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Reversible Cyclic Codes Over Fq + uFq + u2Fq + u3Fq and Applications to DNA Codes
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abstract: In this paper, we investigate the structure of reversible and reversible-complement cyclic codes of
length n over the ring R = Fq +uFq +u2Fq +u3Fq , u4 = 0, when n and q are coprime. We give the necessary
and sufficient conditions for the cyclic codes of length n over R to be reversible and reversible-compliment
cyclic codes, when (n, q) = 1 over R. We also study the dual of cyclic codes over R when (n, q) = 1 and obtain
the reversibility condition for dual of cyclic codes. Additionally, we explore cyclic DNA codes over nucleotide
4-base pair. First, we establish a one-to-one correspondence between R1, where R1 = F4+uF4+u2F4+u3F4,
u4 = 0 and 4-mers and then cyclic DNA codes constructed as the images of reversible-complement cyclic codes
over R1.

Key Words: Reversible cyclic codes, Watson-Crick complement rule, reversible-Complement cyclic
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1. Introduction

Numerous combinatorial problems are addressed by DNA computing, such as the Maximal Clique
problem [16], the Hamiltonian path problem [4] and others. It was demonstrated by Mansuripur et al.
[13] the use of DNA codes for storage media. Adleman et al. [5] cracked the Data Encryption Standard
(DES) cryptosystem using DNA computing techniques.

In the area of error-correcting codes, cyclic codes over finite rings played a vital role [1,3,9,18,22]. Since
then, good error-correcting codes have been constructed using the DNA structure as a model, and error-
correcting codes with properties similar to DNA structure have also been utilized for understanding DNA.
The linear construction of DNA codes was studied by Gaborit and King [11]. Abualrub et al. studied the
DNA codes over the finite field of four elements [2]. Later, Siap et al. discussed DNA codes over the ring
F2[u]/⟨u2 − 1⟩ with four elements [21]. DNA codes over the ring F2[u]/⟨u4 − 1⟩ with 16 elements were
studied by Yildiz and Siap [23]. Liang and Wang [12] studied cyclic DNA codes over the ring F2 + uF2,
u2 = 0. Subsequently, Mostafanasab and Darani [14] explored the cyclic DNA codes over the ring
R = F2+uF2+u

2F2, u
3 = 0. One of the major problems in the theory of DNA coding is the reversibility

problem. The reversibility problem has been addressed by many authors over different algebraic structures
such as Oztas et al. [17] identified the DNA k-bases with the elements of the ring F2[u]/⟨u2k−1⟩ and used
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coterm polynomials for solving the reversibility problem. In [8] Ashraf et al. addressed the reversibility
problem over a non-chain ring. In [10] Dinh et al. studied the reversibility problem over the ring
Z4[u, v]/⟨u2 − 2, uv − 2, v2, 2u, 2v⟩. Further, Alali [6] and coauthors addressed the reversibility problem
over a non-chain ring Rk = Z4[u1, u2, . . . , uk]/⟨u2i −ui, uiuj−ujui⟩, where 1 ≤ i, j ≤ k, k ≥ 1. Motivated
by these works, we study reversible cyclic codes over R = Fq + uFq + u2Fq + u3Fq, u

4 = 0, when the
length of the code is coprime to q and construct DNA codes over the set of all DNA strings of length 4
as images of cyclic reversible-complement codes over R1 = F4 + uF4 + u2F4 + u3F4, u

4 = 0. Moreover,
we study dual C⊥ of cyclic code C over R of length n and obtain the conditions for the dual of cyclic
code to be reversible when (n, q) = 1. This paper is organized as follows: In Section 2, we discuss some
basic definitions and results which are used in later sections and a relationship between the elements of
the ring R1 and DNA strings of length 4 is presented. In Section 3, we discuss the structure of cyclic
codes over R. In Section 4, reversiblilty conditions for cyclic codes of length n over R are discussed,
when (n, q) = 1. Section 5 presents the study of dual of cyclic codes of length n over R and reversiblity
condition for dual of cyclic codes is discussed. Reversibile-complement codes over R1 are discussed in
Section 6. In Section 7, some examples are presented. Finally, Section 8 concludes the paper.

2. Preliminaries

Consider the set R = Fq + uFq + u2Fq + u3Fq, u
4 = 0, where q = pk, p is a prime, k ∈ N. Then

R is a finite commutative ring with q4 elements and characteristic p. The ring R is isomorphic to the
quotient ring Fq[u]/⟨u4⟩ and ⟨0⟩, ⟨1⟩, ⟨u⟩, ⟨u2⟩, ⟨u3⟩ are ideals of R. Also, ⟨0⟩ = ⟨u4⟩ ⊆ ⟨u3⟩ ⊆ ⟨u2⟩ ⊆
⟨u⟩ ⊆ ⟨1⟩ = R. We can see that R is a finite local chain ring with maximal ideal ⟨u⟩. A linear code C
over R of length n is an R−submodule of Rn. Elements of C are called codewords. A code of length n
is cyclic if it is closed under cyclic shift i.e., (cn−1, c0, . . . , cn−2) ∈ C whenever (c0, c1, . . . , cn−1) ∈ C. It
is well known that a cyclic code of length n over a ring R can be identified with an ideal in the quotient
ring R[κ]/⟨κn − 1⟩ via the R−module isomorphism as follows:

Rn −→ R[κ]/⟨κn − 1⟩
(c0, c1, . . . , cn−1) = c0 + c1κ + · · ·+ cn−1κn−1.

For any vector v = (v0, v1, . . . , vn−1) ∈ Rn, the reverse of v denoted as vr is the reversal of the components
of v i.e., vr = (vn−1, vn−2, . . . , v1, v0). The number of non-zero components in any codeword c ∈ C is
the hamming weight of c denoted as wH(c) and minimum of weight of all codewords is defined as the
hamming weight of the code i.e., wH(C) = min{wH(c)|c ∈ C}. The hamming distance (dH) between
two codewords is the number of components in which they differ. The distance of code is defined as
d(C) = min{dH(c, c′)|c, c′ ∈ C, c ̸= c′}. For a linear code, distance of the code is weight of the code.
The Lee weight of x = a + ub + u2c + u3d ∈ R is defined as wL(x) = wL(a + ub + u2c + u3d) =
wH(a+ b+ c+ d, c+ d, b+ d, d). This definition of Lee weight immediately leads to a Gray map ϕ from
R to F4

q defined as

ϕ : R → F4
q

ϕ(a+ ub+ u2c+ u3d) = (a+ b+ c+ d, c+ d, b+ d, d).

This Gray map can naturally be extended to Rn as

Φ : Rn → F4n
q

Φ(a0, a1, . . . , an−1) = (ϕ(a0), ϕ(a1), . . . , ϕ(an−1)).

The Lee distance between any two codewords c, c′ ∈ C is given by dL(c1, c2) = dH(Φ(c1),Φ(c2)) and
minimum of Lee distance of all codewords is defined as the Lee distance of the code i.e., dL(C) =
min{dL(c, c′)|c, c′ ∈ C, c ̸= c′}.

Theorem 2.1 The Gray map Φ is a linear isometry from (Rn,Lee distance)to(F4n
q ,Hamming distance).

Theorem 2.2 If C is a linear [n, k, dL] code over R, then Φ(C) is a linear code [4n, k, dH ] over Fq.
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Table 1 Correspondence of DNA base pair with elements of the ring R1

Elements of R1 DNA string Elements of R1 DNA string
0 AAAA u3 TTTT
α AAAT u3 + α TTTA
α2 AAAG u3 + α2 TTTC
1 AAAC u3 + 1 TTTG
αu ATCA u3 + αu TAGT

αu+ α ATCT u3 + αu+ α TAGA
αu+ α2 ATCG u3 + αu+ α2 TAGC
αu+ 1 ACGG u3 + αu+ 1 TGCC
α2u ATCC u3 + α2u TAGG

α2u+ α ACGA u3 + α2u+ α TGCT
α2u+ α2 ACGC u3 + α2u+ α2 TGCG
α2u+ 1 AATA u3 + α2u+ 1 TTAT

u AATT u3 + u TTAA
u+ α AATG u3 + u+ α TTAC
u+ α2 AATC u3 + u+ α2 TTAG
u+ 1 AGAA u3 + u+ 1 TCTT
αu2 ATTA u3 + αu2 TAAT

αu2 + α TAAA u3 + αu2 + α ATTT
αu2 + α2 AGAG u3 + αu2 + α2 TCTC
αu2 + 1 AGAC u3 + αu2 + 1 TCTG
αu2 + αu ACCT u3 + αu2 + αu TGGA

αu2 + αu+ α ACCG u3 + αu2 + αu+ α TGGC
αu2 + αu+ α2 ACCC u3 + αu2 + αu+ α2 TGGG
αu2 + αu+ 1 TTGA u3 + αu2 + αu+ 1 AACT
αu2 + α2u TTGT u3 + αu2 + α2u AACA

αu2 + α2u+ α TTGG u3 + αu2 + α2u+ α AACC
αu2 + α2u+ α2 TTGC u3 + αu2 + α2u+ α2 AACG
αu2 + α2u+ 1 AAGT u3 + αu2 + α2u+ 1 TTCA

αu2 + u ATAT u3 + αu2 + u TATA
αu2 + u+ α CATT u3 + αu2 + u+ α GTAA
αu2 + u+ α2 AAGG u3 + αu2 + u+ α2 TTCC
αu2 + u+ 1 CAGG u3 + αu2 + u+ 1 GTCC

