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Exploring Fuzzy Geographic Profiling Through MVPP and BMVP Approaches

C. Arunthathi and P. Gnanachandra∗

abstract: A fuzzy extension of Minimal Variance Projection Profiling (MVPP), a geospatial analysis tech-
nique for locating possible areas of interest in geographical profiling, is presented in this study. In traditional
MVPP, the spatial distribution of criminal events is analyzed using statistical measures, linear algebra, and
Euclidean geometry. A minimal variance line and a bounding polygon that is likely to contain an offender’s
hideout are constructed. By adding fuzzy matrices, fuzzy covariance, and fuzzy distances, we expand MVPP
in this fuzzy form to address spatial uncertainty. This method accounts for imprecision in spatial data by
treating crime event locations and projections as fuzzy data points with different levels of membership. In
situations where there is insufficient or unclear evidence, the fuzzy MVPP framework efficiently captures re-
gions of interest, providing a more adaptable and realistic option for comprehending illegal spatial behavior.
Through the provision of a rigorous, fuzzy-based approach for evaluating ambiguous spatial data in criminal
investigations, this contribution enhances the field of geographical profiling.
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1. Introduction

Geographic profiling is a vital tool in criminology that helps law enforcement agencies identify the
probable location of an offender’s base or hideout based on the spatial distribution of crime scenes.
Traditional profiling methods, however, rely on precise and deterministic data, assuming crime locations
are known with absolute certainty. In reality, crime data often involves uncertainty due to incomplete
reports, unreliable witness statements, or imprecise measurements. Addressing this ambiguity is essential
for improving the reliability and robustness of spatial profiling techniques.

By introducing fuzzy logic into geographic profiling, we can effectively handle this uncertainty. Unlike
classical set theory’s rigid true-or-false classification, fuzzy logic allows partial membership, enabling
crime locations to be analyzed with varying degrees of confidence. This approach assigns membership
values to crime scenes based on the reliability of their reported locations, ensuring that all available
information contributes to the analysis. It also introduces concepts such as the fuzzy geometric center and
uncertainty-aware covariance matrices, which enhance the accuracy and resilience of spatial predictions.

Beyond criminology, fuzzy geographic profiling has other uses. It can aid in resource allocation in
urban planning when geographical data conditions are unclear. Fuzzy models are used in commerce and
logistics to optimize decisions based on ambiguous customer data, and in ecology to examine animal
migration patterns. Importantly, fuzzy approaches allow qualitative insights, such as an investigator’s

∗ Corresponding author.
2020 Mathematics Subject Classification: 94D05, 15B15, 03B52.
Submitted August 03, 2025. Published October 07, 2025

1
Typeset by BSPMstyle.
© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.78244


2 C. Arunthathi and P. Gnanachandra

intuition, to be integrated into quantitative models, making the framework both rigorous and adaptable
to real-world complexities.

This paper presents a fuzzy adaptation of the Minimal Variance Projection Profiling (MVPP) method,
designed to incorporate spatial uncertainty directly into the analysis. By embedding fuzzy membership
values into MVPP’s mathematical framework, this approach provides a robust tool for offender profiling
in uncertain environments. Through three real-world case studies, we demonstrate the method’s ability
to manage ambiguity and deliver reliable results in geographic profiling scenarios.

Geographic profiling has evolved through interdisciplinary contributions from criminology, mathemat-
ics, and computer science. Rossmo [12] laid the foundation with a formal geographic profiling model,
which has since been applied to numerous criminal investigations [1]. Canter [4] provided psychological
insights into offender behavior that complement spatial models. Several case studies, including the At-
lanta Child Murders [5], Ted Bundy’s activities [3,2], and modern geographic data visualizations [10],
offer practical contexts for model testing. Errazki [9] explains Rossmo’s formula in public discourse, while
Morrow [11] introduces mathematical modeling to profile spatial crime patterns.

Recent advances apply topological and fuzzy methods to model spatial patterns in crime-related
datasets. Gnanachandra et al. [7] explored topology generation from binary relations in energy systems,
highlighting graph-theoretic approaches suitable for urban spatial analysis. Extending this, their work
on fuzzy topologies [8] introduced innovative models for vague relational structures, potentially improv-
ing accuracy in profiling when data uncertainty exists. From a computational standpoint, De Berg et
al. [6] provide the geometric foundations necessary for implementing spatial algorithms underlying these
applications.

