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Numerical Analysis of Thermoelastic Wave Behavior in a Micropolar Medium with
Dual-Phase-Lag, Nonlocality, and Pre-Stress under Gravitational Influence

Sonia Bajaj∗ and A. K. Shrivastav

abstract: This study investigates the transient wave propagation in a micropolar thermoelastic half-space
under the influence of gravity, initial stress, and nonlocal effects, within the framework of two-temperature
generalized thermoelasticity incorporating the dual-phase lag (DPL) model. The governing equations are for-
mulated considering a quiescent medium subjected to an inclined mechanical load and a gravitational field.
An analytical solution is derived using normal-mode analysis to obtain exact expressions for the thermome-
chanical field variables. Numerical simulations are performed for a magnesium crystal-like material to evaluate
the distributions of displacement, stress, and temperature. The results are presented graphically to illustrate
the influences of initial stress, non-locality, the two-temperature parameter, and the angle of loading inclina-
tion. Comparative analyses are also conducted to highlight the role of these factors on wave behavior, with
particular cases discussed as subsets of the generalized model.

Key Words:Nonlocal, micropolar, initial stress, gravity, two-temperature theory, normal mode
analysis technique, dual-phase lag.
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1. Introduction

The classical thermoelasticity theory predicts infinite speed for thermal signal propagation, which is
physically unrealistic. To address this, Lord and Shulman (1967) introduced a generalized theory with
a single thermal relaxation time (LS theory) [1]. Subsequently, Green and Lindsay (1972) proposed
a model with two relaxation times (GL theory) [2], both allowing finite thermal wave speeds. Later,
Green and Naghdi (1991–1993) developed an alternative framework, the GN theory, divided into three
types: GN-I aligns with Fourier’s law (no thermal relaxation), GN-II assumes zero entropy produc-
tion (no dissipation), and GN-III accommodates both types with general dissipation [3]. The classical
Fourier law of heat conduction q(r, t) = −k∇T (r, t) predicts an unphysical infinite speed of thermal
signal propagation. To address this, Tzou [4] introduced the DPL model, modifying Fourier’s law to
q(P, t + τq) = −k∇T (P, t + τT ), where τT and τq represent the phase lags of temperature gradient and
heat flux, respectively. If both lags vanish, the classical Fourier law is recovered. Recent peer-reviewed
studies [5,6,7,8,9,10] have demonstrated the efficacy of the DPL model in validating thermoelastic pre-
dictions.
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Chen and Gurtin [11,12] introduced a heat conduction model for deformable bodies incorporating two
distinct temperatures: the conductive temperature ϕ and the thermodynamic temperature Θ. While ϕ is
attributed to heat conduction, Θ is linked to mechanical deformation. Under specific equilibrium condi-
tions, these temperatures may coincide [13], but they generally differ in dynamic situations. A defining
feature of this theory is the temperature discrepancy parameter a; when a = 0, ϕ = Θ, reducing the model
to classical thermoelasticity. Youssef [14] formulated the generalized two-temperature thermoelasticity
theory, establishing uniqueness results, while Youssef and Al-Lehaibi [15] applied the state-space method
to a one-dimensional problem. Further developments include the work of Ezzat and Awad [16] on a
two-temperature model along with micropolar thermoelasticity and El-Karamany and Ezzat [17], who
presented variational principles and reciprocal theorems for anisotropic Green–Naghdi models. Youssef
[18] extended the theory using fractional calculus and moving heat sources. A three-dimensional model
with Laplace–Fourier methods was proposed by Ezzat and Youssef [19]. For further refinement, Zhang
et al. [20] and Liu et al. [21] introduced advanced modeling approaches in generalized thermoelasticity,
incorporating multi-temperature and nonlocal effects.
In classical elasticity theory, gravitational effects are often disregarded due to their relatively small in-
fluence in many applications. However, Bromwich [22] was the first to examine the role of gravity in
wave propagation within elastic solids, notably in the context of an elastic sphere. Love [23] later demon-
strated that the presence of gravity significantly increases Rayleigh wave velocity, particularly at long
wavelengths. Biot [24] further analyzed gravitational influences on Rayleigh waves in an incompressible
isotropic elastic medium. Recent studies have incorporated these effects into thermoelastic frameworks.
For instance, Ailawalia et al. [25] explored the deformation of a rotating two-temperature generalized
thermoelastic medium under gravity and different source configurations. Othman and Hilal [26] analyzed
the behavior of a rotating thermoelastic material with voids under gravitational forces, while their subse-
quent work [27] considered the combined impact of gravity and magnetic fields on plane wave propagation
in a thermoelastic medium heated by a laser pulse. More recently, Liu et al. [28] and Zhang and Wang
[29] extended the analysis to nonlocal and fractional-order thermoelastic models, capturing the complex
interplay of gravity, heat, and wave motion in advanced materials.
Micropolar elastic solids are conceptualized as materials composed of particles resembling dumbbell-
shaped molecules capable of both translational and rotational motion. Unlike classical elasticity, where
deformation is described solely by displacement fields, the micropolar theory incorporates microrota-
tions, leading to the presence of couple stresses in addition to conventional force stresses. As a result,
the mechanical response is governed by six degrees of freedom: three for linear displacements and three
for microrotations. A comprehensive development of the micropolar elasticity framework, including its
kinematic assumptions and constitutive equations, can be found in the monograph by Eringen [30]. The
micropolar theory of elasticity has been significantly extended to incorporate thermal effects. Early
advancements were made by Nowacki [31,32,33] and later by Eringen [34], who introduced thermome-
chanical coupling into the micropolar framework. Tauchert et al. [35] derived the fundamental equations
for linear micropolar thermoelasticity. Further developments include Aouadi’s [36] formulation of a gen-
eralized linear micropolar thermoelastic model with dual relaxation times and temperature-dependent
material properties. El-Karamany and Ezzat [37] introduced constitutive relations for three-phase-lag
micropolar thermoelasticity, proving uniqueness, reciprocity, and variational principles for anisotropic
inhomogeneous solids. Othman et al. [38] investigated the role of rotation within CD, LS, and GL-based
micropolar thermoelastic models. More recently, Singh and Lianngenga [39] examined the influence of
microinertia on wave motion in micropolar thermoelastic materials containing voids.
The present study analyzes the transient behavior of displacement, force stress, couple stress, and temper-
ature fields in a two-temperature micropolar thermoelastic medium incorporating gravitational, nonlocal,
and DPL effects under an inclined mechanical load. The governing equations account for initial stress
and are formulated within the framework of generalized thermoelasticity. By employing normal mode
analysis, exact analytical solutions for the field variables are derived. The combined influence of gravity,
microstructural interactions (through nonlocality and micropolarity), two-temperature effects, and phase
lags in heat conduction is examined—filling a gap in existing literature where these couplings have not
been simultaneously considered.
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2. Mathematical Framework