α2u2 ACCA u3 + α2u2 TGGT
α2u2 + α CAGC u3 + α2u2 + α GTCG
α2u2 + α2 GAAA u3 + α2u2 + α2 CTTT
α2u2 + 1 CAGA u3 + α2u2 + 1 GTCT
α2u2 + αu GTGC u3 + α2u2 + αu CACG

α2u2 + αu+ α CACC u3 + α2u2 + αu+ α GTGG
α2u2 + αu+ α2 GGTC u3 + α2u2 + αu+ α2 CCAG
α2u2 + αu+ 1 GAAC u3 + α2u2 + αu+ 1 CTTG
α2u2 + α2u TACA u3 + α2u2 + α2u ATGT

α2u2 + α2u+ α GGTA u3 + α2u2 + α2u+ α CCAT
α2u2 + α2u+ α2 CACT u3 + α2u2 + α2u+ α2 GTGA
α2u2 + α2u+ 1 CTCA u3 + α2u2 + α2u+ 1 GAGT

α2u2 + u ACGT u3 + α2u2 + u TGCA
α2u2 + u+ α GCTC u3 + α2u2 + u+ α CGAG
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Elements of R1 DNA string Elements of R1 DNA string
α2u2 + u+ α2 GATT u3 + α2u2 + u+ α2 CTAA
α2u2 + u+ 1 CCTG u3 + α2u2 + u+ 1 GGAC

u2 GGGG u3 + u2 CCCC
u2 + α CGAC u3 + u2 + α GCTG
u2 + α2 GAGA u3 + u2 + α2 CTCT
u2 + 1 CAAA u3 + u2 + 1 GTTT
u2 + αu GAGG u3 + u2 + αu GAGG

u2 + αu+ α CGCC u3 + u2 + αu+ α GCGG
u2 + αu+ α2 GATG u3 + u2 + αu+ α2 CTAC
u2 + αu+ 1 GCCC u3 + u2 + αu+ 1 CGGG
u2 + α2u CGTA u3 + u2 + α2u GCAT

u2 + α2u+ α CACA u3 + u2 + α2u+ α GTGT
u2 + α2u+ α2 GATA u3 + u2 + α2u+ α2 CTAT
u2 + α2u+ 1 GACT u3 + u2 + α2u+ 1 CTGA

u2 + u AGCT u3 + u2 + u TCGA
u2 + u+ α GAGC u3 + u2 + u+ α CTCG
u2 + u+ α2 CCTT u3 + u2 + u+ α2 GGAA
u2 + u+ 1 TTCT u3 + u2 + u+ 1 AAGA

αu3 AGGA α2u3 TCCT
αu3 + α CTGC α2u3 + α GACG
αu3 + α2 AAGC α2u3 + α2 TTCG
αu3 + 1 AGTA α2u3 + 1 TCAT
αu3 + αu ACTA α2u3 + αu TGAT

αu3 + αu+ α GCCA α2u3 + αu+ α CGGT
αu3 + αu+ α2 CTGG α2u3 + αu+ α2 GACC
αu3 + αu+ 1 CCCG α2u3 + αu+ 1 GGGC
αu3 + α2u GGAT α2u3 + α2u CCTA

αu3 + α2u+ α CCAA α2u3 + α2u+ α GGTT
αu3 + α2u+ α2 AGTG α2u3 + α2u+ α2 TCAC
αu3 + α2u+ 1 AGTC α2u3 + α2u+ 1 TCAG

αu3 + u CATG α2u3 + u GTAC
αu3 + u+ α TAAG α2u3 + u+ α ATTC
αu3 + u+ α2 TAAC α2u3 + u+ α2 ATTG
αu3 + u+ 1 AGGG α2u3 + u+ 1 TCCC
αu3 + αu2 CAAC α2u3 + αu2 GTTG

αu3 + αu2 + α CGTC α2u3 + αu2 + α GCAG
αu3 + αu2 + α2 AGGC α2u3 + αu2 + α2 TCCG
αu3 + αu2 + 1 TATG α2u3 + αu2 + 1 ATAC
αu3 + αu2 + αu TCCA α2u3 + αu2 + αu AGGT

αu3 + αu2 + αu+ α TCTA α2u3 + αu2 + αu+ α AGAT
αu3 + αu2 + αu+ α2 GTAG α2u3 + αu2 + αu+ α2 CATC
αu3 + αu2 + αu+ 1 CAAG α2u3 + αu2 + αu+ 1 GTTC
αu3 + αu2 + α2u ACAA α2u3 + αu2 + α2u TGTT

αu3 + αu2 + α2u+ α TCGT α2u3 + αu2 + α2u+ α AGCA
αu3 + αu2 + α2u+ α2 TATC α2u3 + αu2 + α2u+ α2 ATAG
αu3 + αu2 + α2u+ 1 TGAG α2u3 + αu2 + α2u+ 1 ACTC

αu3 + αu2 + u CTAG α2u3 + αu2 + u GATC
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Elements of R1 DNA string Elements of R1 DNA string
αu3 + αu2 + u+ α CTTA α2u3 + αu2 + u+ α GAAT
αu3 + αu2 + u+ α2 TGAC α2u3 + αu2 + u+ α2 ACTG
αu3 + αu2 + u+ 1 AGCG α2u3 + αu2 + u+ 1 TCGC

αu3 + α2u2 CGGC α2u3 + α2u2 GCCG
αu3 + α2u2 + α AGCC α2u3 + α2u2 + α TCGG
αu3 + α2u2 + α2 CGAA α2u3 + α2u2 + α2 GCTT
αu3 + α2u2 + 1 GTAT α2u3 + α2u2 + 1 CATA
αu3 + α2u2 + αu CGTG α2u3 + α2u2 + αu GCAC

αu3 + α2u2 + αu+ α CCGC α2u3 + α2u2 + αu+ α GGCG
αu3 + α2u2 + αu+ α2 GCTA α2u3 + α2u2 + αu+ α2 CGAT
αu3 + α2u2 + αu+ 1 AGTT α2u3 + α2u2 + αu+ 1 TCAA
αu3 + α2u2 + α2u TGTA α2u3 + α2u2 + α2u ACAT

αu3 + α2u2 + α2u+ α TGTG α2u3 + α2u2 + α2u+ α ACAC
αu3 + α2u2 + α2u+ α2 GCGT α2u3 + α2u2 + α2u+ α2 CGCA
αu3 + α2u2 + α2u+ 1 ACTT α2u3 + α2u2 + α2u+ 1 TGAA

αu3 + α2u2 + u CCGG α2u3 + α2u2 + u GGCC
αu3 + α2u2 + u+ α TGTC α2u3 + α2u2 + u+ α ACAG
αu3 + α2u2 + u+ α2 GTTA α2u3 + α2u2 + u+ α2 CAAT
αu3 + α2u2 + u+ 1 CGCT α2u3 + α2u2 + u+ 1 GCGA

αu3 + u2 GAAG α2u3 + u2 CTTC
αu3 + u2 + α CCGA α2u3 + u2 + α GGCT
αu3 + u2 + α2 CGGA α2u3 + u2 + α2 GCCT
αu3 + u2 + 1 ATGA α2u3 + u2 + 1 TACT
αu3 + u2 + αu GGAG α2u3 + u2 + αu CCTC

αu3 + u2 + αu+ α CCAC α2u3 + u2 + αu+ α GGTG
αu3 + u2 + αu+ α2 CCCA α2u3 + u2 + αu+ α2 GGGT
αu3 + u2 + αu+ 1 GGCA α2u3 + u2 + αu+ 1 CCGT
αu3 + u2 + α2u TACG α2u3 + u2 + α2u ATGC

αu3 + u2 + α2u+ α TACC α2u3 + u2 + α2u+ α ATGG
αu3 + u2 + α2u+ α2 GCAA α2u3 + u2 + α2u+ α2 CGTT
αu3 + u2 + α2u+ 1 TATT α2u3 + u2 + α2u+ 1 ATAA

αu3 + u2 + u CGCG α2u3 + u2 + u GCGC
αu3 + u2 + u+ α GACA α2u3 + u2 + u+ α CTGT
αu3 + u2 + u+ α2 GTCA α2u3 + u2 + u+ α2 CAGT
αu3 + u2 + u+ 1 CCCT α2u3 + u2 + u+ 1 GGGA

3. Structure of Cyclic Codes Over R

This Section provides the algebraic structure of cyclic codes over the ring R. Al-Ashker and Chen
[14] obtained the structure of cyclic codes over general ring Fq[u]/⟨uk⟩. Cyclic codes over R of length n
are precisely the ideals in the quotient ring R[κ]/⟨κn − 1⟩. Let R = Fq + uFq, where u

2 = 0 and S =
Fq+uFq+u

2Fq, where u
3 = 0 be subrings ofR. Let θ : S → R be a map defined as θ(a+ub+u2c) = a+ub

for a, b, c ∈ Fq. Then, θ is a ring homomorphism. Let D be a cyclic code over S. Then, we can extend
this map to Θ : D → R[κ]/⟨κn − 1⟩ such that Θ(a0 + a1κ + · · · + an−1κn−1) = θ(a0) + θ(a1)κ + · · · +
θ(an−1)κn−1, where ai ∈ S and kerΘ = {u2t(κ)|t(κ) ∈ Fq[κ]}. Let I = {t(κ) ∈ Fq[κ]|u2t(κ) ∈ kerΘ}.
Then, I is a cyclic code over Fq and hence I = ⟨a2(κ)⟩ and kerΘ = ⟨u2a2(κ)⟩, also Θ(D) is cyclic code
over R and hence, Θ(D) is given by [19]

Θ(D) = ⟨g(κ) + up1(κ), ua1(κ)⟩,

and therefore, D is given by

D = ⟨g(κ) + up1(κ) + u2p2(κ), ua1(κ) + u2q1(κ), u2a2(κ)⟩,
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where ai(κ), pi(κ), g(κ), q1(κ) ∈ Fq[κ] and a2(κ)|a1(κ)|g(κ)|κn − 1.
Let φ : R → S defined as φ(a+ub+u2c+u3d) = a+ub+u2c for a, b, c, d ∈ Fq be a ring homomorphism.

