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The Domination Number of Commuting Graphs Over Matrix Direct Sums

Manal Al-Labadi*, Wasim Audeh, Eman Mohammad Almuhur, Nazneen Khan

ABSTRACT: In this article, we investigate the domination properties of the commuting graph I'(M (m@®m, L)).
Specifically, we determine the domination number ~(I'(M (m @& m, L))) and establish sharp bounds for various
classes of finite commutative rings with unity. Our main result demonstrates that for any such ring L, the
domination number satisfies the inequality

~yT(M(m ®m,L))) > 2.

We provide structural characterizations of dominating sets and analyze how the ring-theoretic properties of
L influence the domination parameters of the associated commuting graph. These results contribute to the
broader study of graph-theoretic properties of algebraic structures and have applications in coding theory and
algebraic combinatorics.
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1. Introduction

The intersection of graph theory and algebraic structures has yielded numerous fascinating results
over the past several decades, establishing a rich field of study known as algebraic graph theory. Among
the various graph-theoretic constructions associated with algebraic objects, commuting graphs have re-
ceived considerable attention due to their rich structural properties and deep connections to fundamental
algebraic concepts. The study of graph parameters, particularly domination-related invariants, in the
context of these algebraic graphs represents a natural and important direction of research that bridges
discrete mathematics and abstract algebra.

The concept of associating graphs with rings was pioneered by Beck [24] in his investigation of coloring
properties of commutative rings. This seminal work opened new avenues for understanding algebraic
structures through graph-theoretic methods. Subsequently, Anderson and Livingston [23] formalized and
extended the study of zero-divisor graphs, which led to extensive research on various graph constructions
related to ring-theoretic properties. The commuting graph, which captures the commutation relationships
among non-central elements of a ring, represents another fundamental construction in this rapidly growing
area.

For a non-commutative ring L, the commuting graph I'(L) has vertex set L\ Z(L), where Z(L) denotes
the center of L, and two distinct vertices a and b are adjacent if and only if ab = ba. This construction
naturally extends to matrix rings, where the non-commutativity arises from the matrix structure rather
than the properties of the base ring. The study of commuting graphs of matrix rings has gained significant
momentum in recent years, driven by their applications in various areas of mathematics and their intrinsic
theoretical interest.

The domination number, a classical and well-studied parameter in graph theory, measures the min-
imum size of a vertex set that can ”dominate” all other vertices in the graph. Formally, a subset D
of vertices in a graph G is called a dominating set if every vertex not in D is adjacent to at least one
vertex in D. The domination number v(G) is the minimum cardinality among all dominating sets of
G. This parameter has been extensively studied across various graph classes due to its fundamental
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importance in graph theory and its practical applications in network theory, facility location problems,
resource allocation, and computational complexity theory.

In the context of matrix rings, the direct sum construction provides a natural and structured frame-
work for studying matrices with block-diagonal forms. For matrices T € M (r1,L) and N € M(rq, L) over
aring L, the direct sum T'® N is defined as the block diagonal matrix of T and N, both are square matri-
ces TON = (T"l xr Oraxr,

Orl X7y To XTo
M(r1 @rg, L), with a specific block structure that preserves many algebraic properties while introducing
interesting combinatorial features. The collection M (ry @ r9, L) of all such direct sum matrices forms
the foundation for our graph-theoretic investigation and provides a rich setting for studying domination
properties.

Previous research by Al-Labadi and collaborators [1-20] has explored various aspects of graph con-
structions related to ring extensions, idealizations, and zero-divisor graphs. Additionally, the broader
literature on commuting graphs includes significant contributions by Akbari and Mohammadian [22] and
Axtell and Stickles [21], who have investigated fundamental properties of these structures. However, the
systematic study of domination numbers in commuting graphs of matrix direct sums represents a novel
contribution to this field, filling an important gap in our understanding of graph parameters in algebraic
contexts.

The primary motivation for this research stems from several interconnected considerations. First, un-
derstanding the domination properties of commuting graphs provides valuable insights into the structural
organization and interaction patterns of non-central elements in matrix rings. Second, the results con-
tribute to the broader classification and characterization of graph parameters in algebraic graph theory,
extending our theoretical framework for analyzing such structures. Third, the techniques developed in
this work may have applications in other areas of mathematics, including coding theory, combinatorial
optimization, and computational algebra.