This section outlines the fundamental equations governing wave propagation in a two-temperature
micropolar generalized thermoelastic medium incorporating DPL heat conduction, gravitational field,
nonlocal elasticity, and initial stress effects. The model captures microstructural behavior through mi-
cropolar and nonlocal terms, while initial stress accounts for pre-existing mechanical loading in the
medium. The coupled system of equations includes balance laws of linear and angular momentum,
energy equation with DPL modification, constitutive relations with two-temperature dependence, and
nonlocal stress-strain formulations. [40,41]

σij = (1− e2∇2)σL
ij = (λur,r − β1ϑ− p)δij + µ(uj,i + ui,j)− pwij −K(∈ijr ∅r − uj,i), (2.1)

mij = (1− e2∇2)mL
ij = α∅r,r δij + β∅i,j + γ∅j,i , (2.2)

ρ0(1− e2∇2)
∂2u

∂t2
=(µ− p/2 +K)∇2−→u + (λ+ p/2 + µ)∇(∇.−→u )

+K(∇×∅) + (1− e2∇2)
−→
F − β1∇ϑ,

(2.3)

ρj(1− e2∇2)
∂2

−→∅
∂t2

= (α+ γ+β)∇(∇.−→∅)− γ∇× (∇×−→∅)

− 2K
−→∅ +K(∇×−→u ),

(2.4)

(1 + τq
∂

∂t
+
τ2q
2

∂2

∂t2
)(ρC∗ϑ̇+ β1T0ė) = K∗(1 + τT

∂

∂t
)∇2φ, (2.5)

φ− ϑ = a∇2φ. (2.6)

σL
ij , σij Local and nonlocal force components of stress tensor.

mL
ij ,mij Components of local and nonlocal couple stress tensor.