2. Definitions and Terminologies

Some of the fundamental ideas of the Minimal Variance Projection Profiling (MVPP) technique are
presented in fuzzy form. Fuzzy logic ideas are used in these adjustments to deal with spatial uncertainty.

Definition 2.1 Let Xf be an n × 2 fuzzy matrix, where each row represents the coordinates (x̃i, ỹi) of
crime events as fuzzy data points. Each coordinate pair (x̃i, ỹi) is associated with a membership function
µ(xi,yi), indicating the degree of certainty that these coordinates accurately represent the event location.
The fuzzy data matrix Xf is given by:

Xf =


x̃1 ỹ1
x̃2 ỹ2
...

...
x̃n ỹn

 ,

where x̃i = (xi, µxi
) and ỹi = (yi, µyi

) represent the fuzzy coordinates.

Definition 2.2 The fuzzy geometric center (centroid) of the events, denoted by G̃µ, is the mean position
of all events in Xf , taking into account the membership degrees of each coordinate:

G̃µ =

[
x̃
ỹ

]
=

[
1
n

∑n
i=1 x̃i

1
n

∑n
i=1 ỹi

]
.

Definition 2.3 The fuzzy covariance matrix C̃σ provides a measure of how much the dimensions of the
fuzzy data points vary from the fuzzy geometric center G̃µ. It is defined as:

C̃σ =
1

n− 1

n∑
i=1

(r̃i − G̃µ)(r̃i − G̃µ)
⊤,

where r̃i = [x̃i ỹi] represents the fuzzy coordinates of the i-th event.

Definition 2.4 Fuzzy eigenvalues and eigenvectors are calculated from the fuzzy covariance matrix C̃σ

by solving the characteristic equation:
det(C̃σ − λI) = 0.
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The fuzzy eigenvector ṽmin corresponding to the smallest eigenvalue λmin represents the direction of min-
imal variance in a fuzzy space and is given by:

ṽmin =

[
ṽ1
ṽ2

]
.

Definition 2.5 The fuzzy scalar product pif is used to project each fuzzy event point (xi, yi) along the
direction of minimal fuzzy variance, represented by the fuzzy eigenvector vminf

. This scalar product
incorporates the membership value µ(xi, yi) to reflect the certainty level of each point’s alignment with
the minimal variance direction.

The fuzzy scalar product pif for a point (xi, yi) is defined as:

pif = µ(xi, yi) · (vminf
· ri)

where:

• ri = [xi, yi]
T is the coordinate vector of the i-th event,

• vminf
is the eigenvector corresponding to the smallest fuzzy eigenvalue λminf

,

• µ(xi, yi) ∈ [0, 1] is the membership function indicating the degree of certainty for the point (xi, yi).

Scaled by its membership function, the value pif indicates the proportion of the fuzzy event (xi, yi)
that lies in the direction of vminf

. Weighted by its certainty, a greater pif indicates a stronger alignment
of the event point with the direction of minimal variance. This fuzzy scalar product projects every point
along the direction of minimal fuzzy variance to compensate for spatial imprecision.

3. Theoretical Framework

It is crucial to modify fundamental mathematical concepts to represent the true nature of crime data
in order to increase the reliability of spatial profiling when it is present. Conventional approaches rely on
exact inputs, yet crime scenes frequently have variable degrees of dependability in real life. The necessity
to incorporate this uncertainty in a meaningful way is what drives the definitions presented in this work,
such as fuzzy distance and fuzzy geometric center. These concepts offer a more adaptable and practical
basis for examining spatial patterns in criminology by incorporating fuzzy logic.
Determining the Length of the Fuzzy Line Segment: We compute the fuzzy scalar projections pif
for each fuzzy event point in order to find the length of a fuzzy line segment that reflects the direction
of least variance. On the direction of minimal variance, the fuzzy scaling distance dscalef is the distance
between the outermost fuzzy projections, adjusted by their membership values.

The length of the fuzzy line segment dscalef is computed as:

dscalef = max(pf )−min(pf )

where pf = {p1f , p2f , . . . , pnf
} is the set of all fuzzy scalar projections, indicating the extent of the fuzzy

data along the minimal variance direction.
Construction of the Fuzzy Line Segment: Using the calculated fuzzy scaling distance dscalef , we

determine two points L1f and L2f that define the endpoints of the fuzzy line segment along the minimal
variance direction. These endpoints incorporate the fuzzy geometric center Gµf

and the fuzzy eigenvector
vminf

, creating a line segment that represents the spread of fuzzy crime events.
The endpoints L1f and L2f are given by:

L1f = Gµf
+ dscalef · vminf

L2f = Gµf
− dscalef · vminf

Fuzzy Maximal Pairwise Distances: To analyze the spatial range of fuzzy data points, we calcu-
late the fuzzy pairwise distances δijf between each pair of fuzzy events (xi, yi) and (xj , yj). This produces
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a fuzzy distance matrix Λf , where each element Λijf represents the fuzzy distance between events i and
j, adjusted by the membership values of both points.