Our approach combines sophisticated methods from matrix theory, ring theory, and graph theory to
achieve a comprehensive understanding of the domination properties of these commuting graphs. We
begin by establishing fundamental structural properties of the commuting graph T'(M (m & m, L)), with
particular emphasis on diameter bounds that serve as the foundation for domination number estimates.
Through careful and systematic analysis of matrix commutation properties, we construct specific families
of matrices that exhibit desired commutation behaviors, enabling us to derive precise bounds on various
graph parameters.

The methodology employed in this paper involves several key components. We first analyze the
centralizers of specific matrix families to understand their intersection properties and establish diameter
lower bounds. We then provide comprehensive case-by-case analysis for different ring structures, including
fields of prime order, rings of prime power order, and rings with composite order. For each case, we
construct explicit paths of length 3 between arbitrary vertices in the commuting graph, establishing
upper bounds on the diameter. Finally, we apply classical relationships between diameter and domination
number to obtain the desired bounds.

The paper is organized as follows. After establishing necessary definitions and preliminary results in
Section 2, we investigate the diameter of T'(M(m @& m, L)) for various ring structures through a series
of lemmas and theorems. We provide detailed proofs for different cases based on the structure of the
underlying ring L, including prime fields, prime power rings, and composite order rings. We then apply
these diameter results to establish lower bounds on the domination number, with particular emphasis
on the case m = 2. Throughout the paper, we provide comprehensive proofs that account for different
characteristics of the underlying ring L and demonstrate the universality of our results.

The main contributions of this work include several significant theoretical advances: establishing that
diam(T' (M (m @ m, L))) = 3 for all finite commutative rings L with unity and m > 2; proving that
YT (M((2®2,L))) > 2 for such rings.

), yields a matrix in M ((rq +72) X (r1 +12), L), for simplicity denoted by

2. Domination Number of I'(M(m & m, L))

In this section, we investigate the domination number of the commuting graph I'(M (m @ m, L)) for
finite commutative rings L with unity. Our approach is fundamentally based on establishing precise
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bounds for the diameter of these graphs, which then allows us to derive corresponding bounds for the
domination number using classical graph-theoretic relationships. We begin by introducing a key lemma
that provides a lower bound for the domination number in terms of the diameter of connected graphs.
This relationship, combined with our detailed analysis of the diameter properties of I'(M (m @ m, L)),
forms the cornerstone of our investigation. The central challenge lies in characterizing the commutation
properties of direct sum matrices and understanding how these properties translate into the connectivity
structure of the associated commuting graph. Through systematic case analysis based on the order and
structure of the underlying ring L, we establish that the diameter of T'(M (m @ m, L)) is exactly 3 for all
m > 2.

Lemma 1 [25] Let H be a connected graph. Then

diam(H) +1

y(H) > | 3

1. (2.1)

Now, we want to find the diameter of I'(M (m @ m, L)) for m > 2. First, we obtain a lower bound on the
diameters of I'(M (m @ m, L)) for all m > 2. This lower bound is 3. We begin with the following lemma.

Lemma 2 For any m > 2, the matriz

1 1 0 0
0 1 1 0
Po=1: 1 @
o --- 0 1 1
0 --- 0 0 1

P,®P,eMmodm,L)\ Z(M(m ®m,L))
has the property that Car(mam,r)(Pm ® Prn) N Coriimam,r)(Ph & PL) = Z(M(m & m, L)).

Proof: Let X,, ©® X € Crsmam,r)(Pm @ Pp). So

i1 Ti2 0 Tim

T21 T22 - T2m
X, =

Tm,1 Tm,2 Tm,m

for some x; € L and (P, ® Pn)(X @ X)) = (Xon @ Xin) (P @ Py,). From this, we get

11 Z12 0 Tim 1,1 Ti12 ot Tim
0 x11 - Tom 0 x11 - Tom
0 0 e T1.1 0 0 cee ‘Tl,l

s

Let Y, ®Y,, € CM(m@m,L)(an“ @ PT) where

aii 12 - Q1m

az1 Az2 - A2m
Y, =

Am,1 aAm,2 T Am,m

for some a; € L and (PL @ PL)(Y,, @ Vi) = (Vi @ Vi) (PL @ PL). Taking transpose of both sides we
get (P, ® P) (Y aYD) = (YT oY) (P, ® Pn). Since V,L @ Y,I' commutes with P,, ® P,,,, Y, @ V,T
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must have the form of X,,, ® X,,, described above. Thus Y,,, ® Y,, must have the form

