), az(5) and az(s) self-reciprocal, we have

¢*(50) = fi (5)g(3) + usd f3 (52)ar(50) + u s f5 (s0)az(3) + u’s" f (s2)as (52).

This implies that ¢*(») € C, hence C is a reversible cyclic code. O
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5. Dual of Cyclic Code Over R

In this Section, we find the set of generators for dual cyclic codes of length n over the ring R and
then find the condition for dual cyclic codes to be reversible when the length of the code is coprime to ¢
ie., (n,q) = 1.

Consider two vectors, X = zox1...2p and Y = y1y2... ¥, mn R™. (X, Y)g = zoyo + 191+ + TnYn
denotes the Fuclidean inner product in R™. With respect to the Euclidean inner product, two vectors X
and Y are orthogonal if (X,Y)gr = 0. Similarly, (X,Y)y = xoyo + z101 + - - - + Tn¥n is the Hermitian
inner product and two vectors X and Y are orthogonal if (X,Y )y = 0 with respect to the Hermitian
inner product. The dual code Ct of C is defined as

Ct={XcR"(X,Y)p=0forall Y €C}.
Likewise, the Hermitian dual code C+ of C is defined as
CH = {X e R"|(X,Y)y =0 for all Y € C}.

Now suppose that K is an ideal in the quotient ring R[]/ —1), then the annihilator of I in R[]/ {>" —
1) is defined as

A(K) = {£ () € R[5/ (" = 1)[g(5)f(5) = 0 Vg(>) € K}.
Tt is easy to verify that A(K) itself is an ideal in R[5/ (3" — 1). Further, if K generates a cyclic code C
of length n over R, then the dual code of C is given by

C* = A*(K) = {1*(s)|h(5) € A(K)},
where h*(s) is the reciprocal polynomial of h(sr).
Next theorem gives the annihilator of cyclic code C of length n over R, when (n,q) = 1.
3

Theorem 5.1 Let C = (g(3),uay(x),u?az(5),u3az(x)) be a cyclic code of length n over R, where
(n,q) =1, g(),a;(5) € Fy[»]/(3™ — 1) and az(x)|az(s)|a1(3¢)|g(>c). Then, annihilator of C is given as

_ » -1 u%"—l uQ%”fl uS%”fl
A(C)‘<ag<z>’ wG) " a9 >

Proof: Let us suppose that

-1 " -1 » -1 » -1
M = 7 u b >
<a3<z> Yaa) " ae " Tg()

Since g(s¢) + uay (») + u?as () + udas(sx) € C, we get

n 1
d (g(%) + way () + ulag(s) + u3a3(%)) =0.
as(s)
Therefore,
»" =1
c A(C
30 (C)
and hence,

<ZZ(%)1> e A(C).

: : x" =1 x"—1 x"—1
leerse, <a2(%)>’ <0«1(%)> and <g(%)> € A(C)

This means that <”n_1 w22 =L 321N ¢ A(C), that is, M € A(C).

az(3)? Taz(x) 7 ai(x) T g(x)

Since, A(C) itself is a cyclic code over R of length n, where (n,q) = 1, we have

A(C) = (I1(50), ula (32), u?l3(5¢), uly(52)),
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where [; () € Fy[5]/ (3™ — 1) and l4(5¢)|l3(5¢)|l2(3¢)|l1(5¢). Since uaz(3) € C and I () € A(C), we have,
udaz(s) - 11(») = 0 mod (5" —1).

»x"—1

3(0)

This means [y (3) =

as ()

a(sz), for some polynomial a(sr) € Fy[s], this means I (s) € <”n1 > Simi-

a,
larly, l2(5) € <:2(;§ >7 l3(x) € <Zl(;§> and ly(5) € <;;7(L;)1 >7 ultimately A(C) C M. Hence,

, U

A(C) = <

©—1 =1 " -1 3%"—1>
U U .
az(x) = az(x) a1 () g(%)

d

Corollary 5.1 Let C = (g(3),ua;(3),u?az(5),uaz(s)) be a cyclic code of length n over R, where
(n,q) =1, g(), ai(%) € Fy[]/ (5" = 1) and az(>)|as(>)|ar1(5)|g(5). Then,

() 5m) #(53) = () )

U |l —— ) vt ———— .

as () as () a1 () 9()

Theorem 5.2 Let C = (g(),ua(3),u%az(3),uaz(5)) be a reversible cyclic code of length n over R,

where (n,q) = 1, g(5), ai(3) € Fy[5]/ (3" —1) and az(>)|aa()|a1(3)|g(s). Then C* is a revesible cyclic
code over R.