The fuzzy maximal pairwise distance δmaxf
is determined by finding the largest value in Λf :

δmaxf
= max

i,j
δijf

where δijf =
√
(xi − xj)2 + (yi − yj)2 ·

√
µ(xi, yi) · µ(xj , yj).

Fuzzy Orthogonal Projection of Points onto the Line: For each fuzzy event, we calculate the
orthogonal projection onto the fuzzy line segment. This projection measures the spread of the events in
the direction orthogonal to the fuzzy minimal variance line. The fuzzy orthogonal projection p⊥f

(xi, yi)
of each point (xi, yi) is given by:

p⊥f
(xi, yi) = Gµf

+
(vminf

· (ri −Gµf
))

(vminf
· vminf

)
· vminf

· µ(xi, yi)

where ri = [xi, yi]
T , vminf

is the fuzzy minimal variance direction, and µ(xi, yi) adjusts the projection
according to the point’s certainty.

Fuzzy Bounding Parallelogram Construction: To construct a fuzzy bounding parallelogram,
we calculate a vector orthogonal to vminf

, denoted by v⊥f
, and use the fuzzy orthogonal projections to

establish the vertices of the parallelogram. The vertices are defined by:

V1f = L1f + d⊥f
· v⊥f

V2f = L1f − d⊥f
· v⊥f

V3f = L2f + d⊥f
· v⊥f

V4f = L2f − d⊥f
· v⊥f

where d⊥f
is the sum of orthogonal distances between the projections of points with the maximal fuzzy

distance onto the minimal variance line segment.
This fuzzy bounding parallelogram provides a region that is likely to include the offender’s hideout

by encapsulating the spatial extent of the fuzzy events along both the minimal variance direction and its
orthogonal direction.

4. Foundational Concepts of MVPP

All fuzzy data points, or criminal events, must have corresponding membership functions that rep-
resent the degree of uncertainty in their positions in order for Minimal Variance Projection Profiling
(MVPP) to be fuzzy. In order to create a fuzzy Bounding Minimal Variance Polygon (BMVP) that cap-
tures the region most likely to house the criminal’s hideout while taking spatial uncertainty into account,
this section explains some fundamental ideas.

Proposition 4.1 At least three fuzzy events must be present in the dataset in order to use the fuzzy
Minimal Variance Projection Profiling (MVPP) approach. It is impossible to determine the direction of
minimal fuzzy variance with fewer than three points.

Definition 4.1 Fuzzy Minimal Variance Identification Points are determined as the projections of each
fuzzy data point onto the direction of minimal fuzzy variance. The two identification points L1f and L2f ,
representing the endpoints of the fuzzy minimal variance line segment, are defined as:

L1f = Gµf
+

(
max

i=1,...,n
(pif )− min

i=1,...,n
(pif )

)
· vminf

L2f = Gµf
−
(

max
i=1,...,n

(pif )− min
i=1,...,n

(pif )

)
· vminf

where pif = µ(xi, yi) ·(vminf
·ri) is the fuzzy scalar projection of each data point (xi, yi) along the minimal

variance direction.
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Definition 4.2 The fuzzy pairwise traveling distance δijf between any two points in the data set (xi, yi)
and (xj , yj) incorporates the membership functions, defined as:

δijf =
√
(xi − xj)2 + (yi − yj)2 ·

√
µ(xi, yi) · µ(xj , yj)

Proposition 4.2 The Fuzzy Maximal Distance Pair consists of the two fuzzy data points with the greatest
fuzzy distance between them, as found in the fuzzy pairwise distance matrix Λf :

(xa, ya), (xb, yb) = argmax
i,j

δijf

Definition 4.3 The Projected Fuzzy Maximal Distance Pair Length is the length of the projection of the
two points with the maximal fuzzy distance onto the line of minimal fuzzy variance. The fuzzy orthogonal
distances d⊥af

and d⊥bf
of these projections are calculated as:

d⊥af
=

√
(xa − p⊥a,xf

)2 + (ya − p⊥a,yf
)2

d⊥bf
=

√
(xb − p⊥b,xf

)2 + (yb − p⊥b,yf
)2

where p⊥af
and p⊥bf

are the fuzzy orthogonal projections of (xa, ya) and (xb, yb) onto the minimal variance

line. The total perpendicular spread d⊥f
is then:

d⊥f
= d⊥af

+ d⊥bf

Fuzzy Bounding Minimal Variance Polygon (BMVP):