Suppose, C be a cyclic code over R. Then we can extend this map to ψ : C → S[κ]/⟨κn − 1⟩ such
that ψ(c0 + c1κ + · · · + cn−1κn−1) = φ(c0) + φ(c1)κ + · · · + φ(cn−1)κn−1, where ci ∈ R. The kerψ =
{u3l(κ)|l(κ) ∈ Fq[κ]}. Let J = {l(κ) ∈ Fq[κ]|u3l(κ) ∈ kerψ}. Then, J is a cyclic code over Fq and
hence J = ⟨a3(κ)⟩ and kerψ = ⟨u3a3(κ)⟩; also, ψ(C) is cyclic code over S and hence C is given by the
following results:

Theorem 3.1 [7, Theorem 3.6] Consider that C is a cyclic code over R of length n. Then,
C =⟨g(κ) + up1(κ) + u2p2(κ) + u3p3(κ), ua1(κ) + u2q1(κ) + u3q2(κ), u2a2(κ) + u3l1(κ), u3a3(κ)⟩ with

a3(κ)|a2(κ)|a1(κ)|g(κ)|(κn − 1)(mod q), a1(κ)|p1(κ)(
κn − 1

g(κ)
), a2(κ)|q1(κ)(

κn − 1

a1(κ)
) and

a2(κ)|p2(κ)(
κn − 1

g(κ)
)(
κn − 1

a1(κ)
), a3(κ)|l1(κ)(

κn − 1

a2(κ)
), a3(κ)|q2(κ)(

κn − 1

q1(κ)
)(
κn − 1

a1(κ)
) and

a3(κ)|p3(κ)(
κn − 1

g(κ)
)(
κn − 1

a2(κ)
)(
κn − 1

a1(κ)
). Moreover, deg(p3(κ)) < deg(a3(κ)), deg(q2(κ)) ≤ deg(a3(κ)),

deg(l1(κ)) < deg(a3(κ)), deg(p2(κ)) < deg(a2(κ)), deg(q1(κ)) < deg(a2(κ)), deg(p1(κ)) < deg(a1(κ)).

Lemma 3.1 [7, Lemma 3.4] Let C = ⟨g(κ)+up1(κ)+u2p2(κ)+u3p3(κ), ua1(κ)+u2q1(κ)+u3q2(κ), u2a2(κ)+
u3l1(κ), u3a3(κ)⟩ over R and a3(κ) = g(κ). Then C = ⟨g(κ)+up1(κ)+u2p2(κ)+u3p3(κ)⟩ and (g(κ)+up1(κ)+
u2p2(κ) + u3p3(κ))|κn − 1 in R.

Lemma 3.2 [7, Lemma 3.5] If n is relatively prime to q, then C can be written as

C = ⟨g(κ), ua1(κ), u2a2(κ), u3a3(κ)⟩ = ⟨g(κ) + ua1(κ) + u2a2(κ) + u3a3(κ)⟩.

Lemma 3.3 Suppose fi(κ), gi(κ) ∈ Fq[κ] for i = 1, 2, 3, 4 if

f1(κ) + uf2(κ) + u2f3(κ) + u3f4(κ) = g1(κ) + ug2(κ) + u2g3(κ) + u3g4(κ),

then fi(κ) = gi(κ) for i = 1, 2, 3, 4.

Definition 3.1 Suppose that C is a cyclic code over R. Define a subcode of C as

Cu3 = {k(κ)| u3k(κ) ∈ C}.

Theorem 3.2 Consider C = ⟨g(κ) + up1(κ) + u2p2(κ) + u3p3(κ), ua1(κ) + u2q1(κ) + u3q2(κ), u2a2(κ)
+ u3l1(κ), u3a3(κ)⟩ be a cyclic code over R with conditions in Theorem 3.1. Then, Cu3 = ⟨a3(κ)⟩ and
wH(C) = wH(Cu3).

Proof: Since u3a3(κ) ∈ C, we have ⟨a3(κ)⟩ ⊆ Cu3 .
Conversely, suppose k(κ) ∈ Cu3 . Then, u3k(κ) ∈ C and hence we must have polynomials

b(κ), c(κ), d(κ) and e(κ) in Fq[κ] such that

u3k(κ) = u3b(κ)g(κ) + u3c(κ)a1(κ) + u3d(κ)a2(κ) + u3e(κ)a3(κ).

Since a3(κ) divides a2(κ), a1(κ) and g(κ), we have, k(κ) = t(κ)a3(κ) for some t(κ) ∈ Fq[κ]. This means
Cu3 ⊆ ⟨a3(κ)⟩ hence, Cu3 = ⟨a3(κ)⟩.

Further u3C is a subcode of C with wH(u3C) ≤ wH(C) it is sufficient to focus on the subcode u3C
to compute hamming weight of of C. Since, u3C = ⟨u3a3(κ)⟩, thus wH(C) = wH(Cu3). 2

Lemma 3.4 [2, Lemma 4] Let f(κ), g(κ) be two polynomials in R[κ] with deg(g(κ)) ≤ deg(f(κ)). Then,

(i) (f(κ)g(κ))∗ = f∗(κ)g∗(κ),

(ii) (f(κ) + g(κ))∗ = f∗(κ) + κdeg(f(κ))−deg(g(κ))g∗(κ).
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Lemma 3.5 Let fi(κ) ∈ Fq[κ] for i = 1, 2, 3, 4. Assume that, deg(f1(κ)) = r,
deg(f2(κ)) = s, deg(f3(κ)) = t, deg(f4(κ)) = v where r > max{s, t, v}. Then

(f1(κ) + uf2(κ) + u2f3(κ) + u3f4(κ))∗ = f∗1 (κ) + uκr−sf∗2 (κ) + u2κr−tf∗3 (κ) + u3κr−vf∗4 (κ).

Proof: Without loss of generality, we may assume that s ≥ t ≥ v. From the Lemma 3.4, we deduce that

(f1(κ) + uf2(κ) + u2f3(κ) + u3f4(κ))∗ =f∗1 (κ) + κr−s(uf2(κ) + u2f3(κ) + u3f4(κ))∗

=f∗1 (κ) + κr−s(uf∗2 (κ) + κs−t(u2f3(κ) + u3f4(κ))∗)
=f∗1 (κ) + uκr−suf∗2 (κ) + κr−t(u2f∗3 (κ) + κt−vu3f∗4 (κ))
=f∗1 (κ) + uκr−suf∗2 (κ) + κr−tu2f∗3 (κ) + κr−vu3f∗4 (κ).

2

4. Reversible Codes

In this section, we give necessary and sufficient condition for a cyclic code C over R to be reversible
when the length of the code is coprime with q.

Definition 4.1 For a linear code C over a ring R and length n, if the reverse of every codeword is again
in C, then C is said to be reversible i.e., Y r ∈ C for all Y ∈ C.

For any polynomial f(κ) = f0+f1κ+· · ·+fkκk with fk ̸= 0, f∗(κ) = κkf(1/κ) = fk+fk−1κ+· · ·+f0κk

is its reciprocal polynomial. Clearly, deg(f∗(κ)) ≤ deg(f(κ)) and if f0 ̸= 0, then deg(f∗(κ)) = deg(f(κ)).
If f∗(κ) = f(κ), then f(κ) is said to be self-reciprocal. It is easy to check that if f(κ), g(κ) are two
polynomials such that f(κ)|g(κ), then f∗(κ)|g∗(κ). Also, let R be a commutative ring and f(κ) =
f0+f1κ+ · · ·+fsκs be a polynomial in R[κ]/⟨κn−1⟩. Then the reverse of f(κ) is defined as polynomial
f(κ)r = fsκn−s−1 + · · ·+ f1κn−2 + f0κn−1.

Lemma 4.1 [14] Suppose that R is a commutative ring and f(κ) ∈ R[κ]/⟨κn− 1⟩ with deg(f(κ)) = m.
Then,

(1) κm+1f(κ)r = f∗(κ) in R[κ]/⟨κn − 1⟩,

(2) κn−m−1f∗(κ) = f(κ)r in R[κ]/⟨κn − 1⟩.

Proposition 4.1 Let C be a cyclic code over a commutative ring R with length n and f(κ) ∈ R[κ]/⟨κn−
1⟩. Then, f(κ)r ∈ C iff f∗(κ) ∈ C.

Proof: The proof is straightforward using the Lemma 4.1. 2

Corollary 4.1 Suppose that C is a cyclic code over R. Then, C is reversible if and only if f∗(κ) ∈ C
for all f(κ) ∈ C.