∅⃗ Microrotation vector.

a Two-temperature parameter.

T, T0 Medium and reference temperatures.

K∗ Thermal conductivity.

CE Specific heat at constant strain.

ϑ, φ Thermodynamic and conductive temperatures.

τT , τq Phase lags for temperature gradient and heat flux.

λ, µ Lamé constants.

α,K, γ, β Micropolar material constants.

j Microinertia term.

ρ Density of the medium.

ui Components of displacement vector.

e Cubical dilation.

t Time variable.

δij Kronecker delta.
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3. Problem Description

A two-dimensional model is considered for a homogeneous, isotropic, micropolar generalized ther-
moelastic half-space subjected to gravitational effects, initial stress, and nonlocal interactions within the
framework of two-temperature theory and the DPL model. The medium occupies the region z ≥ 0, with
the Cartesian coordinate system (x, z), where the surface z = 0 represents the boundary, and the z-axis
is directed vertically downward. For this two-dimensional configuration, the displacement vector u⃗ and
microrotation vector ∅⃗ are assumed as:

u⃗ = (u(x, z, t), 0, w(x, z, t)) , ∅⃗ = (0,∅(x, z, t), 0) . (3.1)

The following equations are obtained by combining equations (2.3), (2.4), and (3.1).

ρ0(1− e2∇2)
∂2u

∂t2
=(λ+ µ+

p

2
)
∂

∂x
(
∂u

∂x
+
∂w

∂z
) + (µ+K − p

2
)(
∂2

∂x2
+

∂2

∂z2
)u

−K
∂∅2

∂z
− β1

∂ϑ

∂x
+ (1− e2∇2)ρg

∂w

∂x
,

(3.2)

ρ0(1− e2∇2)
∂2w

∂t2
=(λ+ µ+

p

2
)
∂

∂z
(
∂u

∂x
+
∂w

∂z
) + (µ+K − p

2
)(
∂2

∂x2
+

∂2

∂z2
)w

+K
∂∅2

∂x
− β1

∂ϑ

∂z
− (1− e2∇2)ρg

∂u

∂x
,

(3.3)

ρj(1− e2∇2)
∂2∅2

∂t2
= γ∇2∅2 +K(

∂u

∂z
− ∂w

∂x
)− 2K∅2. (3.4)

Displacement components can be expressed by using Helmholtz decomposition

u =
∂ψ

∂z
+
∂q

∂x
, w = −∂ψ

∂x
+
∂q

∂z
, (3.5)

where q, ψ are scalar potential functions. By applying the expression given in Equation (3.5) to the
dimensionless forms of Equations (2.5), (2.6), (3.2), and (3.4), as presented in [41], the following set of
equations is derived.

[∇2 − (1− e2∇2)
∂2

∂t2
]q − ϑ− (1− e2∇2)g

∂ψ

∂x
= 0, (3.6)

[∇2 − t1(1− e2∇2)
∂2

∂t2
]ψ − t2∅2 + (1− e2∇2)gt1

∂q

∂x
= 0, (3.7)

[∇2 − 2s1 − s2(1− e2∇2)
∂2

∂t2
]∅2 + s1∇2ψ = 0, (3.8)

(1 + τq
∂

∂t
+
τ2q
2

∂2

∂t2
)
∂

∂t
(ϑ+ δ0∇2q) = (1 + τT

∂

∂t
)∇2φ, (3.9)

φ− ϑ = n1∇2φ. (3.10)

By substituting the expression for ϑ from Equation (3.10) into Equations (3.6) and (3.9), the following
modified forms of the equations are obtained.

[∇2 − (1− e2∇2)
∂2

∂t2
]q − (1− e2∇2)g

∂ψ

∂x
+ [n1∇2 − 1]φ = 0, (3.11)

(1 + τq
∂

∂t
+
τ2q
2

∂2

∂t2
)
∂

∂t
[(1− n1∇2)φ+ δ0∇2q] = (1 + τT

∂

∂t
)∇2φ. (3.12)
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4. Normal Mode Decomposition

To obtain analytical solutions, the physical field variables are expanded using normal mode analy-
sis. Each variable is expressed as a product of a depth-dependent amplitude function and a harmonic
exponential term representing wave propagation in the x-direction. The general form of the solution is:

[u(x, z, t), w(x, z, t), ϑ(x, z, t), φ(x, z, t), ∅2(x, z, t),

mij(x, z, t), σij(x, z, t)] =

[ũ(z), w̃(z), ϑ̃(z), φ̃(z), ∅̃2(z), m̃ij(z), σ̃ij(z), ] · eωt+ivx

(4.1)

where ũ(z), w̃(z), θ̃(z), . . . denote the amplitude functions varying with depth z, ω is the angular
frequency, i =

√
−1 is the imaginary unit, and v is the wave number in the x-direction.