a14 0 .- 0 a1 0O .- 0
a1 a0 - a1 a1 0 -
am,1 Am,2 1,1 am,1 Am,2 1,1

SO, we get CM(méBm,L) (Pm D Pm) N CM(mEBm,L)(qu; D Pnj;) =

s;1 0 -~ 0 s11 0 -+ 0
0 s1 - 0 0 s1 - 0
. . . ©® . . . . 1511 €L ZZ(M(m@m,L)). a
0 0 - s14 0 0 - 814

Corollary 1 Let L be a finite commutative ring with unity, Then for any m > 2 ,
diam(T'(M (m & m, L)) > 3. (2.2)

Lemma 3 For any m > 2, the matriz P, ® Py, € M(m®m, L), has the property that Cyr(mam,r)(Pm @
Pp) N Corimam,r)(PL ® PL) = Z(M(m @& m,L)).

The following lemmas discern some properties of T'(M(m @ m, L)) when |L| = ¢, where ¢ is a prime
number.

Lemma 4 Let L be a finite commutative ring with unity, |L| = q, where q is a prime number. Then for
any X = X1 ®Xo € M(m@m, L)\ Z(M(m ®m, L)) there exists Y = (X1 + 1) ® 0O € M(m & m, L) or
Y =0®(Xo+1) € M(m®m, L) such that X commutes withY andY € M(m®m, L)\ Z(M(m&m,L)).

11 Ti12 -t Tim Y Y12 0 Yim
21 X222 0 T2am Y21 Y22 - Yam
Proof: Let X = X;0X, = @ . ) , X € M(m&m,L)
Tm,1 Tm,2 - Tm,m Yma Ym,2 - Ym,m
andY = (X1 +1)® 0 € M(m&m,L)\ Z(M(m & m,L)). Then XY = (X} +X;) %0 =YX. Or
Y=0&®(Xo+I)eM(m@m,L)\ Z(M(m ®m,L)). Then XY =0 ® (X3 + X3) =Y X. a
Theorem 1 Let L be a finite commutative ring with unity and |L| = q, q be a prime number. Then

diam(T'(M(m & m, L))) = 3.

Proof: Let X = X; & X5 and Y = Y] ¢ Y5 be any two matrices in T'(M(m @ m, L)). Then by previous
lemma we have (X1 +1)®0 € Crrmam,n)(X1@X2)\ Z(M(m@m, L) and OD(Ya+1) € Crrmam,n)(Y1©
Yo)\ Z(M(m @& m,L). Now, (X1 +1)®0)(0Od Yo+1)) =000 =0 (Yo+1)(X1+1)DO).
So, X, (X1 +1)® 0),(0® (Y2 +1)),Y is a path of length 3 between X and Y in I'(M(m & m, L)),
diam(T'(M (m @ m, L))) < 3. By using inequality (2.2), diam(I'(M(m @& m, L))) = 3. O

Lemma 5 Let L be a finite commutative ring with unity, |L| = q", where q is a prime number, and r is an
integer with v > 2. Then for any X = X1 ® Xy € M(m @ m, L) there exists Y =Y, @Y € M(m@&m, L)
such that X1 ® Xo commutes with (¢" Y1 + 1) ® (¢" Yo + 1) and (¢" Y1 + 1) @ (¢" 'Ya + 1) €
M(mem,L)\ Z(M(m & m,L)).