Lemma 4.2 [15] The cyclic code over Fq generated by the monic polynomial f(κ) is reversible if and
only if f(κ) is self-reciprocal.

Lemma 4.3 [19] Let C = ⟨f(κ) + um(κ), ua(κ)⟩ be a reversible cyclic code over R. Then ⟨f(κ)⟩ and
⟨a(κ)⟩ are reversible cyclic codes over Fq.

Lemma 4.4 [20] Let D be a reversible cyclic code of length n over S and Θ : D → R[κ]/⟨κn − 1⟩ be a
homomorphism as defined earlier in Section 3. Then Θ(D) is also a reversible cyclic code over R.

Lemma 4.5 Let D = ⟨g(κ) + um1(κ) + u2m2(κ), ua1(κ) + u2q1(κ), u2a2(κ)⟩ be a reversible cyclic code
over S. Then ⟨g(κ)⟩, ⟨a1(κ)⟩ and ⟨a2(κ)⟩ are reversible cyclic codes over Fq.
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Proof: Let Θ : D → R[κ]/⟨κn − 1⟩ be the homomorphism defined in Section 3. Then, from Lemma
4.4, Θ(D) is a reversible cyclic code and from Lemma 4.3, ⟨g(κ)⟩ and ⟨a1(κ)⟩ are reversible cyclic codes
over Fq. From the discussion in the previous section, we have kerΘ = {u2t(κ)|t(κ) ∈ Fq[κ]} and
I = {t(κ) ∈ Fq[κ]|u2t(κ) ∈ kerΘ} = ⟨a2(κ)⟩. Let t(κ) = t0 + t1κ + · · ·+ tn−1κn−1 ∈ I. Then, we have
t(κ) ∈ Fq[κ] is a polynomial in D. Since D is reversible t∗(κ) ∈ D and u2t∗(κ) ∈ kerΘ, this means
t∗(κ) ∈ I. Therefore, from Corollary 4.1, ⟨a2(κ)⟩ is reversible. 2

Theorem 4.1 Let C be a reversible cyclic code over R and ψ : C → S[κ]/⟨κn − 1⟩ be the ring homo-
morphism defined in Sec 3. Then ψ(C) is also a reversible cyclic code.

Proof: Let c = (c0, c1, . . . , cn−1) ∈ C. Then, from the definition of ψ in Section 3, we have

ψ(c) = (φ(c0), φ(c1), . . . , φ(cn−1)) ∈ ψ(C).

Since C is reversible, cr = (cn−1, cn−2, . . . , c0) ∈ C. Let

(ψ(c))r =(φ(c0), φ(c1), . . . , φ(cn−1))
r

=(φ(cn−1), φ(cn−2), . . . , φ(c0))

=ψ(cn−1, cn−2, . . . , c0) ∈ ψ(C).

Hence, ψ(C) is a reversible cyclic code. 2

Theorem 4.2 Let C = ⟨g(κ) + up1(κ) + u2p2(κ) + u3p3(κ), ua1(κ) + u2q1(κ) + u3q2(κ), u2a2(κ) +
u3l1(κ), u3a3(κ)⟩ be a reversible cyclic code of length n over R. Then ⟨g(κ)⟩, ⟨a1(κ)⟩, ⟨a2(κ)⟩ and
⟨a3(κ)⟩ are also reversible cyclic codes over Fq.

Proof: Consider the homomorphism ψ : C → S[κ]/⟨κn − 1⟩ in Section 3. Then, from Theorem 4.1,
ψ(C) is also a reversible cyclic code and from Lemma 4.5, ⟨g(κ)⟩, ⟨a1(κ)⟩ and ⟨a2(κ)⟩ are reversible
cyclic codes over Fq. From the discussion in the previous section, we have kerψ = {u3l(κ)|l(κ) ∈ Fq[κ]}
and J = {l(κ) ∈ Fq[κ]|u3l(κ) ∈ kerψ} = ⟨a3(κ)⟩. Let l(κ) = l0 + l1κ + · · · + ln−1κn−1 ∈ J . Then
l(κ) ∈ Fq[κ] is a polynomial in C. Since C is reversible l∗(κ) ∈ C and u3l∗(κ) ∈ kerψ, we have l∗(κ) ∈ J .
Therefore, from Corollary 4.1, ⟨a3(κ)⟩ is reversible. 2

Theorem 4.3 Let C = ⟨g(κ), ua1(κ), u2a2(κ), u3a3(κ)⟩ be a cyclic code of length n over R, where
(n, q) = 1, g(κ), ai(κ) ∈ Fq[κ]/⟨κn − 1⟩ and a3(κ)|a2(κ)|a1(κ)|g(κ). Then C is reversible cyclic code if
and only if g(κ), a1(κ), a2(κ) and a3(κ) are self-reciprocal polynomials.

Proof: Let C = ⟨g(κ), ua1(κ), u2a2(κ), u3a3(κ)⟩ be a cyclic code of length n over R, where (n, q) = 1.
Then by Lemma 4.2 and Theorem 4.2, g(κ), a1(κ), a2(κ) and a3(κ) are self-reciprocal polynomials.

Conversely suppose that g(κ), a1(κ), a2(κ) and a3(κ) are self-reciprocal polynomials. Then for any
c(κ) ∈ C, there exist f1(κ), f2(κ), f3(κ) and f4(κ) ∈ Fq[κ] such that

c(κ) = f1(κ)g(κ) + uf2(κ)a1(κ) + u2f3(κ)a2(κ) + u3f4(κ)a3(κ).

Now, from Lemma 3.4 and 3.5, we have

c∗(κ) =(f1(κ)g(κ) + uf2(κ)a1(κ) + u2f3(κ)a2(κ) + u3f4(κ)a3(κ))∗

=f∗1 (κ)g∗(κ) + uκif∗2 (κ)a∗1(κ) + u2κjf∗3 (κ)a∗2(κ) + u3κkf∗4 (κ)a∗3(κ),

where i = deg(g(κ)) − deg(a1(κ)), j = deg(g(κ)) − deg(a2(κ)) and k = deg(g(κ)) − deg(a3(κ)). Since
g(κ), a1(κ), a2(κ) and a3(κ) self-reciprocal, we have

c∗(κ) = f∗1 (κ)g(κ) + uκif∗2 (κ)a1(κ) + u2κjf∗3 (κ)a2(κ) + u3κkf∗4 (κ)a3(κ).

This implies that c∗(κ) ∈ C, hence C is a reversible cyclic code. 2
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5. Dual of Cyclic Code Over R

In this Section, we find the set of generators for dual cyclic codes of length n over the ring R and
then find the condition for dual cyclic codes to be reversible when the length of the code is coprime to q
i.e., (n, q) = 1.

Consider two vectors, X = x0x1 . . . xn and Y = y1y2 . . . yn in Rn. ⟨X,Y ⟩E = x0y0+x1y1+ · · ·+xnyn
denotes the Euclidean inner product in Rn. With respect to the Euclidean inner product, two vectors X
and Y are orthogonal if ⟨X,Y ⟩E = 0. Similarly, ⟨X,Y ⟩H = x0ȳ0 + x1ȳ1 + · · · + xnȳn is the Hermitian
inner product and two vectors X and Y are orthogonal if ⟨X,Y ⟩H = 0 with respect to the Hermitian
inner product. The dual code C⊥ of C is defined as

C⊥ = {X ∈ Rn|⟨X,Y ⟩E = 0 for all Y ∈ C}.

Likewise, the Hermitian dual code C⊥H of C is defined as

C⊥H = {X ∈ Rn|⟨X,Y ⟩H = 0 for all Y ∈ C}.

Now suppose that K is an ideal in the quotient ringR[κ]/⟨κn−1⟩, then the annihilator of K inR[κ]/⟨κn−
1⟩ is defined as

A(K) = {f(κ) ∈ R[κ]/⟨κn − 1⟩|g(κ)f(κ) = 0 ∀g(κ) ∈ K}.
It is easy to verify that A(K) itself is an ideal in R[κ]/⟨κn − 1⟩. Further, if K generates a cyclic code C
of length n over R, then the dual code of C is given by

C⊥ = A∗(K) = {h∗(κ)|h(κ) ∈ A(K)},

where h∗(κ) is the reciprocal polynomial of h(κ).
Next theorem gives the annihilator of cyclic code C of length n over R, when (n, q) = 1.

Theorem 5.1 Let C = ⟨g(κ), ua1(κ), u2a2(κ), u3a3(κ)⟩ be a cyclic code of length n over R, where
(n, q) = 1, g(κ), ai(κ) ∈ Fq[κ]/⟨κn − 1⟩ and a3(κ)|a2(κ)|a1(κ)|g(κ). Then, annihilator of C is given as

A(C) =

〈
κn − 1

a3(κ)
, u

κn − 1

a2(κ)
, u2

κn − 1

a1(κ)
, u3

κn − 1

g(κ)

〉
.

Proof: Let us suppose that

M =

〈
κn − 1

a3(κ)
, u

κn − 1

a2(κ)
, u2

κn − 1

a1(κ)
, u3

κn − 1

g(κ)

〉
.

Since g(κ) + ua1(κ) + u2a2(κ) + u3a3(κ) ∈ C, we get

κn − 1

a3(κ)
(
g(κ) + ua1(κ) + u2a2(κ) + u3a3(κ)

)
= 0.

Therefore,
κn − 1

a3(κ)
∈ A(C)

and hence, 〈
κn − 1

a3(κ)

〉
∈ A(C).