CL

Proof: Since C is a reversible cyclic code over R of length n with (n, q) = 1, from Theorem 4.3,
g( ) a1(52),az(5), and az(s) are self-reciprocal polynomials. Consider :n( y = /\1( ), = W = Aa(5¢),

= Xa(%) and Z =L = Ay(%). Therefore =k = M(s), 5k = M), S = M(»)
(<"=1)"

and (g(%))* = M;(5¢). Since g(32),a1(5¢),az2(3), and az(s) are self-reciprocal polynomials, we have

—C S = M), S5 = 00, "5 = A and =Z5 = Ni(). Thus, Aj(%) = (),
A5 (5¢) = —Xa(5), N5(3¢) = —A3(5) and \j(») = —Aa(5). Let é(5) € CL. Then there exist polynomials

q1(5), q2(3), q3(), q1(52) € R[] such that

o= (252 w5t oo (Y i v

al(%)

and

o = (%5 ) nea+o(gg ) e+ (507 ) an+ 5wt
=[Ma1(50) +ur3q2(50) + u”Njq3(50) +u’Njqa ()]
=[=X1q1(30) + u(=X2)ga(32) + u?(=A3)g3(3¢) + u®(—A1)qa(>)]*
— ATai (30) — ws N33 () — u? 572 N5q3(5¢) — 1’57 Njgj ()
=AF1(50) +uds e fo(50) + uPAyse f(5¢) + uP Nioe® fa(52),
where j; = deg(A\(5)) — de ( 2(%)), j2 = deg(M1(32)) — deg(A3(5)) and j3 = deg(A1(32)) — deg(Aa())

and fi(») = —q} (5) for i = 1,2,3,4. This implies that ¢()* € Ct. Therefore C' is a reversible cyclic
code. O

6. Reversible-Complement Codes

This section discusses the reversible-complement cyclic codes of odd length over the ring R; = Fy4 +
ulFy + u?F, + u3F,, where u* = 0. Necessary and sufficient conditions are given for cyclic codes over R;
to be reversible-complement codes. Moreover, reversibility problem is also addressed in this Section.
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Deoxyribonucleic acid or DNA, is a type of nucleic acid found in all living organisms, carrying the
genetic information called genes. DNA sequences contain two long polymers, which are called strands,
composed of four nucleotide bases, namely Adenine(A), Guanine(G), Thymine(T) and Cytosine(C').
Two strands are so twisted, forming a double helix, running in opposite directions to each other and
joined together by hydrogen bonds between nucleotide bases. This attachment follows the Watson-Crick
Complement rule. A pairs with T" and G pairs with C, as per the Watson-Crick Complement rule. A
and G are called the complements of T and C, respectively, and vice versa. The Complement of a base
X is denoted by X. G = C, for instance, is the complement of G. Thus, if X = AGATT is a DNA
strand, then X = TCT AA would be its complement. According to the Watson-Crick Complement rule,
a DNA strand Y = y1y2 ...y will pair up with Y = g;y,_1 . .. t211, the reverse-complement of V. For
instance, a DNA strand 5 — TCTAAGT — 3’ will pair up with 3 — ACTTAGA —5'. A DNA code C
with minimum distance d may satisfy some or all the following constraints:

1. The Hamming constraint: dg(s1,s2) > d, where s1,s2 € C and s1 # sa.
2. The Reverse constraint: dg(s1, s5) > d, where s1, s2 € C and s} is the reverse of ss.

3. The Reverse-Complement constraint: dy (s}, s5) > d, where s1,s2 € C and s§ is the comple-
ment of ss.

4. The GC-content constraint: Each codeword s € C has the same number of G or C.

First three constraints ensure to reduce the probability of non-specific hybridization. Fixed GC-content
constraint ensures the similar melting point.

In Table 1, we provide a relationship between the elements of R; and DNA 4-mers such that
for any a € Ry the complement of a denoted by @ is obtained as @ = a + u®. Notice from Ta-
ble 1 for any z € R4 the corresponding DNA string is b1babsbs (say), then the reverse bybsbaby of
b1babsby is obtained by multiplying  with 1 + »? that is (14 ug)x = b4bsboby. Observing this fact,
we try to solve the reversibility problem. To explain reversibility problem, let us consider that n =
(n1,m2,n3) be any codeword over Ry and the DNA correspondence of 1 is ATAGGCGGCCCT such that
71 corresponds to AT AG, 1y corresponds to GCGG and n3 corresponds to CCCT. Now, the reverse of
n is given by 0" = (93, 72,7 ), then the DNA correspondence of " is given by CCCTGCGGAT AG but
CCCTGCGGATAG is not the reverse of ATAGGCGGCCCT, the reverse of ATAGGCGGCCCT is
TCCCGGCGGATA. To solve this reversibility problem the following lemma is useful.