11 T12 0 Tim Yia Y2 0 Yim
T21 T22 ° T2am Y21 Y22 0 Yam

Proof: Let X = &) . . , X € M(m@m,L). To find
Im,1 Tm,2 e Tm,m Ym,1  Ym,2 e Ym,m

Y, we have four cases:
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e Case 1: For all [, k there exist u; , v, € L such that x; = qu; 1 and y; 1 = qui k. So,

quil  qui2  cc QUim quiil  qUi2 - QUim

qu2,1  qu22 -+ QU2m quz1 QU222 -+ QU2;m
X=X X, = S

qUm,1 qUmp2 " qUm,m qUm,1 qUmp2 - qUm,m

Observe that X commutes with Y = (¢" " Ey 1+1)®(¢" ' E1 1+1) € M(m@&m, L)\ Z(M(m&m, L))
and this is because X ((¢" 'E11+ 1)@ (" "E11+ 1) =X = ((¢" B+ D)@ (" B+ 1)X.

e Case 2: Suppose that for all [, k there exists v; , such that y; , = qu;; and there exist x; such
that 2 # qui  for any u; g, vy ; € L. Then

11 T12 0 Tim qui,1 qui2  c QUim

21 T22 -0 T2am qua1 QU222 - QU gm
X=X10Xy= &)

Tm,1 Tm,2 e Tm,m qUm,1 4qUm,2 e qUm,m

Let Y = ((¢" ' X1+ )& (¢" * Xo+1)) € M(m&m, L)\ Z(M(m&m, L)). Now, Y clearly commutes
with X.

e Case 3: Suppose that for all [, k there exists v, such that z;, = qu;, and there exists y; ; such
that y; x # qui i for any w;k, v, € L. Then

quii  qui2 vt qUim Y1 Y2 0 Yim
qu2,.1 qu22 -+ qU2m Y21 Y22 0 Yom
X=X10 Xy, = ) ) . . ) )
qUm,1 QqUmy2 **- qUm,m Ym,1 Ym,2 - Ym,m
Let Y = ((¢" ' X1+ 1)@ (q" ' Xa+1)) € M(medm, L)\ Z(M(m@®m,L)). Now, Y clearly commutes

with X.

e Case 4: Suppose that there exist z;; and vy, such that x;, # puir and y;x # puk for any
ULk, Vi k € L. Then

r11 Ti,2 ot Tim Yii1 Y12 0 Yim

x21 22 T2m Y21 Y22 - Yom
X=X10Xy= ) . &> ) ) )

Im,1 Tm,2 " Tm,m Ym,1 Ymz2 Ym,m

Let Y = ((¢" ' X1+ 1)®(¢" * Xo+1)) € M(m@m, L)\ Z(M(m@&m, L)). Now, Y clearly commutes
with X.

a

Theorem 2 Let L be a finite commutative ring with unity and |L| = q", q be a prime number, and r > 2.
Then diam(T'(M(m @& m,L))) = 3.

Proof: Let V = X; ® Xp and D = Y; @ Y, be any two matrices in I'(M(m @ m, L)). Then by the
previous lemma, we have ((¢"'A; + 1) ® (¢" ' A2 + 1)) € Crrmam,1) (X1 ® X2) \ Z(M(m & m, L) and
((¢"'Bi+1)® (¢ 'Ba+ 1)) € Crs(mam,)(Y1 ®Y2) \ Z(M(m@®m, L). Now, (¢" A1 +1) @ (¢" ' Az +
D¢ ' Bi+D@(¢" " Bo+I) = (¢" " Ai+¢" T Bi+1)@(¢"  Ae+q" Bo+ 1) = (¢ ' Bat-1)@(¢" ' Ba+
(" TAL+ D@ (¢" LA +1)). So, X, (¢" A1+ 1)@ (¢" A+ 1), (¢" By + 1) ® (¢" B+ 1),Y is
a path of length 3 between X and Y in I'(M (m @ m, L)), diam(T(M(m @ m, L))) < 3. Using inequality
(2.2), diam(T'(M(m @& m, L))) = 3. O
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Lemma 6 Let L be a finite commutative ring with unity and |L| = q1q2, q1, g2 be prime numbers g2 > qi.
Then for any X = X1 ®Xs € M(m@m, L) there exists Y =Y1@0Ys € M(m@&m, L) such that X commutes

with (((1Y1 +1) @ (Y2 + 1)) and (Y1 + 1) & (Y2 + 1)) € M(m & m, L)\ Z(M(m & m, L)).