Likewise,

〈
κn−1
a2(κ)

〉
,

〈
κn−1
a1(κ)

〉
and

〈
κn−1
g(κ)

〉
∈ A(C).

This means that

〈
κn−1
a3(κ) , u

κn−1
a2(κ) , u

2 κn−1
a1(κ) , u

3 κn−1
g(κ)

〉
∈ A(C), that is, M ∈ A(C).

Since, A(C) itself is a cyclic code over R of length n, where (n, q) = 1, we have

A(C) = ⟨l1(κ), ul2(κ), u2l3(κ), u3l4(κ)⟩,
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where li(κ) ∈ Fq[κ]/⟨κn−1⟩ and l4(κ)|l3(κ)|l2(κ)|l1(κ). Since u3a3(κ) ∈ C and l1(κ) ∈ A(C), we have,

u3a3(κ) · l1(κ) ≡ 0 mod (κn − 1).

This means l1(κ) = κn−1
a3(κ)α(κ), for some polynomial α(κ) ∈ Fq[κ], this means l1(κ) ∈

〈
κn−1
a3(κ)

〉
. Simi-

larly, l2(κ) ∈
〈

κn−1
a2(κ)

〉
, l3(κ) ∈

〈
κn−1
a1(κ)

〉
and l4(κ) ∈

〈
κn−1
g(κ)

〉
, ultimately A(C) ⊆ M. Hence,

A(C) =

〈
κn − 1

a3(κ)
, u

κn − 1

a2(κ)
, u2

κn − 1

a1(κ)
, u3

κn − 1

g(κ)

〉
.

2

Corollary 5.1 Let C = ⟨g(κ), ua1(κ), u2a2(κ), u3a3(κ)⟩ be a cyclic code of length n over R, where
(n, q) = 1, g(κ), ai(κ) ∈ Fq[κ]/⟨κn − 1⟩ and a3(κ)|a2(κ)|a1(κ)|g(κ). Then,

C⊥ =

〈(
κn − 1

a3(κ)

)∗

, u

(
κn − 1

a2(κ)

)∗

, u2
(
κn − 1

a1(κ)

)∗

, u3
(
κn − 1

g(κ)

)∗〉
.

Theorem 5.2 Let C = ⟨g(κ), ua1(κ), u2a2(κ), u3a3(κ)⟩ be a reversible cyclic code of length n over R,
where (n, q) = 1, g(κ), ai(κ) ∈ Fq[κ]/⟨κn−1⟩ and a3(κ)|a2(κ)|a1(κ)|g(κ). Then C⊥ is a revesible cyclic
code over R.

Proof: Since C is a reversible cyclic code over R of length n with (n, q) = 1, from Theorem 4.3,
g(κ), a1(κ), a2(κ), and a3(κ) are self-reciprocal polynomials. Consider κn−1

a3(κ) = λ1(κ), κn−1
a2(κ) = λ2(κ),

κn−1
a1(κ) = λ3(κ) and κn−1

g(κ) = λ4(κ). Therefore (κn−1)∗

(a3(κ))∗ = λ∗1(κ),
(κn−1)∗

(a2(κ))∗ = λ∗2(κ),
(κn−1)∗

(a1(κ))∗ = λ∗3(κ)
and (κn−1)∗

(g(κ))∗ = λ∗4(κ). Since g(κ), a1(κ), a2(κ), and a3(κ) are self-reciprocal polynomials, we have
−(κn−1)
a3(κ) = λ∗1(κ),

−(κn−1)
a2(κ) = λ∗2(κ),

−(κn−1)
a1(κ) = λ∗3(κ) and −(κn−1)

(g(κ)) = λ∗4(κ). Thus, λ∗1(κ) = −λ1(κ),
λ∗2(κ) = −λ2(κ), λ∗3(κ) = −λ3(κ) and λ∗4(κ) = −λ4(κ). Let ĉ(κ) ∈ C⊥. Then there exist polynomials
q1(κ), q2(κ), q3(κ), q4(κ) ∈ R[κ] such that

ĉ(κ) =
(
κn − 1

a3(κ)

)∗

q1(κ) + u

(
κn − 1

a2(κ)

)∗

q2(κ) + u2
(
κn − 1

a1(κ)

)∗

q3(κ) + u3
(κn − 1

g(κ)
)∗
q4(κ)

and

ĉ(κ)∗ =

[(
κn − 1

a3(κ)

)∗

q1(κ) + u

(
κn − 1

a2(κ)

)∗

q2(κ) + u2
(
κn − 1

a1(κ)

)∗

q3(κ) + u3
(κn − 1

g(κ)
)∗
q4(κ)

]∗
=[λ∗1q1(κ) + uλ∗2q2(κ) + u2λ∗3q3(κ) + u3λ∗4q4(κ)]∗

=[−λ1q1(κ) + u(−λ2)q2(κ) + u2(−λ3)q3(κ) + u3(−λ4)q4(κ)]∗

=− λ∗1q
∗
1(κ)− uκj1λ∗2q

∗
2(κ)− u2κj2λ∗3q3(κ)− u3κj3λ∗4q

∗
4(κ)

=λ∗1f1(κ) + uλ∗2κj1f2(κ) + u2λ∗3κj2f(κ) + u3λ∗4κj3f4(κ),

where j1 = deg(λ1(κ)) − deg(λ2(κ)), j2 = deg(λ1(κ)) − deg(λ3(κ)) and j3 = deg(λ1(κ)) − deg(λ4(κ))
and fi(κ) = −q∗i (κ) for i = 1, 2, 3, 4. This implies that ĉ(κ)∗ ∈ C⊥. Therefore C⊥ is a reversible cyclic
code. 2

6. Reversible-Complement Codes

This section discusses the reversible-complement cyclic codes of odd length over the ring R1 = F4 +
uF4 + u2F4 + u3F4, where u

4 = 0. Necessary and sufficient conditions are given for cyclic codes over R1

to be reversible-complement codes. Moreover, reversibility problem is also addressed in this Section.



Reversible Cyclic Codes Over Fq + uFq + u2Fq + u3Fq ... 11

Deoxyribonucleic acid or DNA, is a type of nucleic acid found in all living organisms, carrying the
genetic information called genes. DNA sequences contain two long polymers, which are called strands,
composed of four nucleotide bases, namely Adenine(A), Guanine(G), Thymine(T ) and Cytosine(C).
Two strands are so twisted, forming a double helix, running in opposite directions to each other and
joined together by hydrogen bonds between nucleotide bases. This attachment follows the Watson-Crick
Complement rule. A pairs with T and G pairs with C, as per the Watson-Crick Complement rule. A
and G are called the complements of T and C, respectively, and vice versa. The Complement of a base
X is denoted by X̄. Ḡ = C, for instance, is the complement of G. Thus, if X = AGATT is a DNA
strand, then X̄ = TCTAA would be its complement. According to the Watson-Crick Complement rule,
a DNA strand Y = y1y2 . . . yl will pair up with Y rc = ȳl ¯yl−1 . . . ȳ2ȳ1, the reverse-complement of Y . For
instance, a DNA strand 5′ − TCTAAGT − 3′ will pair up with 3′ − ACTTAGA − 5′. A DNA code C
with minimum distance d may satisfy some or all the following constraints:

1. The Hamming constraint: dH(s1, s2) ≥ d, where s1, s2 ∈ C and s1 ̸= s2.

2. The Reverse constraint: dH(s1, s
r
2) ≥ d, where s1, s2 ∈ C and sr2 is the reverse of s2.

3. The Reverse-Complement constraint: dH(sr1, s
c
2) ≥ d, where s1, s2 ∈ C and sc2 is the comple-

ment of s2.

4. The GC-content constraint: Each codeword s ∈ C has the same number of G or C.

First three constraints ensure to reduce the probability of non-specific hybridization. Fixed GC-content
constraint ensures the similar melting point.

In Table 1, we provide a relationship between the elements of R1 and DNA 4-mers such that
for any a ∈ R1 the complement of a denoted by a is obtained as a = a + u3. Notice from Ta-
ble 1 for any x ∈ R1 the corresponding DNA string is b1b2b3b4 (say), then the reverse b4b3b2b1 of
b1b2b3b4 is obtained by multiplying x with 1 + u2 that is (1 + u2)x = b4b3b2b1. Observing this fact,
we try to solve the reversibility problem. To explain reversibility problem, let us consider that η =
(η1, η2, η3) be any codeword over R1 and the DNA correspondence of η is ATAGGCGGCCCT such that
η1 corresponds to ATAG, η2 corresponds to GCGG and η3 corresponds to CCCT . Now, the reverse of
η is given by ηr = (η3, η2, η1), then the DNA correspondence of ηr is given by CCCTGCGGATAG but
CCCTGCGGATAG is not the reverse of ATAGGCGGCCCT , the reverse of ATAGGCGGCCCT is
TCCCGGCGGATA. To solve this reversibility problem the following lemma is useful.

Lemma 6.1 Let d = (d0, d1, . . . , dn−1) be some codeword over R1 of length n and X=b1b2 · · · b4n−1b4n
is the DNA correspondence of d. Then, the DNA sequence corresponding to the codeword (1 + u2)dr is
the reverse of X that is (1 + u2)dr = b4nb4n−1 · · · b2b1.

Definition 6.1 A linear code C over a ring R and length n is called complement if the complement of
every codeword is again in C that is Y c ∈ C, for all Y ∈ C and reversible-complement if Y rc ∈ C, for
all Y ∈ C.