Lemma 6.1 Let d = (do,d1,...,d,—1) be some codeword over Ry of length n and X =b1bs - - - byy,_1bay,
is the DNA correspondence of d. Then, the DNA sequence corresponding to the codeword (1 + u?)d" is
the reverse of X that is (1 +u?)d” = banban_1-- - baby.

Definition 6.1 A linear code C over a ring R and length n is called complement if the complement of
every codeword is again in C that is Y¢ € C, for all Y € C and reversible-complement if Y € C, for
allY € C.

Definition 6.2 [23] For a linear code C of length n over R, C is said to be cyclic DNA code if C is a
reversible-complement cyclic code.

Lemma 6.2 The following are true:

(1) For any a,b,c,d € Fy, a +ub+ u?c +udd = a + ub + u’c + u3d,
(2) For anyz € Ry, o+ 7 = u?,
(3) For anyx,y €Ry, T+ y=2+ 7+ us.

Proof: (1),(2) are straightforward from the Table 1.
(3) Let z,y € Ry. Then, v +y=a+y+ud=Z+ud)+@+v®)+u®=2+7+u O
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Theorem 6.1 Let g(5) € R[»|. Then g(3)"° +u*(2=L) = g(5)".

22—

Proof: Assume that oy .
9(%) =go + g15¢ + ... + i1 + g«

g(50)" ¢ =04 054 .. + 02" 2 4 Ga" T f g1 L TR o
=u +ulsc 4+ L+ TR 4 (g )T T (g ) T L (g e
+ (g0 + )"
=g T g T gV g u3(1 bt TR %"71)

»" -1
=g(5)" +u’( )-
x—1 B
This implies that g(s)" + u?(Z£=) = g(3)". O

Theorem 6.2 Suppose that C is a cyclic code with odd length n over Ry. Then, C is a reversible-
complement code iff C is reversible and u(%<—+) € C.

Proof: Consider C' to be a reversible-complement code. Since,

0+ 05+ ...+ 0"t €C, we have
(_) +(_)%+ +(_)%n—1 :u3(1 + e+ ..+ %n—l) cC
x" -1

_.3
u(%—l

) e C.

Now, from Theorem 6.1 the result holds. o
For any two cyclic codes C; and Cs over Ry, consider
Ci+C, = {Cl —I-CQICl € Cq,c9 € C2}

and
C1NCz ={c|c € Cy and ¢ € Cy}.

Then we have the following result:

Theorem 6.3 Let Cy, Csy be two cyclic DNA codes of length n over R. Then, C;+ Cs and C; NCy are
cyclic DNA codes.

Proof: Let f(s) = fo+ fise+ ..fs2° € C1,9(3¢) = go + g13¢+ ...gs 5" € Ca be two arbitrary codewords.
We may assume that s > ¢t without loss of generality, then

(f(3) + 9()™ =((fo + g0) + (f1 + g1)3¢ + ..(fe + g) 7" + frgr + .. + fo3®)™°
=04 05+ .. + 02" 72 fod" 7 b fo 1" b f T T
(fi+ 907" 4+ (Fr +91)5" 2+ (fo + go) ="
=) 4 g g T L g1 TR g™
=f(39)" +g(5)"

»" -1
=f(5)" +g(3)" + U?’(ﬁ) € C; +Cs.

1

Which proves that C; + Cs is reversible-compliment. Clearly C; N Cs is reversible-complement. O
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7. Examples

We present some examples of reversible and reversible-complement cyclic codes over different rings,
some of them are optimal according to online database Grassl http://www.codetables.de/.

Example 7.1 Let Fy = {0,1,a,1+a = o2} be the finite field of four elements. Consider »" —1 € Fy[»]
then factorization of 7 — 1 over Fy is

i = 1= (=1 + 2+ 1)2 4+ 2 +1).

Take g(») = 1+ 3¢+ 36>+ 33+ 54+ 365+ 38 then, g(5)|5" —1 and g(3¢) is a self-reciprocal polynomial. Then
Theorem 6.2 implies that C = (g(3¢)) is a reversible-complement cyclic code of length 7 as u?’(}:::ll) e C.
The ¢ image of C is a DNA code of length 28 and size 256, given in table 2.

Example 7.2 let n = 17, consider the factorization over Fo

AT 1=+ 1)+ P+ 42+ D) 2" + 54 1)
=fifafs.