Substituting the solutions given in Equation (4.1) into Equations (3.7), (3.8), (3.11), and (3.12), we
obtain the following four equations.

[O1(D
2 − v2)− γ1]φ̃−O2[D

2 − v2]q̃ = 0, (4.2)

[F1D
2 −O3]q̃ − [1− n1(D

2 − v2)]φ̃−O4ψ̃ = 0, (4.3)

[F2D
2 −O5]ψ̃ − t2∅̃2 +O6q̃ = 0, (4.4)

[F3D
2 −O7]∅̃2 + [s1(D

2 − v2)]ψ̃ = 0. (4.5)

Solving Equations (4.2)–(4.5) simultaneously yields an eighth-order differential equation.

(D8 + L1D
6 + L2D

4 + L3D
2 + L4)(ψ̃, ∅̃2, q̃, φ̃) = 0 (4.6)

This equation is then solved to obtain the eigenvalues k2i (i = 1, 2, 3, 4) for characteristic equation (k8 +
L1k

6 + L2k
4 + L3k

2 + L4) = 0. The solutions of Equation (4.6) that remain bounded as z → ∞, in
accordance with the radiation condition, are given by:

(ψ̃(r=0), ∅̃2(r=1), q̃(r=2), φ̃(r=3))(z) =

4∑
n=1

ErnMn(v, w)e
−knz. (4.7)

Stresses and microrotational factor can be represented using (2.1), (2.2), and (3.1) as

σzz = (1− e2∇2)σL
zz =

∂2q

∂z2
+ P1

∂2ψ

∂z∂x
+ P2

∂2q

∂x2
− (1− n1∇2)φ− P0, (4.8)

σzx = (1− e2∇2)σL
zx = P3

∂2q

∂z∂x
− P4

∂2ψ

∂x2
+ P5

∂2ψ

∂z2
− P6∅2, (4.9)

mzy = (1− e2∇2)mL
zy = δ1

∂∅2

∂z
. (4.10)

By utilizing the non-dimensional variables along with the expressions from Equation (3.5), and substi-
tuting them into Equations (4.8)–(4.10), the stress components are derived in the following form:

σ̃zz = (D2 − v2P2)q̃ + ιvP1Dψ̃ + (n1(D
2 − v2)− 1)φ̃− P0, (4.11)

˜σzx = ιvP3Dq̃ + (P4v
2 + P5D

2)ψ̃ − P6∅̃2, (4.12)

m̃zy = δ1D∅̃2, w̃ = Dq̃ − ιvψ̃, ũ = ιvq̃ +Dψ̃. (4.13)

By substituting the solution from Equation (4.7) into Equations (4.11)–(4.13) and (3.10), these equations
can be reformulated as follows:

(σ̃zz(r=6), σ̃zx(r=5), m̃zy(r=4), ũ(r=7), w̃(r=8), ϑ̃(r=9))

=

4∑
n=1

ErnMn(v, w)e
−knz − srP0.

(4.14)
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5. Application of Inclined Load

A homogeneous, isotropic, micropolar generalized thermoelastic medium with nonlocal elasticity, ini-
tial stress, gravity, and two-temperature effects occupying the region z ≥ 0 is considered. The boundary
z = 0 is subjected to an inclined line load F0 at angle θ to the z-axis:

F1 = F0 sin θ, F2 = F0 cos θ,

where F1 and F2 represent tangential and normal components. The surface also sustains an initial
compressive stress P0.
The boundary conditions (on surface) z = 0 are:

σzz + P0 = −F2δ(x)H(t), (5.1)

σzx = −F1δ(x)H(t), (5.2)

φ = 0, (5.3)

mzy = 0, (5.4)

where δ(x) is the Dirac delta function and H(t) is the Heaviside unit step function.
Using normal mode analysis, the frequency domain boundary conditions become