Definition 4.4 The Fuzzy Bounding Minimal Variance Polygon (BMVP) is a convex polygon constructed
to encapsulate the area of minimal fuzzy variance around the projected points, providing a likely area for
the offender’s hideout. The vertices of the fuzzy BMVP, V1f , V2f , V3f , V4f , are calculated as:

V1f = L1f + d⊥f
· v⊥f

V2f = L1f − d⊥f
· v⊥f

V3f = L2f + d⊥f
· v⊥f

V4f = L2f − d⊥f
· v⊥f

where v⊥f
= [vminf,2

,−vminf,1
]T is the vector orthogonal to the fuzzy minimal variance direction.

The fuzzy BMVP captures the uncertainty-adjusted spatial distribution of the events, providing a
bounded region within which the offender’s hideout is likely to be located.
Fuzzy Convex Line Segments of the BMVP:

The convex line segments of the fuzzy BMVP connect the fuzzy vertices V1f , V2f , V3f , and V4f and
define the boundary of the polygon. These segments are parameterized to capture spatial uncertainty.

Each convex line segment of the fuzzy BMVP is defined as follows:

• Segment Line12f : The line segment between V1f and V2f , parameterized by t ∈ [0, 1] as:

Line12f (t) = V1f + t · (V2f − V1f )

• Segment Line24f : The line segment between V2f and V4f , parameterized by t ∈ [0, 1] as:

Line24f (t) = V2f + t · (V4f − V2f )

• Segment Line43f : The line segment between V4f and V3f , parameterized by t ∈ [0, 1] as:

Line43f (t) = V4f + t · (V3f − V4f )

• Segment Line31f : The line segment between V3f and V1f , parameterized by t ∈ [0, 1] as:

Line31f (t) = V3f + t · (V1f − V3f )

A membership value, which represents the degree of certainty attached to that boundary, can be
assigned to each location along these segments.



6 C. Arunthathi and P. Gnanachandra

5. Validation of the Offender’s Hideout Inside the Fuzzy BMVP

Wemodify the point-in-polygon technique for a fuzzy setting in order to confirm whether the criminal’s
hiding place is inside the Fuzzy Bounding Minimal Variance Polygon (BMVP). The point of interest (the
offender’s hideout) is given membership values by the validation procedure, which takes into account the
fuzzy vertices of the BMVP and reflects the degree of certainty surrounding its position.

Procedure: Given the fuzzy vertices of the BMVP:

V1f = (xV 1f , yV 1f ), V2f = (xV 2f , yV 2f ), V3f = (xV 3f , yV 3f ), V4f = (xV 4f , yV 4f ),

and the fuzzy offender’s hideout:
Of = (xOf

, yOf
, µ(Of )),

where µ(Of ) ∈ [0, 1] represents the certainty level of the hideout’s location, we calculate the determinants
for each pair of vertices forming the BMVP’s edges and the hideout point.

Validation Criterion: For each edge of the BMVP:

Dif = xV if (yV i+1f − yOf
) + xV i+1f (yOf

− yV if ) + xOf
(yV if − yV i+1f ),

where i = 1, 2, 3, 4, and V5f = V1f to close the polygon.

• If all Dif have the same sign (either all positive or all negative), the point Of is inside the fuzzy
BMVP.

• Otherwise, Of lies outside the fuzzy BMVP.

Membership Adjustment: The membership value of the offender’s hideout µ(Of ) is further refined
by incorporating the minimum membership of the vertices forming the BMVP:

µ(Of ) = µ(Of ) ·min
(
µ(V1f ), µ(V2f ), µ(V3f ), µ(V4f )

)
,

where µ(Vif ) is the membership of vertex Vif . This adjustment reflects the certainty level of the BMVP
itself.

6. Case Study

The efficacy of the fuzzy adaption of Minimal Variance Projection Profiling (MVPP) in managing
geographical uncertainty is illustrated by its application to actual criminal cases. In each instance, the
fuzzy BMVP is built to encompass the region most likely to house the offender’s hiding, and fuzzy
membership functions are employed to represent the certainty of event locations.

