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Reflection and Transmission of Elastic Waves at the Permeable Interface Between
Fractured Porous Solid Saturated with Two Immiscible Pore Fluids and a Liquid Medium

Anil K. Vashishth and Sourab Kamboj∗

abstract: The reflection and transmission of elastic waves at a permeable interface between a fluid half-space
and a fractured porous solid (FPS) half-space saturated with two immiscible pore fluids, are examined within
the framework of Volume Average Theory for porous solids. The FPS comprises a solid matrix saturated
with two immiscible fluids within pores and a connected network of fractures in which five types of wave
modes exist. Five transmitted waves in the FPS medium are attenuating waves. Energy partition across
the interface is examined through the computation of reflection and transmission coefficients. Parametric
analysis is conducted to evaluate the effects of partial pore opening at the interface, fractures, frequency,
incidence angle, and pores permeabilities. The results of wave characteristics and energy distribution are
highly sensitive to pore opening at the interface and multiphase fluid interactions within the fractured porous
solid, thus offering key insights for subsurface imaging, reservoir evaluation, and acoustic monitoring.

Key Words:Volume Average Theory, fractured porous solid, double porosity, permeability, immis-
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1. Introduction

Wave propagation in porous media has emerged as a crucial area of study because of its diverse appli-
cations in environmental science, geophysics, engineering, and biomedical fields. Understanding of how
incident acoustic waves interact with porous boundaries allows for better interpretation of seismic and
acoustic signals in complex subsurface environments. The study of wave propagation behaviour at the
interface of fluid-saturated porous solid is fundamental to applications in marine geophysics, underwater
acoustics, reservoir exploration, and non-destructive testing. In oil engineering, studying reflection and
transmission at the boundary of porous sedimentary rocks is critical for efficient hydrocarbon exploration
and reservoir analysis. When seismic waves encounter porous rock layers, their reflection and refrac-
tion patterns provide valuable insights into subsurface structures, helping to identify potential oil and
gas reservoirs. By analysing wave interactions in porous solids, engineers can estimate rock porosity,
permeability, and fluid saturation, which are essential for evaluating reservoir quality.

∗ Corresponding author.

Submitted August 06, 2025. Published October 02, 2025

1
Typeset by BSPMstyle.
© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.78258


2 A. K. Vashishth and S. Kamboj

The theoretical foundation for modelling propagation of waves in porous media was laid by Biot
[1,2,3,4], who introduced a comprehensive framework for describing the dynamics of fluid-saturated porous
solids. Biot’s theory predicts a slow (diffusive) compressional wave in addition to a fast compressional
wave and a shear wave. Plona [5] confirmed the presence of the slow compressional wave through an
experimental study. Building on Biot’s Theory, Stoll and Kan [6] explored acoustic wave reflection from
marine sediments, emphasising how permeability, porosity, and frame moduli influence the reflection co-
efficient. Their results, particularly in the context of low-frequency acoustic applications, revealed the
significant role of viscous dissipation and the slow wave in energy loss mechanisms. Dutta and Ode [7]
developed a theoretical model for the reflection and transmission of plane seismic waves at the boundary
between two fluid-saturated porous solids. Their study focused on wave reflection and transmission at
a single gas–brine contact within a shallow porous sandstone reservoir. Garg and Nayfeh [8] analysed
wave propagation in fluid-saturated porous media by incorporating viscous and inertial effects to study
both harmonic and transient responses. Later, Wu et al. [9] offered a detailed theoretical investigation
into wave reflection and transmission at the fluid–porous boundary. By rigorously applying boundary
conditions for both solid and fluid continuity, they provided analytical expressions for reflection-refraction
coefficients. Denneman et al. [10] derived analytical expressions for wave reflection-refraction coefficients
at a fluid–porous medium interface, showing that wave behaviour in water-saturated media closely re-
sembles that in elastic solids, while air-saturated porous layers exhibit strong deviations due to acoustic
impedance mismatch. Dai and Kuang [11] examined the reflection and refraction at the interface separat-
ing fluid half-space (FHS) and a double-porosity solid and examined the influence of dual pore structures
on wave propagation behaviour. Their study provided insights into how the interaction between ma-
trix and fracture systems in double porosity media affects wave reflection and transmission at fluid-solid
boundaries. Vashishth and Sharma [12] explored the behaviour of acoustic waves at the boundary be-
tween a fluid half-space and a poroelastic ocean bottom, highlighting the influence of anisotropy, viscous
dissipation, and pore structure on wave propagation and energy partitioning. Sharma[13] examined wave
behaviour in materials exhibiting double porosity beneath a fluid half-space and found that wave-induced
local fluid flow between the matrix and fractures leads to energy dissipation and frequency-dependent
alterations in wave reflection. Geng et al. [14] demonstrate the effect of interfacial imperfections on wave
reflection and transmission behaviour between FHS and porous solid.