σ̄zz =
−F0 cos θ

ω
− P0, (5.5)

σ̄zx =
−F0 sin θ

ω
, (5.6)

φ̄ = 0, (5.7)

m̄zy = 0. (5.8)

Equations (4.14) for r = 4, 5, 6, and Equation (4.7) for r=3 are transformed into a non-homogeneous

Figure 1: Schematic of inclined line load F0 on the surface of a nonlocal micropolar ther-
moelastic medium.

system of equations through the application of the boundary conditions described above.
E61 E62 E63 E64

E51 E52 E53 E54

E41 E42 E43 E44

E31 E32 E33 E34



M1

M2

M3

M4

 =


R1

R2

0
0

 (5.9)



Numerical Analysis of Thermoelastic Wave 7

where

R1 =
−F0 cos θ

w
− P0, R2 =

−F0 sin θ
w

.

The coefficients Mn, n = 1, 2, 3, 4. can be determined from Equation (5.9) using Cramer’s rule. Substi-
tuting these values into Equations (4.7) and (4.14) yields the following results:

(ψ̃(r=0), ∅̃2(r=1), q̃(r=2), φ̃(r=3), m̃zy(r=4),

σ̃zx(r=5), σ̃zz(r=6), ũ(r=7), w̃(r=8), ϑ̃(r=9))(z) =
1

∆

4∑
n=1

∆nErne
−knz. (5.10)

6. Numerical Illustration

To investigate the effects of nonlocality, two-temperature parameters, initial stress, and inclination
angle on field variables in the medium, a numerical analysis is performed. The material properties used
for the computations correspond to a magnesium crystal-like solid and are listed in Table 1, (see [7]).
The field equations are solved numerically for various values of the inclination angle θ, two-temperature

Table 1: Material constants for a magnesium crystal-like medium
Parameter Value
Mass density, ρ 1.74× 103 kg m−3

Lame’s constant, λ 9.4× 1010 kg m−1s−2

Shear modulus, µ 4.0× 1010 kg m−1s−2

Thermal conductivity, k 1.0× 1010 kg m−1s−2

Thermal modulus, γ 0.779× 10−9 kg m s−2

Microinertia, j 0.2× 10−19 m2

Thermal conductivity*, k∗ 2.510 W m−1K−1

Nonlocal parameter, a 0.074× 10−15 m2

Specific heat, CE 9.623× 102 J kg−1 K−1

Thermal expansion, αt 2.36× 10−5 K−1

Initial temperature, T0 293 K
Phase lag (heat flux), τq 0.2 s
Phase lag (temperature gradient), τT 0.15 s

parameter a, and nonlocality along with the effect of the gravitational feild to investigate their combined
effects on the displacement, stress, temperature, and microrotation profiles within the medium.
The analytical solution expressed in Equation (4.1) contains e(ωt+ιvx) (exponential term), where the
angular frequency ω is generally complex (ω = ω0 + ιω1) . Hence, the time-dependent part becomes:

eωt = [cos(ω1t) + ι sin(ω1t)] e
ω0t.

For small time intervals, the imaginary part ω1 has a negligible effect; thus, ω may be assumed real
(ω = ω0) for simplification in numerical computations.
In the current analysis, the values of frequency and wave number are chosen as ω = 1.0 and v = 1.2,
respectively. Using the material parameters listed previously, the field variables have been computed and
plotted as functions of depth (z) at a fixed instant t = 0.01 and lateral position x = 1.0.

7. Graphical Interpretation of Results

For interpretative clarity and application relevance, the graphical results are categorized into two
main sets:
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Set I: Effect of Pre-stress and Two Temperature

Figures 2 - 11 illustrate the behavior of the field variables under the combined influence of prestress
and the two-temperature parameter. The two curves (solid blue and magenta with markers) represent a
comparison of different initial stress values, p = 5 and p = 9, under two-temperature theory, demonstrating
how increased initial stress affects field behavior in the presence of thermal coupling. The two curves
(magenta with markers and black dashed) correspond to a fixed initial stress value (p=9), allowing a
direct comparison between the two-temperature model (a=0.074) and the classical single-temperature
theory (a=0). This highlights the influence of thermal modeling on the response of the field variable.
This setup enables a comparative understanding of how field variables respond to both the variation in
initial stress and the transition between single- and two-temperature theories.