Definition 6.2 [23] For a linear code C of length n over R, C is said to be cyclic DNA code if C is a
reversible-complement cyclic code.

Lemma 6.2 The following are true:

(1) For any a, b, c, d ∈ Fq, a+ ub+ u2c+ u3d = ā+ ub+ u2c+ u3d,

(2) For any x ∈ R1, x+ x̄ = u3,

(3) For any x, y ∈ R1, x+ y = x̄+ ȳ + u3.

Proof: (1), (2) are straightforward from the Table 1.
(3) Let x, y ∈ R1. Then, x+ y = x+ y + u3 = (x̄+ u3) + (ȳ + u3) + u3 = x̄+ ȳ + u3. 2
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Theorem 6.1 Let g(κ) ∈ R[κ]. Then g(κ)rc + u3(κ
n−1
κ−1 ) = g(κ)r.

Proof: Assume that
g(κ) =g0 + g1κ + ...+ gt−1κt−1 + gtκt

g(κ)rc =0̄ + 0̄κ + ...+ 0̄κn−t−2 + ḡtκn−t−1 + ¯gt−1κn−t + ...+ ḡ1κn−2 + ḡ0κn−1

=u3 + u3κ + ...+ u3κn−t−2 + (gt + u3)κn−t−1 + (gt−1 + u3)κn−t + ...+ (g1 + u3)κn−2

+ (g0 + u3)κn−1

=gtκn−t−1 + gt−1κn−t + ...+ g1κn−2 + g0κn−1 + u3(1 + κ + ...+ κn−t−2 + κn−t−1 + ...+ κn−1)

=g(κ)r + u3(
κn − 1

κ − 1
).

This implies that g(κ)rc + u3(κ
n−1
κ−1 ) = g(κ)r. 2

Theorem 6.2 Suppose that C is a cyclic code with odd length n over R1. Then, C is a reversible-
complement code iff C is reversible and u3(κ

n−1
κ−1 ) ∈ C.

Proof: Consider C to be a reversible-complement code. Since,

0 + 0κ + ...+ 0κn−1 ∈C, we have

0̄ + 0̄κ + ...+ 0̄κn−1 =u3(1 + κ + ...+ κn−1) ∈ C

=u3(
κn − 1

κ − 1
) ∈ C.

Now, from Theorem 6.1 the result holds. 2

For any two cyclic codes C1 and C2 over R1, consider

C1 +C2 = {c1 + c2|c1 ∈ C1, c2 ∈ C2}

and

C1 ∩C2 = {c|c ∈ C1 and c ∈ C2}.

Then we have the following result:

Theorem 6.3 Let C1,C2 be two cyclic DNA codes of length n over R. Then, C1+C2 and C1 ∩C2 are
cyclic DNA codes.

Proof: Let f(κ) = f0 + f1κ+ ...fsκs ∈ C1, g(κ) = g0 + g1κ+ ...gtκt ∈ C2 be two arbitrary codewords.
We may assume that s ≥ t without loss of generality, then

(f(κ) + g(κ))rc =((f0 + g0) + (f1 + g1)κ + ...(ft + gt)κt + ft+1 + ...+ fsκs)rc

=0̄ + 0̄κ + ...+ 0̄κn−s−2 + f̄sκn−s−1 + ¯fs−1κn−s + ...+ ¯ft+1κn−t−2+

(ft + gt)κn−t−1 + ...+ (f1 + g1)κn−2 + (f0 + g0)κn−1

=f(κ)rc + gtκn−t−1 + gt−1κn−t + ...+ g1κn−2 + g0κn−1

=f(κ)rc + g(κ)r

=f(κ)rc + g(κ)rc + u3(
κn − 1

κ − 1
) ∈ C1 +C2.

Which proves that C1 +C2 is reversible-compliment. Clearly C1 ∩C2 is reversible-complement. 2
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7. Examples

We present some examples of reversible and reversible-complement cyclic codes over different rings,
some of them are optimal according to online database Grassl http://www.codetables.de/.

Example 7.1 Let F4 = {0, 1, α, 1+α = α2} be the finite field of four elements. Consider κ7− 1 ∈ F4[κ]
then factorization of κ7 − 1 over F4 is

κ7 − 1 = (κ − 1)(κ3 + κ + 1)(κ3 + κ2 + 1).

Take g(κ) = 1+κ+κ2+κ3+κ4+κ5+κ6 then, g(κ)|κ7−1 and g(κ) is a self-reciprocal polynomial. Then

Theorem 6.2 implies that C = ⟨g(κ)⟩ is a reversible-complement cyclic code of length 7 as u3
(κ7−1

κ−1

)
∈ C.

The ζ image of C is a DNA code of length 28 and size 256, given in table 2.

Example 7.2 let n = 17, consider the factorization over F2

κ17 − 1 =(κ + 1)(κ8 + κ5 + κ4 + κ3 + 1)(κ8 + κ7 + κ6 + κ4 + κ2 + κ + 1)

=f1f2f3.

Then f1, f2, f3 are self-reciprocal polynomials. Then using Theorem 4.3, we constructed reversible cyclic
codes over R2 = F2 + uF2 + u2F2 + u3F2 listed in table 3.

Table 3 Reversible cyclic codes of length 17 over R2

Non zero generator polynomial Parameter Remark
f1 [17, 16, 2] Optimal
f2 [17, 9, 5] Optimal
f3 [17, 9, 5] Optimal
f1f2 [17, 8, 6] Optimal
f1f3 [17, 8, 6] Optimal
f2f3 [17, 1, 17] Optimal
f3, uf3 [17, 9, 5] Optimal

f1f3, u
3f3 [17, 9, 5] Optimal

Example 7.3 Let F4 = {0, 1, α, 1+α = α2} be the finite field of four elements. Consider κ17−1 ∈ F4[κ]
then factorization of κ17 − 1 over F4 is

κ17 − 1 =(κ − 1)(κ4 + κ3 + ακ2 + κ + 1)(κ4 + κ3 + α2κ2 + κ + 1)

(κ4 + ακ3 + κ2 + ακ + 1)(κ4 + α2κ3 + κ2 + α2κ + 1)

=f1f2f3f4f5.

Then f1, f2, f3, f4 and f5 are self-reciprocal polynomials. Then using Theorem 4.3, we constructed re-
versible cyclic codes over R4 = F4 + uF4 + u2F4 + u3F4 listed in table 4.

Table 4 Reversible cyclic codes of length 17 over R4

Non zero generator polynomial Parameter Remark
f2 [17, 13, 4] Optimal
f1f2 [17, 12, 4] Optimal
f1f5 [17, 12, 4] Optimal
f1f2f5 [17, 8, 8] Optimal
f1f2f3f5 [17, 4, 12] Optimal

f1f2f3f5, u
3f2 [17, 13, 4] Optimal

f1f2f3f5, uf1f2f5, u
2f1f5, u

3f5 [17, 13, 4] Optimal

http://www.codetables.de/
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Example 7.4 let n = 13, consider the factorization over F5

κ13 − 1 =(κ + 4)(κ4 + κ3 + 4κ2 + κ + 1)(κ4 + 2κ3 + κ2 + 2κ + 1)(κ4 + 3κ3 + 3κ + 1)

=f1f2f3f4.

Then f2, f3, f4 are self-reciprocal polynomials. Then using Theorem 4.3, we constructed reversible cyclic
codes over R5 = F5 + uF5 + u2F5 + u3F5 listed in table 5.

Table 5 Reversible cyclic codes of length 13 over R5

Non zero generator polynomial Parameter Remark
f2 [13, 9, 4] Optimal
f3 [13, 9, 4] Optimal
f4 [13, 9, 4] Optimal
f2f3 [13, 5, 7] Optimal
f2f3f4 [13, 1, 13] Optimal

Example 7.5 let n = 41, consider the factorization over F4

κ41 − 1 =(κ + 1)(κ10 + ακ8 + α2κ7 + κ5 + α2κ3 + ακ2 + 1)(κ10 + α2κ8 + ακ7 + κ5 + ακ3 + α2κ2 + 1)

(κ10 + ακ9 + ακ8 + ακ7 + κ6 + α2κ5 + κ4 + ακ3 + ακ2 + ακ + 1)

(κ10 + α2κ9 + α2κ8 + α2κ7 + κ6 + ακ5 + κ4 + α2κ3 + α2κ2 + α2κ + 1)

=f1f2f3f4f5.

Then f1f2, f3, f4 and f5 are self-reciprocal polynomials. Then using Theorem 4.3, we constructed re-
versible cyclic codes over R4 listed in table 6.

Table 6 Reversible cyclic codes of length 41 over R4

Non zero generator polynomial Parameter Remark
f1 [41, 40, 2] Optimal
f2 [41, 31, 6] Optimal
f5 [41, 31, 6] Optimal
f1f2 [41, 30, 7] Optimal
f1f5 [41, 30, 7] Optimal
f1f2f3 [41, 20, 10]
f2f3f4 [41, 11, 20] Optimal

f1f2, u
3f2 [41, 31, 6] Optimal

f1f2f3, uf1f2f3, u
2f1f2f3, u

3f2 [41, 31, 6] Optimal
f2f3f4f5 [41, 1, 41] Optimal

Example 7.6 Let F8 be the finite field of order 8 and ω be a primitive element of F8. Consider κ9−1 ∈
F8[κ] then factorization of κ9 − 1 over F8 is

κ9 − 1 =(κ − 1)(κ2 + κ + 1)(κ2 + ωκ + 1)(κ2 + ω2κ + 1)(κ2 + ω4κ + 1)

=f1f2f3f4f5.