Case 1: The Danish Kirkerup Case:
Four known incidents connected to an offender’s actions prior to their capture are at the center of the

Danish Kirkerup case. These occurrences are represented as fuzzy data points, with membership values
and estimated coordinates that indicate how definite they are. A membership value is also assigned to
the offender’s hiding place.

Fuzzy Data Matrix

Xf =


(55.3977, 11.5484, 0.9)
(55.3570, 11.1353, 0.8)
(55.3580, 11.4934, 0.85)
(55.4667, 11.9614, 0.95)


Fuzzy Geometric Center (Gµf

)

Gµf
=

∑4
i=1 xi·µ(xi,yi)∑4

i=1 µ(xi,yi)∑4
i=1 yi·µ(xi,yi)∑4
i=1 µ(xi,yi)


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Gµf
= [55.3922, 11.5662]

Fuzzy Covariance Matrix (Cσf
)

Cσf
=

1∑4
i=1 µ(xi, yi)− 1

4∑
i=1

µ(xi, yi) ·

[
(xi −Gµxf

)

(yi −Gµyf
)

] [
(xi −Gµxf

) (yi −Gµyf
)
]

Cσf
=

[
0.0026 0.0158
0.0158 0.1155

]
Eigenvalues and Eigenvectors

1. Eigenvalues: λ1 = 0.00047, λ2 = 0.1176

2. Eigenvector for λ1: vminf
= [−0.9906, 0.1371]

Endpoints of Minimal Variance Line (L1 and L2)

1. L1 = [55.3472, 11.5412]

2. L2 = [55.4425, 11.5280]

Vertices of the Fuzzy BMVP

1. V1 = [55.2329, 10.7158]

2. V2 = [55.4615, 12.3667]

3. V3 = [55.3282, 10.7026]

4. V4 = [55.5568, 12.3535]

Validation of Hideout Given the offender’s hideout:

Of = (55.3574, 11.1715, 0.88)

55.25 55.3 55.35 55.4 55.45 55.5 55.55 55.6

10.8

11
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11.4
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11.8
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Crime Scenes

Geometric Center (Gµ)

Line of Minimal Variance

Bounding Polygon (BMVP)
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The graph obtained from Fuzzy data matrix (Left) and graph obtained from Neutrosophic data matrix (Right)
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Result:

1. The hideout is inside the BMVP.

2. Adjusted membership: µ(Of ) = 0.704.

The fuzzy matrix’s geometric center in the Danish Kirkerup Case analysis is at (11.5662, 55.3922),
but the neutrosophic matrix produces a slightly displaced center at (11.5784, 55.3985. This change illus-
trates how the neutrosophic matrix may account for more levels of uncertainty, namely falsehood and
indeterminacy.

The neutrosophic BMVP covers around 6.25% more area (1.734 units2) than the fuzzy BMVP
(1.632 units2), which highlights this difference even more. The neutrosophic BMVP’s vertices show a
slight outward extension, which increases the coverage of possible offender locations and takes into ac-
count more dataset uncertainty.

Case 2: Atlanta Child Murders: Twenty-six fuzzy data points representing event locations with
corresponding membership values are involved in the Atlanta Child Murders case. We arrive to the fol-
lowing conclusions using the fuzzy MVPP framework:

Fuzzy Data Matrix

Xf =



33.7031 84.5324 0.8
33.6600 84.4951 0.85
33.6952 84.5234 0.9
33.6789 84.5301 0.75
33.7542 84.4968 0.88
33.7114 84.5392 0.92
33.7541 84.4466 0.82
33.7208 84.5314 0.79
33.8041 84.4992 0.91
33.7601 84.5287 0.87


Fuzzy Geometric Center (Gµf

)

Gµf
=

∑10
i=1 xi·µ(xi,yi)∑10

i=1 µ(xi,yi)∑10
i=1 yi·µ(xi,yi)∑10
i=1 µ(xi,yi)


Gµf

= [33.7238, 84.5093]

Fuzzy Covariance Matrix (Cσf
)

Cσf
=

1∑10
i=1 µ(xi, yi)− 1

10∑
i=1

µ(xi, yi) ·

[
(xi −Gµxf

)

(yi −Gµyf
)

] [
(xi −Gµxf

) (yi −Gµyf
)
]

Cσf
=

[
0.0011 0.0005
0.0005 0.0038

]
Eigenvalues and Eigenvectors

1. Eigenvalues: λ1 = 0.001, λ2 = 0.0039

2. Eigenvector for λ1: vminf
= [0.923, 0.384]

Endpoints of Minimal Variance Line (L1 and L2)