Figure 2: Variation of horizontal displacement U for initial stress and two temperature
parameter
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Figure 3: Variation of vertical displacement W for initial stress and two temperature
parameter
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Figure 4: Variation of thermodynamic temperature ϑ for initial stress and two temperature
parameter
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Figure 5: Variation of conductive temperature φ for initial stress and two temperature
parameter
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Figure 6: Variation of tangential stress σzx for initial stresses and two temperature param-
eter

Figure 7: Variation of normal stress σzz for initial stresses and two temperature parameter
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Figure 8: Variation of couple stress mzy for initial stresses and two temperature parameter
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Figure 9: Variation of scalar potential q for initial stresses and two temperature parameter
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Figure 10: Variation of scalar potential ψ for initial stresses and two temperature parameter

Figure 11: Variation of microrotation ∅2 for initial stresses and two temperature parameter
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Set II: Effect of nonlocality and load inclination

The graphical results for the physical variables (Figures 12 - 21) illustrate the combined influence of
the non-local parameter e and the angle of inclination θ of the applied mechanical load on the dynamic
response of the material. Each plot comprises four representative curves that enable a comparative in-
terpretation of these effects. In particular, the solid blue and solid black curves highlight the influence
of varying the nonlocal parameter e, while maintaining a fixed inclination angle (θ = 45). These curves
allow one to examine how nonlocality intensifies or modulates the field behavior. An increase in e is
observed to enhance the amplitude and spatial spread of responses across all physical fields, reflecting
the extended interaction range inherent to nonlocal elasticity.
In contrast, the solid black, dashed red, and dashed magenta lines correspond to a fixed non-local pa-
rameter (e = 0.9) but vary the angle of inclination of the applied mechanical load, with θ = 45, 90, 0,
respectively. These curves reveal the directional sensitivity of the physical fields. Notably,(θ = 90),
representing a normal load, leads to different magnitudes and gradients in the responses compared to
oblique or tangential loads (θ = 45, 0), indicating anisotropic mechanical behavior under varying load
orientations.
In summary, the figures collectively demonstrate that both the non-local parameter and the angle of ap-
plied load significantly influence the propagation and intensity of the field variables. While the non-local
parameter e governs the scale and dispersive nature of the response, the inclination angle θ modulates its
directionality and magnitude. Such interactions are critical for understanding the mechanical behavior
of micro- and nanoscale structures, where nonlocal effects and load orientation are nonnegligible and can
substantially alter system performance.

Figure 12: Variation of horizontal displacement U for nonlocality and inclined angle
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Figure 13: Variation ofvertical displacement W for nonlocality and inclined angle

Figure 14: Variation of thermodynamic temperature ϑ for nonlocality and inclined angle
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Figure 15: Variation ofconductive temperature φ for nonlocality and inclined angle

Figure 16: Variation of tangential stress σzx for nonlocality and inclined angle σzx
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Figure 17: Variation of normal stress σzz for nonlocality and inclined angle

Figure 18: Variation of scalar potential q for nonlocality and inclined angle
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Figure 19: Variation of couple stress mzy for nonlocality and inclined angle

Figure 20: Variation of scalar potential ∅ for nonlocality and inclined angle
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Figure 21: Variation of microrotation ψ for nonlocality and inclined angle

Special Cases

Case I: Neglecting the effect of nonlocal and initial stress (e = 0 and p = 0).
Assuming nonlocal factor e = 0 and initial stress p = 0, the outcomes of the present problem are the
same as obtained by Deswal [41]
Case II: Without Gravity (g = 0)
Furthermore, if the effect of gravity is neglected in the medium(g=0), the system reduces to the same as
the special Case I in the study given by Deswal [41]
Case III: Considering one temperature (ϑ = φ)
Considering thermodynamic temperature equal to conductive temperature for the discussed problem
along with the above two cases, the medium under study is reduced to one temperature problem, and
the output will become as of Othman and Singh [42] in his research implement alterations to loading
and boundary conditions while excluding rotational effects.