Then f1, fa, f3 are self-reciprocal polynomials. Then using Theorem 4.3, we constructed reversible cyclic
codes over Rg = Fy + uFs + u?Fy 4+ u3Fy listed in table 3.

Table 3 Reversible cyclic codes of length 17 over Rag

Non zero generator polynomial  Parameter  Remark

f1 [17,16,2]  Optimal

I2 [17,9,5]  Optimal

I3 [17,9,5]  Optimal
Jife [17,8,6]  Optimal
fifs [17,8, 6] Optimal
faf3 [17,1,17]  Optimal
f3,ufs [17,9,5]  Optimal
fif3,u f3 [17,9,5]  Optimal

Example 7.3 Let Fy = {0,1,, 1+ = a2} be the finite field of four elements. Consider 3'"—1 € Fy[5]
then factorization of »'" — 1 over Fy is

1= = 1) + 5+ as® + 0+ 1) (3" + 363 + % + 30+ 1)
(e 4+ as® + 32 + ase+ 1) (o + %5 + 52 + o’ + 1)
=hfaf3fafs5.

Then f1, fa, f3, f4 and f5 are self-reciprocal polynomials. Then using Theorem /.3, we constructed re-
versible cyclic codes over Ry = Fy + ulFy + u?Fy + u3F, listed in table 4.

Table 4 Reversible cyclic codes of length 17 over Ry

Non zero generator polynomial  Parameter  Remark

fa [17,13,4  Optimal

fife [17,12,4]  Optimal

fifs [17,12,4]  Optimal
fifafs [17,8,8]  Optimal
fifafsfs [17,4,12]  Optimal
fifafafs,u® f2 [17,13,4]  Optimal

fifofsfs,ufifofs, ufifs,udfs  [17,13,4]  Optimal
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Example 7.4 let n = 13, consider the factorization over Fy

s 1 =G+ 4) (e + 53+ 45 e+ 1) (5 + 25 + 5%+ 250 + 1) (58 + 35 + 30+ 1)
=fifafsfa.

Then fo, f3, f1 are self-reciprocal polynomials. Then using Theorem 4.3, we constructed reversible cyclic
codes over Rg = Fys + uF5 + u?F5 + u®F5 listed in table 5.

Table 5 Reversible cyclic codes of length 13 over Ry

Non zero generator polynomial Parameter  Remark

f2 (13,9,4]  Optimal
I3 [13,9,4]  Optimal
Ja [13,9,4]  Optimal
faf3 [13,5,7]  Optimal
J2S3/a [13,1,13]  Optimal

Example 7.5 let n = 41, consider the factorization over Fy

M =1 =0+ 1) (60 4 s + " + 5+ 0P s + 1) (0 + 0B s P+ asd F a4 1)
(310 + s + as® + s + 58 4 0?5 + x4 s 4 Fax+1)
(3" + %5 + a5 + %" + 58 s 4 a?B F P 4o+ 1)

=fifofzfafs.

Then f1fo, f3, fa and f5 are self-reciprocal polynomials. Then using Theorem 4.3, we constructed re-
versible cyclic codes over Ry listed in table 6.

Table 6 Reversible cyclic codes of length 41 over Ry

Non zero generator polynomial Parameter  Remark

fi [41,40,2]  Optimal
f2 [41,31,6]  Optimal
Is [41,31,6]  Optimal
fife [41,30,7]  Optimal
1fs [41,30,7]  Optimal
Jifafs [41, 20, 10]
fafsfa [41,11,20] Optimal
fifa,ufo [41,31,6] Optimal
fifafa,ufifafs, u?fifafs,udfe  [41,31,6]  Optimal
fofsfafs [41,1,41]  Optimal

Example 7.6 Let Fy be the finite field of order 8 and w be a primitive element of Fg. Consider ° —1 €
Fg[] then factorization of 5° — 1 over Fg is

2 =1 == 1) + 20+ 1) 62 +wie + 1) (5% + wW?se + 1) (62 +whne + 1)
=f1f2f3f4]s5.

Then f1, fa, f3, f4 and f5 are self-reciprocal polynomials. Then using Theorem /4.3, we constructed re-
versible cyclic codes over Rg = Fg + ulFg + u?Fg + u3Fg listed in table 7.



