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Total Secure Domination in Graphs

Divya Rashmi S. V.∗, Shwetha H. T. and Shilpakala K.

abstract: In this paper, we introduce and study the concept of total secure domination in graphs. A set
D ⊆ V (G) is called a total secure dominating set of a graph G if it is a total dominating set (i.e., every vertex
of G is adjacent to some vertex in D) and for every vertex u /∈ D, there exists a vertex v ∈ D adjacent to u
such that the set (D \ {v})∪{u} remains a dominating set in G (it need not be total dominating). We denote
the minimum size of such a set by γts(G), the total secure domination number. We establish fundamental
properties, derive bounds, and characterize γts(G) for standard graph classes. We also propose a greedy
algorithm for trees. Finally, we discuss applications and directions for future research.
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1. Introduction

By a graph G = (V,E) we mean a finite, undirected graph with neither loops nor multiple edges. The
order |V | and the size |E| are denoted by n and m respectively. For graph theoretic terminology we refer
to Chartrand and Lesniak [9].

Domination parameters have been central to graph theory with widespread applications in network
design, security, and optimization. A dominating set of a graph G = (V,E) is a subset D ⊆ V such that
every vertex in V \ D has at least one neighbor in D. Total domination requires every vertex in G to
be adjacent to at least one vertex in D [5], [20]. Secure domination extends these concepts by imposing
an additional robustness condition: if a vertex outside D were to replace a vertex in D, the resulting set
should still dominate G.

For an excellent treatment of the fundamentals of domination we refer to Haynes et al. [2], [6]. A
survey of several advanced topics in domination is given in Haynes et al. [12].

Strategies for protection of a graph G = (V,E) by placing one or more guards at every vertex of
a subset S of V, where a guard at a vertex can protect all vertices in its closed neighborhood have
resulted in the study of several concepts such as Roman domination, weak Roman domination and secure
domination. The concept of secure domination is motivated by the following situation and was introduced
by Cockayne et al. [11], studied by several authors [3], [8], [10], [13], [17]. Given a graph G = (V,E), we
wish to place one guard at each vertex of a subset S of V in such a way that S is a dominating set of G
and if a guard at v moves along an edge to protect an unguarded vertex u, then the resulting configuration
of guards also forms a dominating set. This leads to the concept of secure domination.
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In this work, we introduce the concept of total secure domination by combining the concepts of
total domination and secure domination which arises naturally and present several results. Total secure
domination is different from secure total domination which is introduced by William F. Klostermeyer and
Christina M. Mynhardt [4] and studied by several authors [7], [14], [15], [16], [18], [19]. Specifically, a
set D is a total secure dominating set(TSDS) of G if:

1. D is a total dominating set, and

2. For every vertex u /∈ D, there exists a vertex v ∈ D adjacent to u such that replacing v with u, i.e.,
forming (D \ {v}) ∪ {u}, yields a dominating set of G (note: the replacement set is required only
to be dominating, not necessarily total dominating).

We denote the minimum size of such a set by γts(G).
This new parameter has important applications in areas where both connectivity and resilience against

node failures are crucial. In what follows, we establish several theorems concerning γts(G), discuss
algorithmic aspects, and explore potential applications and open research directions.

2. Preliminaries and Definitions

Let G = (V,E) be a simple, undirected graph.

Definition 2.1 A set D ⊆ V is a dominating set of G, if every vertex in V \D is adjacent to at least
one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set.

Definition 2.2 [1] A set D ⊆ V is a total dominating set (TDS) of G, if every vertex in V is adjacent
to at least one vertex in D. The total domination number γt(G) is the minimum cardinality of a
TDS.

Definition 2.3 [11] Let G = (V,E) be a graph. A set D ⊆ V is called a secure dominating set if:

1. D is a dominating set of G.

2. For every vertex u ∈ V \ D, there exists a vertex v ∈ D (with uv ∈ E) such that the set
(D \ {v}) ∪ {u} is also a dominating set of G.

Definition 2.4 The corona of two graphs G1 and G2, denoted by G1 ◦G2, is the graph obtained by
taking |V (G1)| copies of G2 and joining the ith vertex of G1 to every vertex in the ith copy of G2.