8. Conclusion

The analysis of the behavior of stress components, displacement, and temperature in an isotropic, ho-
mogeneous, non-local, micropolar thermoelastic medium with gravity, two temperature and initial stress
in the context of the DPL theory. Numerical and theoretical outcome reveal that parameter namely the
angle of inclination of load, gravity, two temperature, and initial stress,s have a significant effect on the
physical variables under study. The following are the concluding points:
(1) Variation of all the fields is in a limited region, which support the physical facts and notion of gener-
alised thermoelasticity theory.
(2) Nonlocal effects considerably influence all the field variables under investigation, while variations
in the angle of inclination of the applied load (θ) affect most of the field responses; the microrotation
and tangential couple stress components exhibit only minor variations in comparison to the other fields.
(Figure 2 - 11)
(3) A significant effect of initial stress on all physical quantities under the two-temperature theory, with
the exception of the conductive temperature, which remains relatively unaffected, is observed. Fur-
thermore, a comparative analysis between the two-temperature model and the classical one-temperature
theory (a=0) clearly highlights the influence of the two-temperature parameter on the overall behavior
of the system. (Figure 12 -21)
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(4) As intended, all physical quantities meet the boundary conditions.

The significance of this problem becomes apparent when considering the actual behavior of materials
and the suitable geometry of the model. Precious materials, fluid-like substances, such as Petroleum
products and oils exist in crude form within the Earth, while the rocks or materials surrounding them are
often granular. The crude fluids and granular rocks can be effectively modeled using the micropolar theory
of thermoelasticity. This field finds applications in seismic engineering, nanoscale materials, composite
materials, biological tissue, geomechanics, structural health monitoring, earthquake engineering, and
related areas.
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Appendix

D =
d

dz
,

O1 =1 + γ1n1, O2 = γ1δ0, O4 = ιgv,

O3 =v2 + w2 + e2w2, O6 = ι(gvt1),

O5 =v2 + t1w
2 + t1w

2e2v2,

O7 =v2 + 2s1 + s2w
2 + s2e

2v2w2,

F1 =1 + e2w2, F2 = 1 + t1e
2w2, F3 = 1 + s2e

2w2,

t1 =
ρc21

(µ+K − p
2 )
, t2 =

K

(µ+K − p
2 )
,

s1 =
Kc21
γw∗2 , s2 =

ρjc
2
1

γ
, n1 =

aw∗2

c21
, δ0 =

β2
1T0

ρw∗K∗ ,

γ1 =
(1 + τqw +

τ2
q

2 w
2)w

1 + τTw
,

S11 =F2F3, S22 = −O7F2 −O5F3 + s1t2,

S3 =O5O7 −M2s1t2, T1 = −n1S11 ,

T2 =(1− v2)S11 − n1S22 , T3 = (1− v2)S22 − n1S3,

T4 =(1− v2)S3, S4 = S11F1, S5 = −O3S11 + F1S22 ,

S6 =−O3S22 + F1S3 −O6O4F3, S7 = −O3S3 +O7O4O6,

S8 =− (v2O1 + γ1),

V1 =O1S4 −O2T1, V5 = O2v
2T4 + S7S8,

V2 =O2v
2T1 −O2T2 + S8S4 +O1O5,

V4 =O2v
2T3 −O2T4 +O1S7 + S8S6,

V3 =v2O2T2 −O2T3 + S5S8 +O1S6,

L1 =
V2
V1
, L4 =

V5
V1
, L3 =

V4
V1
, L2 =

V3
V1
,

E1n =
−s1(k2n − v2)

F3k2n −O7
,
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E2n =
t2E1n − (F2k

2
n −O5)

O6
,

E0n =1, E3n =
O2(k

2
n − v2)E2n

O1(k2n − v2)− γ1
,

P0 =
p

β1T0
, P1 =

−(2µ+K)

λ+K + 2µ
, P2 =

λ

λ+K + 2µ
,

P3 =
(2µ+K)

ρc21
, P4 =

µ− p
2

ρc21
, P5 =

µ+K + p
2

ρc21
,

P6 =
K

ρc21
, δ1 =

γC∗w
∗

K∗c21
,

sr =

{
1, for r = 6,

0, otherwise,

E4n =− knδ1E1n,

E5n =− ivP3knE2n + P4v
2 + k2nP5 − P6E1n,

E6n =k2nE2n − knivP1 − v2P2E2n − E3n + n1E3n(k
2
n − v2),

E7n =ivE2n − kn, E8n = −knE2n − iv, E9n = E3n − n1E3n(k
2
n − v2).
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