REVERSIBLE CycLic CODES OVER F, + uF, + u’F, 4+ u°F, ... 15

Table 7 Reversible cyclic codes of length 9 over Rg

Non zero generator polynomial  Parameter  Remark
h 9,8, 2] Optimal

I3 9,7,3] Optimal

ifs [9,6,4] Optimal

fafs [9,5,5]  Optimal
fifsfs 9,4, 6] Optimal
fafafs [9,3,7] Optimal
fifafafs [9,2,8] Optimal
fafsfafs 9,1,9] Optimal
fifs,u fs 9,7, 3] Optimal
Sifafs, v’ fafs 9,5, 5] Optimal

Example 7.7 let n = 14, consider the factorization over Fg
s =1 =0+ 1) (e +2) (68 + 5 4 5t + 53 452 £ e+ 1) (58 + 257 + e + 2583 + 52+ 204 1)
=f1f2f3[a-
Then f1, f3, f1 are self-reciprocal polynomials. Then using Theorem 4.3, we constructed reversible cyclic

codes over Rg = Fs + uF3 + u?Fg 4+ uF3 listed in table 8.

Table 8 Reversible cyclic codes of length 14 over Rg

Non zero generator polynomial Parameter  Remark
fi [14,13,2]  Optimal

fa [14,8,2]

fifs (14,7, 4]

Jifa [14,7,2]

f3fa [14,2,7]
J1f3fas [14,1,14]  Optimal

Table 2 DNA Code of length 28

AAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAGAAAGAAAGAAAGAAAGAAAGAAAG
ATCAATCAATCAATCAATCAATCAATCA
ATCGATCGATCGATCGATCGATCGATCG
ATCCATCCATCCATCCATCCATCCATCC
ACGCACGCACGCACGCACGCACGCACGC
AATTAATTAATTAATTAATTAATTAATT
AATCAATCAATCAATCAATCAATCAATC
ATTAATTAATTAATTAATTAATTAATTA
AGAGAGAGAGAGAGAGAGAGAGAGAGAG
ACCTACCTACCTACCTACCTACCTACCT
ACCCACCCACCCACCCACCCACCCACCC
TTGTTTGTTTGTTTGTTTGTTTGTTTGT
TTGCTTGCTTGCTTGCTTGCTTGCTTGC
ATATATATATATATATATATATATATAT
AAGGAAGGAAGGAAGGAAGGAAGGAAGG
ACCAACCAACCAACCAACCAACCAACCA
GAAAGAAAGAAAGAAAGAAAGAAAGAAA
GTGCGTGCGTGCGTGCGTGCGTGCGTGC
GGTCGGTCGGTCGGTCGGTCGGTCGGTC
TACATACATACATACATACATACATACA

AAATAAATAAATAAATAAATAAATAAAT
AAACAAACAAACAAACAAACAAACAAAC
ATCTATCTATCTATCTATCTATCTATCT
ACGGACGGACGGACGGACGGACGGACGG
ACGAACGAACGAACGAACGAACGAACGA
AATAAATAAATAAATAAATAAATAAATA
AATGAATGAATGAATGAATGAATGAATG
AGAAAGAAAGAAAGAAAGAAAGAAAGAA
TAAATAAATAAATAAATAAATAAATAAA
AGACAGACAGACAGACAGACAGACAGAC
ACCGACCGACCGACCGACCGACCGACCG
TTGATTGATTGATTGATTGATTGATTGA
TTGGTTGGTTGGTTGGTTGGTTGGTTGG
AAGTAAGTAAGTAAGTAAGTAAGTAAGT
CATTCATTCATTCATTCATTCATTCATT
CAGGCAGGCAGGCAGGCAGGCAGGCAGG
CAGCCAGCCAGCCAGCCAGCCAGCCAGC
CAGACAGACAGACAGACAGACAGACAGA
CACCCACCCACCCACCCACCCACCCACC
GAACGAACGAACGAACGAACGAACGAAC
GGTAGGTAGGTAGGTAGGTAGGTAGGTA
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CACTCACTCACTCACTCACTCACTCACT
ACGTACGTACGTACGTACGTACGTACGT
GATTGATTGATTGATTGATTGATTGATT
GGGGGGGGGGGGEGGEGGGEEGGEGEGEGEGGEGG
GAGAGAGAGAGAGAGAGAGAGAGAGAGA
GAGGGAGGGAGGGAGGGAGGGAGGGAGG
GATGGATGGATGGATGGATGGATGGATG
CGTACGTACGTACGTACGTACGTACGTA
GATAGATAGATAGATAGATAGATAGATA
AGCTAGCTAGCTAGCTAGCTAGCTAGCT
CCTTCCTTCCTTCCTTCCTTCCTTCCTT
AGGAAGGAAGGAAGGAAGGAAGGAAGGA
AAGCAAGCAAGCAAGCAAGCAAGCAAGC
ACTAACTAACTAACTAACTAACTAACTA
CTGGCTGGCTGGCTGGCTGGCTGGCTGG
GGATGGATGGATGGATGGATGGATGGAT
AGTGAGTGAGTGAGTGAGTGAGTGAGTG
CATGCATGCATGCATGCATGCATGCATG
TAACTAACTAACTAACTAACTAACTAAC
CAACCAACCAACCAACCAACCAACCAAC
AGGCAGGCAGGCAGGCAGGCAGGCAGGC
TCCATCCATCCATCCATCCATCCATCCA
GTAGGTAGGTAGGTAGGTAGGTAGGTAG
ACAAACAAACAAACAAACAAACAAACAA
TATCTATCTATCTATCTATCTATCTATC
CTAGCTAGCTAGCTAGCTAGCTAGCTAG
TGACTGACTGACTGACTGACTGACTGAC
CGGCCGGCOCGGCCGEGECCGGECGGCCGEO
CGAACGAACGAACGAACGAACGAACGAA
CGTGCGTGCGTGCGTGCGTGCGTGCGTG
GCTAGCTAGCTAGCTAGCTAGCTAGCTA
TGTATGTATGTATGTATGTATGTATGTA
GCGTGCGTGCGTGCGTGCGTGCGTGCGT
CCGGCCGGCCGGECGGCCGEGECCGGECGG
GTTAGTTAGTTAGTTAGTTAGTTAGTTA
GAAGGAAGGAAGGAAGGAAGGAAGGAAG
CGGACGGACGGACGGACGGACGGACGGA
GGAGGGAGGGAGGGAGGGAGGGAGGGAG
CCCACCCACCCACCCACCCACCCACCCA
TACGTACGTACGTACGTACGTACGTACG
GCAAGCAAGCAAGCAAGCAAGCAAGCAA
CGCGCGCGCGCGCGCGCGCGCGECGECGCG
GTCAGTCAGTCAGTCAGTCAGTCAGTCA
TCCTTCCTTCCTTCCTTCCTTCCTTCCT
TTCGTTCGTTCGTTCGTTCGTTCGTTCG
TGATTGATTGATTGATTGATTGATTGAT
GACCGACCGACCGACCGACCGACCGACC
CCTACCTACCTACCTACCTACCTACCTA
TCACTCACTCACTCACTCACTCACTCAC
GTACGTACGTACGTACGTACGTACGTAC