3. Results

Since a total dominating set is defined only for graphs without isolated vertices, we consider only
graphs with no isolated vertices in this study.

Definition 3.1 A set D ⊆ V is a total secure dominating set (TSDS) of G if:

1. D is a total dominating set, and

2. For every vertex u /∈ D, there exists a vertex v ∈ D adjacent to u such that the set (D \ {v}) ∪ {u}
is a dominating set of G.

The total secure domination number γts(G) is the minimum size of a TSDS in G.

Theorem 3.1 For any graph G,
γts(G) ≥ γ(G).

Proof: Since any total secure dominating set D after replacement yields a dominating set, it follows
that D is, in particular, a dominating set. Therefore, its size cannot be smaller than the minimum size
required to dominate G, i.e., γ(G). 2
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Theorem 3.2 Let G = (V,E) be a graph of order n with minimum degree δ ≥ 1. Then

γts(G) ≤ n− δ.

Proof: We proceed by constructing a total secure dominating set of size n − δ. Since every vertex in
G has degree at least δ, we can choose a subset of V (G) with at most n − δ vertices for a total secure
dominating set. Let X ⊆ V (G) be an independent set of δ vertices and each vertex in X has distinct
neighborhoods in V (G)\X. This is possible due to the minimum degree assumption . Let D = V (G)\X.
Then |D| = n − δ. We claim that D is a total secure dominating set: Since each vertex v ∈ X has at
least δ neighbors in V (G) \X = D, it is dominated by some vertex in D. For any vertex u ∈ D, since u
is not in X, it must be adjacent to some other vertex in D (as δ ≥ 1, and X is an independent set, so
u’s neighbors are not limited only to X). Thus, every vertex in V (G) has a neighbor in D, and hence D
is a total dominating set. For each vertex x ∈ X = V (G) \D, there exists a neighbor v ∈ D such that
replacing v by x results in a new set D′ = (D \ {v}) ∪ {x} that is still a dominating set. Since x ∈ X
has δ neighbors in D, and because δ ≥ 1, we can choose such a neighbor v ∈ D. Now since x continues
to dominate all its neighbors (in D) and neighbors of v are still dominated because they are adjacent to
other vertices in D\{v} or to x (if x was adjacent to them), we have D′ = (D\{v})∪{x} is a dominating
set of G. Therefore, γts(G) ≤ |D| = n− δ. 2

Theorem 3.3 For any complete graph Kn with n ≥ 2,

γts(Kn) = 2.

Proof: Consider any two distinct vertices v1, v2 ∈ V (Kn) and let D = {v1, v2}. Since Kn is complete,
every vertex is adjacent to every other vertex. In particular, every vertex u ∈ V (Kn) is adjacent to a
vertex in D. Hence, D is a total dominating set. Now, let u be any vertex in V (Kn) \ D. Since Kn

is complete, u is adjacent to both v1 and v2. Consider the replacement of one vertex from D with u.
Without loss of generality, suppose we replace v1 with u then the set D′ = {u, v2} is a dominating set
of Kn. Hence γts(Kn) ≤ 2. Now to prove , γts(Kn) ≥ 2. Suppose, that there exists a total secure
dominating set D with |D| = 1, say D = {v}. Then the vertex v does not have any neighbor in D
violating the definition of total domination. Hence γts(Kn) ≥ 2. Therefore, γts(Kn) = 2. 2

Theorem 3.4 Let Sn be a star graph of order n . Then

γts(Sn) = n− 1.

Proof: Let Sn have vertex set V = {c, ℓ1, ℓ2, . . . , ℓn−1}, where c is the central vertex and ℓ1, . . . , ℓn−1

are the leaves. Consider the subset D = { c, ℓ2, ℓ3, . . . , ℓn−1}, of V (Sn) omitting exactly the single leaf
ℓ1. Clearly D is a TSDS of Sn with |D| = n − 1. Hence γts(Sn) ≤ n − 1. Now consider any TSDS D
of Sn. Since D is total-dominating, every vertex of Sn, including those in D, has a neighbor in D. The
leaves each have degree one, so each leaf’s only neighbor is c. Thus c must belong to D. If two or more
leaves are not in D, say ℓi, ℓj /∈ D, then in the required swap for ℓi we must remove its only neighbor
c ∈ D, leaving c out and replacing it by ℓi. But then ℓj would have no neighbor in the new set, violating
domination. Hence at most one leaf can lie outside D. Therefore D contains c and at least n− 2 of the
n− 1 leaves, giving |D| ≥ 1 + (n− 2) = n− 1. Thus we have γts(Sn) = n− 1. 2