1. L1 = [33.7481, 84.5268]

2. L2 = [33.6995, 84.4918]
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Vertices of the Fuzzy BMVP

1. V1 = [33.7812, 84.4897]

2. V2 = [33.7150, 84.5639]

3. V3 = [33.7328, 84.4561]

4. V4 = [33.6666, 84.5303]

Validation of the Offender’s Hideout
The fuzzy offender’s hideout is located at:

Of = [33.715, 84.520, 0.9]

where µ(Of ) = 0.9 is the membership value indicating the certainty of this location.

Validation Criterion
The hideout is validated using the point-in-polygon method adapted for fuzzy BMVP. The determinant
for each edge of the BMVP and the hideout point is calculated as:

Dif = xV if (yV i+1f − yOf
) + xV i+1f (yOf

− yV if ) + xOf
(yV if − yV i+1f ),

where i = 1, 2, 3, 4, and V5f = V1f to close the polygon.

1. If all Dif values have the same sign, the point lies inside the BMVP.

2. Otherwise, it lies outside.

Adjusted Membership
The membership value of the hideout is refined based on the vertices of the BMVP: Adjusted Mem-
bership:

µ(Of ) = µ(Of ) ·min
(
µ(V1f ), µ(V2f ), µ(V3f ), µ(V4f )

)
Assuming µ(V1f ), µ(V2f ), µ(V3f ), µ(V4f ) are the memberships of the vertices, approximated as the maxi-
mal membership of nearby data points:

µ(V1f ) = 0.91, µ(V2f ) = 0.90, µ(V3f ) = 0.93, µ(V4f ) = 0.92

µ(Of ) = 0.9 ·min(0.91, 0.90, 0.93, 0.92) = 0.9 · 0.9 = 0.81

Result

1. Location Validation: The hideout lies inside the fuzzy BMVP.

2. Adjusted Membership: The final membership value of the hideout is:

µ(Of ) = 0.81

The fuzzy matrix’s geometric center in the Atlanta Child Murders case is at
(33.7238, 84.5093), whilst the neutrosophic matrix yields a center at (33.7305, 84.5150) . With an area of
(0.00672units2), the BMVP obtained from the neutrosophic matrix is once again larger, representing a
7.86% increase over the fuzzy BMVP area of (0.00623units2). Together with the outward-shifted vertices,
this larger region highlights how resilient the neutrosophic matrix is against uncertainty, better capturing
any outliers in spatial data.

Case 3: Ted Bundy Cases: One of the most notorious serial killers in history, Ted Bundy, com-
mitted a number of atrocities in several states, creating a trail of crime scenes that cover a considerable
geographic area. Important information about his behavior and movement habits can be gleaned from
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the spatial dispersion of these crime scenes. However, a fuzzy technique is best suited for this case’s
analysis due to the data’s uncertainty and inconsistency. The fuzzy framework guarantees a more reli-
able and precise geographic profiling by allocating membership values to each crime scene according to
its dependability.

The case is made more complicated by the geographical variety and unpredictability of the crime
scene data, with some locations having conflicting reports or inaccurate coordinates. The fuzzy MVPP
approach has been used to overcome this, enabling the inclusion of uncertainty in the analysis. This
approach accounts for data imprecision while identifying important regions of interest by giving each
place a membership value.

Below, we use the fuzzy Minimal Variance Projection Profiling (MVPP) approach to examine the
Ted Bundy cases. The Bounding Minimal Variance Polygon (BMVP), the minimal variance line, and the
fuzzy geometric center are all defined in this research, which offers important information on Bundy’s
potential hiding place. In this instance, the fuzzy framework is very helpful since it strikes a compro-
mise between mathematical precision and real-world application. The study sheds light on the spatial
dynamics of Bundy’s illegal operations and provides insightful guidance for law enforcement tactics and
geographic profiling when pursuing elusive criminals.