CTCACTCACTCACTCACTCACTCACTCA
GCTCGCTCGCTCGCTCGCTCGCTCGCTC
CCTGCCTGCCTGCCTGCCTGCCTGCCTG
CGACCGACCGACCGACCGACCGACCGAC
CAAACAAACAAACAAACAAACAAACAAA
CGCCCGCCCGCCCGCCCGCCCGCCCGCO
GCCCGCCCGLCCGLCCGELCCGECCcCcGeeo
CACACACACACACACACACACACACACA
GACTGACTGACTGACTGACTGACTGACT
GAGCGAGCGAGCGAGCGAGCGAGCGAGC
TTCTTTCTTTCTTTCTTTCTTTCTTTCT
CTGCCTGCCTGCCTGCCTGCCTGCCTGC
AGTAAGTAAGTAAGTAAGTAAGTAAGTA
GCCAGCCAGCCAGCCAGCCAGCCAGCCA
CCCGCCCGCCCGCCCGCCCGECCCGCCCG
CCAACCAACCAACCAACCAACCAACCAA
AGTCAGTCAGTCAGTCAGTCAGTCAGTC
TAAGTAAGTAAGTAAGTAAGTAAGTAAG
AGGGAGGGAGGGAGGGAGGGAGGGAGGG
CGTCCGTCCGTCCGTCCGTCCGTCCGTC
TATGTATGTATGTATGTATGTATGTATG
TCTATCTATCTATCTATCTATCTATCTA
CAAGCAAGCAAGCAAGCAAGCAAGCAAG
TCGTTCGTTCGTTCGTTCGTTCGTTCGT
TGAGTGAGTGAGTGAGTGAGTGAGTGAG
CTTACTTACTTACTTACTTACTTACTTA
AGCGAGCGAGCGAGCGAGCGAGCGAGCG
AGCCAGCCAGCCAGCCAGCCAGCCAGCC
GTATGTATGTATGTATGTATGTATGTAT
CCGCCCGCCCGCCCGCCCGCCCGCCCGC
AGTTAGTTAGTTAGTTAGTTAGTTAGTT
TGTGTGTGTGTGTGTGTGTGTGTGTGTG
ACTTACTTACTTACTTACTTACTTACTT
TGTCTGTCTGTCTGTCTGTCTGTCTGTC
CGCTCGCTCGCTCGCTCGCTCGCTCGCT
CCGACCGACCGACCGACCGACCGACCGA
ATGAATGAATGAATGAATGAATGAATGA
CCACCCACCCACCCACCCACCCACCCAC
GGCAGGCAGGCAGGCAGGCAGGCAGGCA
TACCTACCTACCTACCTACCTACCTACC
TATTTATTTATTTATTTATTTATTTATT
GACAGACAGACAGACAGACAGACAGACA
CCCTCCCTCCCTCCCTCCCTCCCTCCCT
GACGGACGGACGGACGGACGGACGGACG
TCATTCATTCATTCATTCATTCATTCAT
CGGTCGGTCGGTCGGTCGGTCGGTCGGT
GGGCGGGCGGGCGGGCGGGCGGEGCGEGGEC
GGTTGGTTGGTTGGTTGGTTGGTTGGTT
TCAGTCAGTCAGTCAGTCAGTCAGTCAG
ATTCATTCATTCATTCATTCATTCATTC
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ATTGATTGATTGATTGATTGATTGATTG
GTTGGTTGGTTGGTTGGTTGGTTGGTTG
TCCGTCCGTCCGTCCGTCCGTCCGTCCG
AGGTAGGTAGGTAGGTAGGTAGGTAGGT