Theorem 3.5 Let Cn be a cycle graph on n ≥ 3 vertices. Then

γts(Cn) =


n
2 , if n ≡ 0 (mod 4),

n
2 + 1, if n ≡ 2 (mod 4),

⌈n2 ⌉, if n is odd.
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Proof: Label the vertices of the cycle Cn in order as v1, v2, . . . , vn, with vn+1 = v1 . Then we have the
following three cases.

Case (i): n ≡ 0 (mod 4). Let n = 4k. Consider the set D = {v2, v3, v6, v7, . . . , v4k−2, v4k−1}. Clearly D
is a TSDS of Cn. We have |D| = 2k = n

2 and hence γts(C4k) ≤ 2k. Now suppose D is any TSDS with
|D| < 2k. Then |V \ D| > 2k. But each swap can introduce at most one new vertex outside D, so all
n vertices cannot be covered under the security condition, which means at least 2k vertices are needed.
Hence γts(C4k) ≥ 2k.

Case (ii): n ≡ 2 (mod 4). Let n = 4k + 2. Choose D = { v2, v3, v6, v7, . . . , v4k−2, v4k−1, v4k+2}, so
|D| = 2k+1 = (n/2)+1 and it can be easily verified that D is a TSDS of Cn. Hence γts(C4k+2) ≤ 2k+1.
Also any TSDS must include two consecutive vertices in each block of four to avoid isolating a chosen
vertex; with 4k + 2 vertices, that forces at least 2k + 1. Thus γts(C4k+2) ≥ 2k + 1.

Case (iii): n is odd. Let n = 2k + 1. Take D = { v2, v3, v6, v7, . . . } ∪ {v2k}, choosing k + 1 = ⌈n/2⌉
vertices. Clearly D is a TSDS of Cn which gives γts(Cn) ≤ (k + 1). At the same time, any TSDS must
cover all vertices and cannot leave more than one out of every two consecutive vertices without isolating
a vertex. Hence |D| ≥ k + 1.

This completes the proof. 2

Theorem 3.6 Let Pn be the path on n ≥ 3 vertices. Then

γts(Pn) =


n
2 , n ≡ 0 (mod 4),

n
2 + 1, n ≡ 2 (mod 4),

⌈n2 ⌉, n odd.

Proof: Label vertices v1, v2, . . . , vn in order. Then we have the following three cases.

Case (i): n = 4k. Choose D = {v2, v3, v6, v7, . . . , v4k−2, v4k−1}, so |D| = 2k = n/2. Clearly D is a
TSDS of Pn. Now suppose D is any TSDS with |D| < 2k. Then at least 2k + 1 vertices lie outside D.
But each swap can introduce only one new outside vertex into domination, and the endpoints require
adjacency within D. It shows |D| ≥ 2k. Thus γts(P4k) = 2k.

Case (ii): n = 4k + 2. Take D = {v2, v3, v6, v7, . . . , v4k−2, v4k−1} ∪ {v4k+1,4k+2}, so |D| = 2k + 1 =
(n/2)+ 1. Clearly D is a TSDS of Pn. Any TSDS must cover each block of four with two chosen vertices
to avoid isolating a member, and the extra two vertices force at least 2k+1. Hence γts(P4k+2) = 2k+1.

Case (iii): n = 2k+1. The set D = { v2, v3, v6, v7, . . . }∪{v2k}, is a TSDS of Pn with |D| = k+1. Hence
γts(P2k+1) ≤ k + 1. If |D| < k + 1, then two consecutive non-chosen vertices would isolate a member of
D or fail the security condition. Thus γts(P2k+1) ≥ k + 1. Therefore γts(P2k+1) = k + 1.