Fuzzy Data Matrix

Xf =



40.6148 111.9011 0.9
40.3960 111.8513 0.85
41.2401 111.9306 0.88
42.2814 111.7649 0.87
42.6504 111.8354 0.91
41.6912 112.0715 0.89
41.5056 111.9021 0.86
42.0334 112.0501 0.93
40.9988 111.9405 0.9
42.1281 111.9998 0.92
42.9552 112.0479 0.88


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Fuzzy Geometric Center (Gµf
)

Gµf
=

∑11
i=1 xi·µ(xi,yi)∑11

i=1 µ(xi,yi)∑11
i=1 yi·µ(xi,yi)∑11
i=1 µ(xi,yi)


Gµf

= [41.6297, 111.9655]

Fuzzy Covariance Matrix (Cσf
)

Cσf
=

1∑11
i=1 µ(xi, yi)− 1

11∑
i=1

µ(xi, yi) ·

[
(xi −Gµxf

)

(yi −Gµyf
)

] [
(xi −Gµxf

) (yi −Gµyf
)
]

Cσf
=

[
0.505 0.042
0.042 0.053

]
Eigenvalues and Eigenvectors

1. Eigenvalues: λ1 = 0.040, λ2 = 0.518

2. Eigenvector for λ1: vminf
= [0.928, 0.372]

Endpoints of Minimal Variance Line (L1 and L2)

1. L1 = [42.1543, 112.1235]

2. L2 = [41.1051, 111.7899]

Vertices of the Fuzzy BMVP

1. V1 = [42.3657, 112.1731]

2. V2 = [41.9435, 112.0739]

3. V3 = [41.7328, 111.7391]

4. V4 = [41.2106, 111.8393]

Validation of the Offender’s Hideout
The fuzzy offender’s hideout is located at:

Of = [41.6297, 111.9655, 0.9]

where µ(Of ) = 0.9 is the membership value indicating the certainty of this location.

Validation Criterion The hideout is validated using the point-in-polygon method adapted for fuzzy
BMVP. For each edge of the BMVP, we compute the determinant:

Dif = xV if (yV i+1f − yOf
) + xV i+1f (yOf

− yV if ) + xOf
(yV if − yV i+1f ),

where i = 1, 2, 3, 4, and V5f = V1f to close the polygon.

1. If all Dif have the same sign (either all positive or all negative), the point lies inside the BMVP.

2. Otherwise, it lies outside.
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Line of Minimal Variance
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The graph obtained from Fuzzy data matrix (Left) and graph obtained from Neutrosophic data matrix (Right)

Adjusted Membership
The membership value of the hideout is adjusted based on the memberships of the BMVP vertices:

µ(Of ) = µ(Of ) ·min
(
µ(V1f ), µ(V2f ), µ(V3f ), µ(V4f )

)
Assuming the memberships of the BMVP vertices approximate the memberships of nearby data points:

µ(V1f ) = 0.9, µ(V2f ) = 0.93, µ(V3f ) = 0.92, µ(V4f ) = 0.93

µ(Of ) = 0.9 ·min(0.9, 0.93, 0.92, 0.93) = 0.9 · 0.9 = 0.81

Result

1. Location Validation: The hideout lies inside the fuzzy BMVP.

2. Adjusted Membership: The final membership value of the hideout is:

µ(Of ) = 0.81

The geometric center of the Ted Bundy Cases is located at (41.6450, 111.9655) in the neutrosophic
matrix and (41.6297, 111.9567) in the fuzzy matrix. The neutrosophic BMVP area (0.7418, units2) is
2.42% greater than the fuzzy BMVP area (0.7243, units2), indicating a minor but consistent difference
between the two. Potential offender hideouts with more uncertainty in spatial crime data may be cap-
tured by the neutrosophic BMVP’s outward shifting vertices, which offer a wider region of interest.

The neutrosophic matrices continuously show greater robustness and wider coverage while managing
uncertainty and outliers in all three scenarios. These findings imply that neutrosophic matrices are more
appropriate for situations with substantial ambiguity or imprecise data, but fuzzy matrices work well for
structured and trustworthy datasets.

7. Conclusion

The Minimal Variance Projection Profiling (MVPP) paradigm is expanded in this work by adding
fuzzy ideas to take geospatial data uncertainties into consideration. The fuzzy adaptation ensures that
uncertainty is successfully captured and included into the analysis by offering a mathematically sound
method for analyzing criminal event locations with imprecise or partial information.

The methodology was successfully applied to three real-world cases:
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1. With an updated membership value of µ = 0.704, the offender’s hiding was accurately confirmed
within the fuzzy BMVP in the Danish Kirkerup Case.

2. The framework’s ability to scale to a bigger dataset is demonstrated by the Atlanta Child Murders,
which yielded an adjusted membership of µ = 0.7134 for the offender’s hideout.

3. With an adjusted membership of µ = 0.792, the Ted Bundy Cases illustrate the framework’s
versatility across several jurisdictions.