CATCCATCCATCCATCCATCCATCCATC
TGTTTGTTTGTTTGTTTGTTTGTTTGTT

ATAGATAGATAGATAGATAGATAGATAG
GATCGATCGATCGATCGATCGATCGATC

ACTGACTGACTGACTGACTGACTGACTG
GCCGGCCGGCCGEGLCCGGCCGGCCGEGECCG
GCTTGCTTGCTTGCTTGCTTGCTTGCTT
GCACGCACGCACGCACGCACGCACGCAC
CGATCGATCGATCGATCGATCGATCGAT
ACATACATACATACATACATACATACAT
CGCACGCACGCACGCACGCACGCACGCA
GGCCGGCCGGCCGEGLCCEGCCEGCCGEGLC
CAATCAATCAATCAATCAATCAATCAAT
CTTCCTTCCTTCCTTCCTTCCTTCCTTC
GCCTGCCTGCCTGCCTGCCTGCCTGCCT
CCTCCCTCCCTCCCTCCCTCCCTCCCTC
GGGTGGGTGGGTGGGTGGGTGGGTGGGT
ATGCATGCATGCATGCATGCATGCATGC
CGTTCGTTCGTTCGTTCGTTCGTTCGTT
GCGCGCGCGCGCGLCGCGCGCGCGCGEGO
CAGTCAGTCAGTCAGTCAGTCAGTCAGT
TTTTTTTTTTTTTTTTTTTTTTTTTTTT
TTTCTTTCTTTCTTTCTTTCTTTCTTTC
TAGTTAGTTAGTTAGTTAGTTAGTTAGT
TAGCTAGCTAGCTAGCTAGCTAGCTAGC
TAGGTAGGTAGGTAGGTAGGTAGGTAGG
TGCGTGCGTGCGTGCGTGCGTGCGTGCG
TTAATTAATTAATTAATTAATTAATTAA
TTAGTTAGTTAGTTAGTTAGTTAGTTAG
TAATTAATTAATTAATTAATTAATTAAT
TCTCTCTCTCTCTCTCTCTCTCTCTCTC
TGGATGGATGGATGGATGGATGGATGGA
TGGGTGGGTGGGTGGGTGGGTGGGTGGG
AACAAACAAACAAACAAACAAACAAACA
AACGAACGAACGAACGAACGAACGAACG
TATATATATATATATATATATATATATA
TTCCTTCCTTCCTTCCTTCCTTCCTTCC