This completes the proof. 2

Theorem 3.7 Let Km,n be a complete bipartite graph with partite sets U and V , where |U | = m, |V | = n
and 2 ≤ m ≤ n. Then the total secure domination number γts(Km,n) is given by

γts(Km,n) =


2, if m = n = 2,

3, if m = 2 and n > 2,

4, if m,n ≥ 3.

Proof: Let U = {u1, u2, ..., um} and V = {v1, v2, ..., vn}. Clearly if S is any minimum total dominating
set of Km,n, then {S ∩ U} ̸= ϕ and {S ∩ V } ̸= ϕ. We consider the following three cases .

Case (i): m = n = 2 Clearly D = {u1, v1} is a TSDS of K2,2. Also γts(K2,2) ≥ 2. Hence γts(K2,2) = 2.
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Case (ii): m = 2 and n > 2. The set D = U ∪ {v1} is a TSDS of K2,n implying γts(K2,n) ≤ 3. It can
be easily verified that D = {x, y/x ∈ U, y ∈ V and x ̸= y} is not a TSDS of K2,n so that γts(K2,n) ≥ 3.
Hence, γts(Km,n) = 3.

Case (iii): m,n ≥ 3. Clearly D = {u1, u2, v1, v2} is a TSDS of Km,n. It can be easily verified that
D = {x, y, z/x, y, z ∈ V (Km,n) and x ̸= y} is not a TSDS of Km,n so that γts(Km,n) ≥ 4. Thus,
γts(Km,n) = 4. 2

Theorem 3.8 Let G be a non-empty graph. Then,

γts(G+Kn) = 2.

Proof: Let H = G+Kn. Consider the set D = {x, y}, where x, y ∈ V (Kn). Every vertex in H is adjacent
to at least one vertex in D. For any vertex u /∈ D, the sets {x, u} and {y, u} are dominating sets of H. It
follows that D is a TSDS of H. By the definition of total dominating set, any TSDS set has cardinality
at least two, we have γts(H) = 2. 2

Theorem 3.9 Let G be a connected graph of order n and H be a graph with no isolated vertices. Then
the total secure domination number of the corona G ◦H is

γts(G ◦H) = n.

Proof: Consider any total secure dominating set D of G ◦H. For each vertex v ∈ V (G), note that in
G ◦H, the only vertices that can dominate v are either vertices in the copy Hv attached to v or vertices
in V (G) adjacent to v in the graph G. However, if we choose one vertex from each copy Hv, then the
vertices chosen from different copies are not adjacent to each other (since copies Hv and Hw have no
edges between them for v ̸= w). Thus, to obtain a total dominating set in G ◦ H we must include all
vertices of V (G) (or an equivalent set of size at least n) to ensure that every vertex in V (G) is dominated
by a vertex in the set. Hence, γts(G ◦H) ≥ n.

Conversely, in G ◦ H, every vertex v ∈ V (G) is adjacent to every vertex in the corresponding copy
Hv. If we take D = V (G), then for any vertex v ∈ V (G), since v is in D, we must have a neighbor
in D. If G itself has edges, then there exists at least one edge between vertices of V (G), and so every
vertex in V (G) has a neighbor in V (G) ensuring that V (G) is a total dominating set. Now consider any
vertex u /∈ V (G). Then u ∈ Hv for some v ∈ V (G). Since by the corona construction u is adjacent to v.
Consider the set D′ = (V (G) \ {v}) ∪ {u}. Because every vertex in V (G) \ {v} is adjacent to vertices in
the copies Hw (for w ̸= v) and u is adjacent to v, D′ dominates G ◦H.

Thus, the set D = V (G) is a total secure dominating set for G◦H . Hence, γts(G◦H) ≤ n. Combining,
we obtain: γts(G ◦H) = n. 2

4. Algorithmic Aspects for Trees

We present a greedy algorithm that uses a level-order traversal followed by a reverse level-order
processing to construct a total secure dominating set in trees.