Then f1, f2, f3, f4 and f5 are self-reciprocal polynomials. Then using Theorem 4.3, we constructed re-
versible cyclic codes over R8 = F8 + uF8 + u2F8 + u3F8 listed in table 7.
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Table 7 Reversible cyclic codes of length 9 over R8

Non zero generator polynomial Parameter Remark
f1 [9, 8, 2] Optimal
f3 [9, 7, 3] Optimal
f1f3 [9, 6, 4] Optimal
f2f3 [9, 5, 5] Optimal
f1f3f5 [9, 4, 6] Optimal
f2f4f5 [9, 3, 7] Optimal
f1f2f4f5 [9, 2, 8] Optimal
f2f3f4f5 [9, 1, 9] Optimal
f1f5, u

3f5 [9, 7, 3] Optimal
f1f2f3, u

3f2f3 [9, 5, 5] Optimal

Example 7.7 let n = 14, consider the factorization over F3

κ14 − 1 =(κ + 1)(κ + 2)(κ6 + κ5 + κ4 + κ3 + κ2 + κ + 1)(κ6 + 2κ5 + κ4 + 2κ3 + κ2 + 2κ + 1)

=f1f2f3f4.

Then f1, f3, f4 are self-reciprocal polynomials. Then using Theorem 4.3, we constructed reversible cyclic
codes over R3 = F3 + uF3 + u2F3 + u3F3 listed in table 8.

Table 8 Reversible cyclic codes of length 14 over R3

Non zero generator polynomial Parameter Remark
f1 [14, 13, 2] Optimal
f4 [14, 8, 2]
f1f3 [14, 7, 4]
f1f4 [14, 7, 2]
f3f4 [14, 2, 7]
f1f3f4, [14, 1, 14] Optimal

Table 2 DNA Code of length 28

AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAATAAATAAATAAATAAATAAATAAAT
AAAGAAAGAAAGAAAGAAAGAAAGAAAG AAACAAACAAACAAACAAACAAACAAAC
ATCAATCAATCAATCAATCAATCAATCA ATCTATCTATCTATCTATCTATCTATCT
ATCGATCGATCGATCGATCGATCGATCG ACGGACGGACGGACGGACGGACGGACGG
ATCCATCCATCCATCCATCCATCCATCC ACGAACGAACGAACGAACGAACGAACGA
ACGCACGCACGCACGCACGCACGCACGC AATAAATAAATAAATAAATAAATAAATA
AATTAATTAATTAATTAATTAATTAATT AATGAATGAATGAATGAATGAATGAATG
AATCAATCAATCAATCAATCAATCAATC AGAAAGAAAGAAAGAAAGAAAGAAAGAA
ATTAATTAATTAATTAATTAATTAATTA TAAATAAATAAATAAATAAATAAATAAA

AGAGAGAGAGAGAGAGAGAGAGAGAGAG AGACAGACAGACAGACAGACAGACAGAC
ACCTACCTACCTACCTACCTACCTACCT ACCGACCGACCGACCGACCGACCGACCG
ACCCACCCACCCACCCACCCACCCACCC TTGATTGATTGATTGATTGATTGATTGA
TTGTTTGTTTGTTTGTTTGTTTGTTTGT TTGGTTGGTTGGTTGGTTGGTTGGTTGG
TTGCTTGCTTGCTTGCTTGCTTGCTTGC AAGTAAGTAAGTAAGTAAGTAAGTAAGT

ATATATATATATATATATATATATATAT CATTCATTCATTCATTCATTCATTCATT
AAGGAAGGAAGGAAGGAAGGAAGGAAGG CAGGCAGGCAGGCAGGCAGGCAGGCAGG
ACCAACCAACCAACCAACCAACCAACCA CAGCCAGCCAGCCAGCCAGCCAGCCAGC
GAAAGAAAGAAAGAAAGAAAGAAAGAAA CAGACAGACAGACAGACAGACAGACAGA
GTGCGTGCGTGCGTGCGTGCGTGCGTGC CACCCACCCACCCACCCACCCACCCACC
GGTCGGTCGGTCGGTCGGTCGGTCGGTC GAACGAACGAACGAACGAACGAACGAAC
TACATACATACATACATACATACATACA GGTAGGTAGGTAGGTAGGTAGGTAGGTA
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CACTCACTCACTCACTCACTCACTCACT CTCACTCACTCACTCACTCACTCACTCA
ACGTACGTACGTACGTACGTACGTACGT GCTCGCTCGCTCGCTCGCTCGCTCGCTC
GATTGATTGATTGATTGATTGATTGATT CCTGCCTGCCTGCCTGCCTGCCTGCCTG

GGGGGGGGGGGGGGGGGGGGGGGGGGGG CGACCGACCGACCGACCGACCGACCGAC
GAGAGAGAGAGAGAGAGAGAGAGAGAGA CAAACAAACAAACAAACAAACAAACAAA
GAGGGAGGGAGGGAGGGAGGGAGGGAGG CGCCCGCCCGCCCGCCCGCCCGCCCGCC
GATGGATGGATGGATGGATGGATGGATG GCCCGCCCGCCCGCCCGCCCGCCCGCCC
CGTACGTACGTACGTACGTACGTACGTA CACACACACACACACACACACACACACA
GATAGATAGATAGATAGATAGATAGATA GACTGACTGACTGACTGACTGACTGACT
AGCTAGCTAGCTAGCTAGCTAGCTAGCT GAGCGAGCGAGCGAGCGAGCGAGCGAGC
CCTTCCTTCCTTCCTTCCTTCCTTCCTT TTCTTTCTTTCTTTCTTTCTTTCTTTCT

AGGAAGGAAGGAAGGAAGGAAGGAAGGA CTGCCTGCCTGCCTGCCTGCCTGCCTGC
AAGCAAGCAAGCAAGCAAGCAAGCAAGC AGTAAGTAAGTAAGTAAGTAAGTAAGTA
ACTAACTAACTAACTAACTAACTAACTA GCCAGCCAGCCAGCCAGCCAGCCAGCCA

CTGGCTGGCTGGCTGGCTGGCTGGCTGG CCCGCCCGCCCGCCCGCCCGCCCGCCCG
GGATGGATGGATGGATGGATGGATGGAT CCAACCAACCAACCAACCAACCAACCAA
AGTGAGTGAGTGAGTGAGTGAGTGAGTG AGTCAGTCAGTCAGTCAGTCAGTCAGTC
CATGCATGCATGCATGCATGCATGCATG TAAGTAAGTAAGTAAGTAAGTAAGTAAG
TAACTAACTAACTAACTAACTAACTAAC AGGGAGGGAGGGAGGGAGGGAGGGAGGG
CAACCAACCAACCAACCAACCAACCAAC CGTCCGTCCGTCCGTCCGTCCGTCCGTC
AGGCAGGCAGGCAGGCAGGCAGGCAGGC TATGTATGTATGTATGTATGTATGTATG
TCCATCCATCCATCCATCCATCCATCCA TCTATCTATCTATCTATCTATCTATCTA
GTAGGTAGGTAGGTAGGTAGGTAGGTAG CAAGCAAGCAAGCAAGCAAGCAAGCAAG
ACAAACAAACAAACAAACAAACAAACAA TCGTTCGTTCGTTCGTTCGTTCGTTCGT
TATCTATCTATCTATCTATCTATCTATC TGAGTGAGTGAGTGAGTGAGTGAGTGAG
CTAGCTAGCTAGCTAGCTAGCTAGCTAG CTTACTTACTTACTTACTTACTTACTTA
TGACTGACTGACTGACTGACTGACTGAC AGCGAGCGAGCGAGCGAGCGAGCGAGCG
CGGCCGGCCGGCCGGCCGGCCGGCCGGC AGCCAGCCAGCCAGCCAGCCAGCCAGCC
CGAACGAACGAACGAACGAACGAACGAA GTATGTATGTATGTATGTATGTATGTAT
CGTGCGTGCGTGCGTGCGTGCGTGCGTG CCGCCCGCCCGCCCGCCCGCCCGCCCGC
GCTAGCTAGCTAGCTAGCTAGCTAGCTA AGTTAGTTAGTTAGTTAGTTAGTTAGTT
TGTATGTATGTATGTATGTATGTATGTA TGTGTGTGTGTGTGTGTGTGTGTGTGTG

GCGTGCGTGCGTGCGTGCGTGCGTGCGT ACTTACTTACTTACTTACTTACTTACTT
CCGGCCGGCCGGCCGGCCGGCCGGCCGG TGTCTGTCTGTCTGTCTGTCTGTCTGTC
GTTAGTTAGTTAGTTAGTTAGTTAGTTA CGCTCGCTCGCTCGCTCGCTCGCTCGCT