T11 T2 0 Tim Y11 Y2 0 Yim
x2,1 xro2 T2,m Y2.1 Y22 Y2.m

Proof: Let X = . , X € M(m@®m,L). To find
Tm,1 Tm,2 Tm,m Ym,1 Ym,2 - Ym,m

Y, we have four cases:

e Case 1: For all [, k there exist u; , v, € L such that x; = gau i and y; 1 = g2vy%. So,

Ga2u11 QUi - Q2U1m G211 q2V12 - 2Uim

qau2.1 QU222 - q2U2,m q2V21 QU222 -+ {2U2m
X=X10Xy= )

PRUmMm,1  q2Um,2 - q2Um,m q2Um,1 P©2Um2 - P2Umm

Observe that X commutes with Y = (1 E11+1)® (1 E1q1+1)) € M(m@&m, L)\ Z(M(m&m,L))
and this is because X (1 E11+ 1) @ (i1 + 1) =X =((@Eia+ 1)@ (Eq+1)X.

e Case 2: Suppose that for all [, k there exists v, such that y; , = gav;1 and there exist x; 5 such
that z; 1 # gou i for any uy g, v, € L. Then

11 T12 o Tim q2v11  @2V12 0 Uim

T21 T22 0 T2m q2V21 QU222 - U2
X=X10Xy=

Tm,1 Tm,z2 - Tm,m 2Um,1  42Um2 - q2Vm,m

Let Y =q(Xi+ 1)@ (Xe+ 1) € Mim@&m,L)\ Z(M(m & m,L)). Now, Y clearly commutes
with X.

e Case 3: Suppose that for all [, k there exists v, such that x;;, = gau;,r and there exists y; , such
that y; x # qui i for any w;k, v, € L. Then

Gou11 QUi - q2U1m Y1 Y2 0 Yim

g2U21  QU22 -+ QU2.m Y21 Y22 0 Y2m
X=X Xy = ® . .

q2Um,1  G2Um,2 - -  {2Um,m Ym,1 Ym,2 ° Ymm

Let Y =q(Xi+ 1)@ (Xe+ 1) € Mim@®m,L)\ Z(M(m & m,L)). Now, Y clearly commutes
with X.

e Case 4: Suppose that there exist x; and ¥, such that z;, # gur and y; 1 # qovi for any
Uk, v,k € L. Then

i1 Ti2 0 Tim Y1 Y2 0 Yim

T21 T22 r T2m Y21 Y22 - Yom
X=X06Xy= b . .

Tm,1 Tm,2 Tm,m Ym,1 Ym,2 = Ym,m

Let Y = (X1 + 1)@ (Xo+ 1) € Mm@ m,L)\ Z(M(m & m,L)). Now, Y clearly commutes
with X.
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Theorem 3 Let L be a finite commutative ring with unity and |L| = qiq2, q1,q2 be prime numbers
g2 > q1. Then diam(D'(M(m ®m, L))) = 3.

Proof: Let V= X; ® X; and D =Y; @ Y3 be any two matrices in I'(M (m @& m, L)). Then by previous
lemma we have ¢ (A1 +1)® (A2 +1)) € Crrpmam,) (X1 @ X2)\ Z(M(m@m, L) and g ((B1+1) ® (B2 +
1)) € Crgmam,)(Y1 © Y2) \ Z(M(m @& m,L). Now, q1((A1 + 1) ® (A2 + 1))q2((B1 + 1) @ (B2 + 1)) =
@((Bi+1)® (B2 +1))q1 (A1 +1) ® (A2 +1)). So, X, (A1 +1) & (A2 + 1)), ¢2((Br+1) & (B2 +1)), Y is
a path of length 3 between X and Y in T'(M (m @ m, L)), diam(T(M(m ® m, L))) < 3. Using inequality
(2.2), diam(I'(M(m & m, L))) = 3. O

Corollary 2 Let L be a finite commutative ring with unity. Then

diam(T' (M (m & m, L)))) = 3. (2.3)
Proof: Using the same techniques as in the previous theorem. O

Theorem 4 Let L be a finite commutative ring with unity. Then the domination number v(I'(M (m &
m, L))) > 2.

Proof: Using inequality (2.1) and equation (2.3), the domination number v(I'(M (M @ m, L))) > 2. O
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