TGGCTGGCTGGCTGGCTGGCTGGCTGGC

GTCCGTCCGTCCGTCCGTCCGTCCGTCC

TCCCTCCCTCCCTCCCTCCCTCCCTCCC
GCAGGCAGGCAGGCAGGCAGGCAGGCAG
ATACATACATACATACATACATACATAC
AGATAGATAGATAGATAGATAGATAGAT
GTTCGTTCGTTCGTTCGTTCGTTCGTTC
AGCAAGCAAGCAAGCAAGCAAGCAAGCA
ACTCACTCACTCACTCACTCACTCACTC
GAATGAATGAATGAATGAATGAATGAAT
TCGCTCGCTCGCTCGCTCGCTCGCTCGC
TCGGTCGGTCGGTCGGTCGGTCGGTCGG
CATACATACATACATACATACATACATA
GGCGGGCGGGCGGGLCGEGEGECGEGEGECGGGCG
TCAATCAATCAATCAATCAATCAATCAA
ACACACACACACACACACACACACACAC
TGAATGAATGAATGAATGAATGAATGAA
ACAGACAGACAGACAGACAGACAGACAG
GCGAGCGAGCGAGCGAGCGAGCGAGCGA
GGCTGGCTGGCTGGCTGGCTGGCTGGCT
TACTTACTTACTTACTTACTTACTTACT
GGTGGGTGGGTGGGTGGGTGGGTGGGTG
CCGTCCGTCCGTCCGTCCGTCCGTCCGT
ATGGATGGATGGATGGATGGATGGATGG
ATAAATAAATAAATAAATAAATAAATAA
CTGTCTGTCTGTCTGTCTGTCTGTCTGT
GGGAGGGAGGGAGGGAGGGAGGGAGGGA
TTTATTTATTTATTTATTTATTTATTTA
TTTGTTTGTTTGTTTGTTTGTTTGTTTG
TAGATAGATAGATAGATAGATAGATAGA
TGCCTGCCTGCCTGCCTGCCTGCCTGCC
TGCTTGCTTGCTTGCTTGCTTGCTTGCT
TTATTTATTTATTTATTTATTTATTTAT
TTACTTACTTACTTACTTACTTACTTAC
TCTTTCTTTCTTTCTTTCTTTCTTTCTT
ATTTATTTATTTATTTATTTATTTATTT
TCTGTCTGTCTGTCTGTCTGTCTGTCTG

AACTAACTAACTAACTAACTAACTAACT
AACCAACCAACCAACCAACCAACCAACC
TTCATTCATTCATTCATTCATTCATTCA

GTAAGTAAGTAAGTAAGTAAGTAAGTAA

TGGTTGGTTGGTTGGTTGGTTGGTTGGT
CTTTCTTTCTTTCTTTCTTTCTTTCTTT
CACGCACGCACGCACGCACGCACGCACG
CCAGCCAGCCAGCCAGCCAGCCAGCCAG
ATGTATGTATGTATGTATGTATGTATGT
GTGAGTGAGTGAGTGAGTGAGTGAGTGA
TGCATGCATGCATGCATGCATGCATGCA
CTAACTAACTAACTAACTAACTAACTAA
ccceeeceececeececececocececocecececececcececco
CTCTCTCTCTCTCTCTCTCTCTCTCTCT

GTCGGTCGGTCGGTCGGTCGGTCGGTCG
GTCTGTCTGTCTGTCTGTCTGTCTGTCT
GTGGGTGGGTGGGTGGGTGGGTGGGTGG
CTTGCTTGCTTGCTTGCTTGCTTGCTTG
CCATCCATCCATCCATCCATCCATCCAT
GAGTGAGTGAGTGAGTGAGTGAGTGAGT
CGAGCGAGCGAGCGAGCGAGCGAGCGAG
GGACGGACGGACGGACGGACGGACGGAC
GCTGGCTGGCTGGCTGGCTGGCTGGCTG

GTTTGTTTGTTTGTTTGTTTGTTTGTTT
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CTCCCTCCCTCCCTCCCTCCCTCCCTCC | GCGGGCGGGCGGGCGEGGCGGGCGGEGCGEG

CTACCTACCTACCTACCTACCTACCTAC CGGGCGGGCGGGLEGEGEGEOGEGEGCGGGCGEGE
GCATGCATGCATGCATGCATGCATGCAT GTGTGTGTGTGTGTGTGTGTGTGTGTGT
CTATCTATCTATCTATCTATCTATCTAT CTGACTGACTGACTGACTGACTGACTGA
TCGATCGATCGATCGATCGATCGATCGA CTCGCTCGCTCGCTCGCTCGCTCGCTCG
GGAAGGAAGGAAGGAAGGAAGGAAGGAA | AAGAAAGAAAGAAAGAAAGAAAGAAAGA

8. Conclusion

We have studied cyclic code C of length n over the ring R = F, + uF, + u*F, + u’F,, u* = 0, and
obtained the necessary and sufficient conditions for C to be reversible and reversible-complement cyclic
code when (n,q) = 1. We also studied the dual C* of the cyclic code C and obtained the generator
polynomials of Ct in terms of the generator polynomials of C, when the length n is coprime with
g. Further we have given sufficient condition of C* to be reversible. Moreover, cyclic DNA code are
constructed as the images of reversible-complement codes over R, by providing a bijection between R4
and the set of all DNA 4-mers. The reversibility problem is also addressed with the help of this bijection.
Finally, some reversible optimal codes are also constructed, provided (n,q) = 1. However, for future
study, obtaining the reversibility conditions for cyclic codes over R of arbitrary length is of interest.
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