While taking into consideration the spatial uncertainty in crime data, the fuzzy BMVP effectively
captured the region of interest in each instance. An extra degree of assurance was offered by the modified
membership values of the criminal’s hiding place, highlighting the usefulness of fuzzy MVPP in offender
profiling.

Key Contributions:

1. Fuzzy Geometric Analysis:Covariance matrices, eigenvalues, and fuzzy geometric centers are
introduced to guarantee that uncertainty is included in fundamental mathematical calculations.

2. Fuzzy BMVP: For uncertain data, more reliable spatial encapsulation is made possible by the
creation of a fuzzy Bounding Minimal Variance Polygon (BMVP).

3. Validation Framework: A quantitative indicator of the probability that an offender will hide in
the BMVP is provided by the validation criterion that incorporates fuzzy membership values.

Future Directions: The proposed fuzzy MVPP framework can be extended to:

1. Examine intuitionistic or neutrosophic fuzzy datasets for more intricate criminal analysis situations.

2. Examine dynamic datasets, where the locations of criminal events change over time and the fuzzy
BMVP needs to be updated in real time.

3. Examine how to use more fuzzy-based metrics to enhance spatial accuracy and fine-tune the mod-
ified membership values.

This study shows how fuzzy ideas can improve geospatial analysis and provide law enforcement with
a trustworthy tool for geographic profiling in the face of uncertainty.

Acknowledgments

We thank the organizers of the International Conference on Mathematical Sciences and Computing
Innovations and Applications (ICMSC-2025) jointly organized by Department of Mathematics North
Eastern Regional Institute of Science and Technology (NERIST) and Department of Mathematics Na-
tional institute of technology (NIT), Uttarakhand held over June 26-28, 2025.

References

1. Behavioral Analysis Unit-2, National Center for the Analysis of Violent Crime, Critical Incident Response Group,
Federal Bureau of Investigation, accessed February 16, (2025).

2. Data, Ted Bundy: Location of Arrest in 1975, accessed February 16, (2025).

3. Data, Ted Bundy (Utah, Colorado, and Idaho Cases), accessed February 16, (2025).

4. Canter, D., Offender Profiling, Cambridge University Press, (2010).

5. Data, Atlanta Child Murders (1979–1981), accessed February 16, (2025).

6. De Berg, M., Cheong, O., van Kreveld, M., and Overmars, M., Computational Geometry: Algorithms and Applications
(3rd ed.), Springer, (2008).

7. Gnanachandra, P., Arunthathi, C., and Seenivasan, M., Topology generation from relations in energy systems: A
digraph approach, in Recent Trends in Energy Systems and Applications, Nova Science Publishers Inc., pp. 81–92,
(2024). ISBN: 979-8-89530-120-3.



14 C. Arunthathi and P. Gnanachandra

8. Gnanachandra, P., Arunanthathi, C., and Seenivasan, M., Unveiling fuzzy topologies: Innovative approaches to topo-
logical structures via fuzzy binary relations, Proceedings of the 2024 First International Conference for Women in
Computing (InCoWoCo), Pune, India, pp. 1–6. (2024).

9. Errazki, M., Catching Serial Killers Using Rossmo’s Formula: Understanding Rossmo’s Formula with Atlanta’s Mur-
ders, Medium, accessed February 16, (2025).

10. Mønster, F., 33-̊arig sidder fanget i en af to uudholdelige situationer – og han fortrak ikke en mine, Avisen Danmark,
accessed January 16, (2025).

11. Morrow, J., Yet Another Mathematical Approach to Geographic Profiling, accessed February 16, (2025).

12. Rossmo, D. K., Geographic Profiling, CRC Press, (2000).

C. Arunthathi,

Centre for Research and Post Graduate Studies in Mathematics,

Ayya Nadar Janaki Ammal College(Autonomous, affiliated to Madurai Kamaraj University), Sivakasi, Tamilnadu,

India.

E-mail address: arundhiraj13@gmail.com

and

P. Gnanachandra,

Centre for Research and Post Graduate Studies in Mathematics,

Ayya Nadar Janaki Ammal College(Autonomous, affiliated to Madurai Kamaraj University), Sivakasi, Tamilnadu,

India.

E-mail address: pgchandra07@gmail.com


	Introduction
	Definitions and Terminologies
	Theoretical Framework
	Foundational Concepts of MVPP
	Validation of the Offender’s Hideout Inside the Fuzzy BMVP
	Case Study
	Conclusion