GAAGGAAGGAAGGAAGGAAGGAAGGAAG CCGACCGACCGACCGACCGACCGACCGA
CGGACGGACGGACGGACGGACGGACGGA ATGAATGAATGAATGAATGAATGAATGA
GGAGGGAGGGAGGGAGGGAGGGAGGGAG CCACCCACCCACCCACCCACCCACCCAC
CCCACCCACCCACCCACCCACCCACCCA GGCAGGCAGGCAGGCAGGCAGGCAGGCA
TACGTACGTACGTACGTACGTACGTACG TACCTACCTACCTACCTACCTACCTACC
GCAAGCAAGCAAGCAAGCAAGCAAGCAA TATTTATTTATTTATTTATTTATTTATT
CGCGCGCGCGCGCGCGCGCGCGCGCGCG GACAGACAGACAGACAGACAGACAGACA
GTCAGTCAGTCAGTCAGTCAGTCAGTCA CCCTCCCTCCCTCCCTCCCTCCCTCCCT
TCCTTCCTTCCTTCCTTCCTTCCTTCCT GACGGACGGACGGACGGACGGACGGACG
TTCGTTCGTTCGTTCGTTCGTTCGTTCG TCATTCATTCATTCATTCATTCATTCAT
TGATTGATTGATTGATTGATTGATTGAT CGGTCGGTCGGTCGGTCGGTCGGTCGGT
GACCGACCGACCGACCGACCGACCGACC GGGCGGGCGGGCGGGCGGGCGGGCGGGC
CCTACCTACCTACCTACCTACCTACCTA GGTTGGTTGGTTGGTTGGTTGGTTGGTT
TCACTCACTCACTCACTCACTCACTCAC TCAGTCAGTCAGTCAGTCAGTCAGTCAG
GTACGTACGTACGTACGTACGTACGTAC ATTCATTCATTCATTCATTCATTCATTC
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ATTGATTGATTGATTGATTGATTGATTG TCCCTCCCTCCCTCCCTCCCTCCCTCCC
GTTGGTTGGTTGGTTGGTTGGTTGGTTG GCAGGCAGGCAGGCAGGCAGGCAGGCAG
TCCGTCCGTCCGTCCGTCCGTCCGTCCG ATACATACATACATACATACATACATAC
AGGTAGGTAGGTAGGTAGGTAGGTAGGT AGATAGATAGATAGATAGATAGATAGAT
CATCCATCCATCCATCCATCCATCCATC GTTCGTTCGTTCGTTCGTTCGTTCGTTC
TGTTTGTTTGTTTGTTTGTTTGTTTGTT AGCAAGCAAGCAAGCAAGCAAGCAAGCA
ATAGATAGATAGATAGATAGATAGATAG ACTCACTCACTCACTCACTCACTCACTC
GATCGATCGATCGATCGATCGATCGATC GAATGAATGAATGAATGAATGAATGAAT
ACTGACTGACTGACTGACTGACTGACTG TCGCTCGCTCGCTCGCTCGCTCGCTCGC
GCCGGCCGGCCGGCCGGCCGGCCGGCCG TCGGTCGGTCGGTCGGTCGGTCGGTCGG
GCTTGCTTGCTTGCTTGCTTGCTTGCTT CATACATACATACATACATACATACATA
GCACGCACGCACGCACGCACGCACGCAC GGCGGGCGGGCGGGCGGGCGGGCGGGCG
CGATCGATCGATCGATCGATCGATCGAT TCAATCAATCAATCAATCAATCAATCAA
ACATACATACATACATACATACATACAT ACACACACACACACACACACACACACAC

CGCACGCACGCACGCACGCACGCACGCA TGAATGAATGAATGAATGAATGAATGAA
GGCCGGCCGGCCGGCCGGCCGGCCGGCC ACAGACAGACAGACAGACAGACAGACAG
CAATCAATCAATCAATCAATCAATCAAT GCGAGCGAGCGAGCGAGCGAGCGAGCGA
CTTCCTTCCTTCCTTCCTTCCTTCCTTC GGCTGGCTGGCTGGCTGGCTGGCTGGCT
GCCTGCCTGCCTGCCTGCCTGCCTGCCT TACTTACTTACTTACTTACTTACTTACT
CCTCCCTCCCTCCCTCCCTCCCTCCCTC GGTGGGTGGGTGGGTGGGTGGGTGGGTG

GGGTGGGTGGGTGGGTGGGTGGGTGGGT CCGTCCGTCCGTCCGTCCGTCCGTCCGT
ATGCATGCATGCATGCATGCATGCATGC ATGGATGGATGGATGGATGGATGGATGG
CGTTCGTTCGTTCGTTCGTTCGTTCGTT ATAAATAAATAAATAAATAAATAAATAA
GCGCGCGCGCGCGCGCGCGCGCGCGCGC CTGTCTGTCTGTCTGTCTGTCTGTCTGT
CAGTCAGTCAGTCAGTCAGTCAGTCAGT GGGAGGGAGGGAGGGAGGGAGGGAGGGA
TTTTTTTTTTTTTTTTTTTTTTTTTTTT TTTATTTATTTATTTATTTATTTATTTA
TTTCTTTCTTTCTTTCTTTCTTTCTTTC TTTGTTTGTTTGTTTGTTTGTTTGTTTG
TAGTTAGTTAGTTAGTTAGTTAGTTAGT TAGATAGATAGATAGATAGATAGATAGA
TAGCTAGCTAGCTAGCTAGCTAGCTAGC TGCCTGCCTGCCTGCCTGCCTGCCTGCC
TAGGTAGGTAGGTAGGTAGGTAGGTAGG TGCTTGCTTGCTTGCTTGCTTGCTTGCT
TGCGTGCGTGCGTGCGTGCGTGCGTGCG TTATTTATTTATTTATTTATTTATTTAT
TTAATTAATTAATTAATTAATTAATTAA TTACTTACTTACTTACTTACTTACTTAC
TTAGTTAGTTAGTTAGTTAGTTAGTTAG TCTTTCTTTCTTTCTTTCTTTCTTTCTT
TAATTAATTAATTAATTAATTAATTAAT ATTTATTTATTTATTTATTTATTTATTT
TCTCTCTCTCTCTCTCTCTCTCTCTCTC TCTGTCTGTCTGTCTGTCTGTCTGTCTG
TGGATGGATGGATGGATGGATGGATGGA TGGCTGGCTGGCTGGCTGGCTGGCTGGC
TGGGTGGGTGGGTGGGTGGGTGGGTGGG AACTAACTAACTAACTAACTAACTAACT
AACAAACAAACAAACAAACAAACAAACA AACCAACCAACCAACCAACCAACCAACC
AACGAACGAACGAACGAACGAACGAACG TTCATTCATTCATTCATTCATTCATTCA

TATATATATATATATATATATATATATA GTAAGTAAGTAAGTAAGTAAGTAAGTAA
TTCCTTCCTTCCTTCCTTCCTTCCTTCC GTCCGTCCGTCCGTCCGTCCGTCCGTCC
TGGTTGGTTGGTTGGTTGGTTGGTTGGT GTCGGTCGGTCGGTCGGTCGGTCGGTCG
CTTTCTTTCTTTCTTTCTTTCTTTCTTT GTCTGTCTGTCTGTCTGTCTGTCTGTCT
CACGCACGCACGCACGCACGCACGCACG GTGGGTGGGTGGGTGGGTGGGTGGGTGG
CCAGCCAGCCAGCCAGCCAGCCAGCCAG CTTGCTTGCTTGCTTGCTTGCTTGCTTG
ATGTATGTATGTATGTATGTATGTATGT CCATCCATCCATCCATCCATCCATCCAT

GTGAGTGAGTGAGTGAGTGAGTGAGTGA GAGTGAGTGAGTGAGTGAGTGAGTGAGT
TGCATGCATGCATGCATGCATGCATGCA CGAGCGAGCGAGCGAGCGAGCGAGCGAG
CTAACTAACTAACTAACTAACTAACTAA GGACGGACGGACGGACGGACGGACGGAC
CCCCCCCCCCCCCCCCCCCCCCCCCCCC GCTGGCTGGCTGGCTGGCTGGCTGGCTG
CTCTCTCTCTCTCTCTCTCTCTCTCTCT GTTTGTTTGTTTGTTTGTTTGTTTGTTT
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CTCCCTCCCTCCCTCCCTCCCTCCCTCC GCGGGCGGGCGGGCGGGCGGGCGGGCGG
CTACCTACCTACCTACCTACCTACCTAC CGGGCGGGCGGGCGGGCGGGCGGGCGGG
GCATGCATGCATGCATGCATGCATGCAT GTGTGTGTGTGTGTGTGTGTGTGTGTGT
CTATCTATCTATCTATCTATCTATCTAT CTGACTGACTGACTGACTGACTGACTGA

TCGATCGATCGATCGATCGATCGATCGA CTCGCTCGCTCGCTCGCTCGCTCGCTCG
GGAAGGAAGGAAGGAAGGAAGGAAGGAA AAGAAAGAAAGAAAGAAAGAAAGAAAGA

8. Conclusion

We have studied cyclic code C of length n over the ring R = Fq + uFq + u2Fq + u3Fq, u
4 = 0, and

obtained the necessary and sufficient conditions for C to be reversible and reversible-complement cyclic
code when (n, q) = 1. We also studied the dual C⊥ of the cyclic code C and obtained the generator
polynomials of C⊥ in terms of the generator polynomials of C, when the length n is coprime with
q. Further we have given sufficient condition of C⊥ to be reversible. Moreover, cyclic DNA code are
constructed as the images of reversible-complement codes over R1 by providing a bijection between R1

and the set of all DNA 4-mers. The reversibility problem is also addressed with the help of this bijection.
Finally, some reversible optimal codes are also constructed, provided (n, q) = 1. However, for future
study, obtaining the reversibility conditions for cyclic codes over R of arbitrary length is of interest.
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