Greedy Algorithm for Trees

Explanation

• Phase 1 (Total Domination): We perform a level-order traversal of the tree to organize the
vertices by their distance from the root. Processing the levels in reverse order (from leaves upward),
we check each vertex v to see if it is already dominated by the current set D. If not, we add its
parent p to D. This step ensures that every vertex becomes adjacent to at least one vertex in D and
that many vertices in D will have a neighbor from the same higher level (thus promoting internal
connectivity within D).
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Algorithm 1 Compute a Total Secure Dominating Set in a Rooted Tree

Require: A rooted tree T = (V,E) with root r
Ensure: A total secure dominating set D ⊆ V (T )
1: D ← ∅
2: Level-order traverse T to build levels L0, . . . , Lk with L0 = {r} ▷ Phase 1: ensure total domination
3: for i← k downto 1 do
4: for each vertex v ∈ Li do
5: if v is not dominated by D then
6: let p be the parent of v
7: D ← D ∪ {p}
8: end if
9: end for

10: end for ▷ Phase 2: enforce security
11: for each vertex u /∈ D do
12: if no neighbor v ∈ D satisfies that swapping keeps domination then
13: add an appropriate neighbor of u to D
14: end if
15: end for
16: return D

• Phase 2 (Security Check): After obtaining a candidate set D that is a total dominating set,
we then verify the security condition. For every vertex u /∈ D, we ensure that there exists a vertex
v ∈ D adjacent to u such that replacing v with u yields a dominating set. If a vertex u fails this
check, we adjust D (by adding an appropriate neighbor) to enforce the swap condition.

• Result: The final set D output by the algorithm is a total secure dominating set of the tree T .
The algorithm leverages the hierarchical structure of trees to make local decisions that guarantee
both total domination and the security condition.

This greedy algorithm provides a systematic way to construct a total secure dominating set in trees.
By first ensuring total domination via a reverse level-order traversal and then performing a security
adjustment, the algorithm produces a candidate set that meets both required conditions. Future work
may analyze the approximation quality and time complexity of this approach in more detail.

5. Applications of Total Secure Domination

Total Secure Dominating Sets (TSDS) have practical significance in several domains, including:

• Network Security and Resilience: TSDS can be used to design robust and secure communi-
cation networks. In such networks, each node is guaranteed to be monitored by a secure subset of
nodes, ensuring that even if a node is compromised, the overall network remains functional. TSDS
provide a model for redundancy and rapid reconfiguration in response to failures or attacks.

• Wireless Sensor Networks: In sensor networks, TSDS help in the optimal placement of sensors
to ensure full coverage and fault tolerance.

• Social Networks and Influence Spreading: TSDS can be applied to social networks to identify
robust sets of influential individuals. These sets ensure that, even if some nodes (individuals)
become inactive, the overall influence or information flow is maintained.

• Distributed Control Systems: In distributed systems such as multi-agent robotics or networked
control systems, TSDS ensure that control nodes are arranged so that every node is both covered
and can substitute a neighboring controller if needed, thereby increasing system robustness.

• Biological Networks: TSDS can model resilient structures in biological networks such as neural
networks or metabolic networks, where maintaining functionality despite localized failures is critical.
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6. Future Research

The concept of total secure domination opens several avenues for further investigation. Some potential
research directions include:

• Develop and analyze efficient algorithms (both exact and approximation) for computing TSDS in
graphs.

• Characterize TSDS for various graph families and study how structural properties such as connec-
tivity, degree distribution, and diameter influence the total secure domination number.

• Investigate the behavior of TSDS in dynamic networks where vertices or edges are added or removed
over time.

• Explore the relationships between TSDS and other domination parameters such as the total domi-
nation number, secure domination number, and connected domination number.

• Apply TSDS in practical network design problems to develop new strategies for enhancing security
and robustness.

• Exploring relationships between γts(G) and other invariants such as independence number, chro-
matic number, and connectivity.

7. Conclusion

We have introduced the total secure domination number γts(G), defined as the minimum size of a
total dominating set D in G such that for every vertex u /∈ D there exists v ∈ D with the property that
(D \ {v})∪{u} remains a dominating set in G. We established a series of fundamental theorems providing
lower and upper bounds and exact values for standard graph classes. Furthermore, we presented a greedy
algorithm for trees and discussed potential applications and future research directions. This work lays
a foundation for further exploration of robust domination concepts in graphs. We believe the study
of Total Secure Dominating Sets is a promising research area with significant theoretical and practical
implications. Future work in these directions can contribute to the development of more resilient and
secure networked systems.
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