Based on Volume Average Theory, Tuncay and Corapcioglu [15,16] developed constitutive relations for
porous solids saturated with two immiscible fluids, capturing the coupled effects of fluid interactions and
solid deformation. Later, Tuncay and Corapcioglu[17,18] proposed a model describing how the presence of
fractures and two immiscible fluids influences the mechanical behaviour of porous materials, emphasising
the role of fracture structure and fluid arrangement. Tomar and Arora [19] explored how elastic waves
interact at the boundary between an elastic solid and a porous material containing two immiscible fluids,
highlighting the impact of fluid saturation on wave reflection and transmission characteristics. Arora
and Tomar [20] examined elastic wave interactions at the interface between a homogeneous solid and
a fractured porous medium filled with immiscible fluids. Sharma and Kumar [21] investigated wave
reflection at the free surface of a porous medium containing two immiscible fluids, showing the effect of
the presence of dual fluids on the reflection characteristics of incident wave.

The above studies underline the importance and applications of studies on reflection and transmission
of elastic waves at the boundary of porous solids saturated with one/two fluids, with or without fractures
in the porous solids. The reflection-transmission phenomena at the boundary between a liquid half-space
and a porous solid half-space, which incorporates the effects of fractures, double porosity and multiphase
fluids with dual permeability based on Tuncay and Corapcioglu’s Volume Average Theory, have not been
studied so far.

Therefore, the present study focuses on the reflection and refraction of elastic waves at the permeable
boundary separating a fluid half-space (FHS) and a fractured porous solid containing two immiscible pore
fluids by taking into account the microstructure framework of Volume Average Theory (VAT). The micro
structure of the porous medium includes a solid matrix framework permeated by two immiscible fluids
and a connected fracture network. Five types of waves can propagate in such a medium which add the
complexity to the mathematical model and the difficulty in obtaining its analytical solutions. Analytical
expressions of energy ratios across the interface are obtained through the computation of reflection and
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transmission coefficients. Numerical computation is done using MATLAB to examine the effects of partial
pore opening of the interface, fractures, frequency, incidence angle, and permeabilities of the pores on
the energy ratios. The schematic flow of the considered problem is illustrated in Figure 1.

2. Constitutive Equations

2.1. Fractured Porous Solid

Following Tuncay and Corapcioglu [17], the constitutive equations for fractured porous solids are given
as follows:

⟨τs⟩ij =

[(
a11 −

2

3
Gfr

)
sk,k + a12uk,k + a13vk,k + a14wk,k

]
δij +Gfr(si,j + sj,i),

⟨τ1⟩ij = (a21sk,k + a22uk,k + a23vk,k + a24wk,k)δij ,

⟨τ2⟩ij = (a31sk,k + a32uk,k + a33vk,k + a34wk,k)δij ,

⟨τf ⟩ij = (a41sk,k + a42uk,k + a43vk,k + a44wk,k)δij , (2.1)

where sk, uk, vk, wk (k = 1, 2, 3) denote the displacement components along the xk-direction of the
solid matrix, the non-wetting fluid in the primary pores, the wetting fluid in the primary pores, and
the fluid in the fractures, respectively. Similarly, ⟨τs⟩ij , ⟨τ1⟩ij , ⟨τ2⟩ij , ⟨τf ⟩ij (i, j = 1, 2, 3) denote the
stress components in the solid phase, the non-wetting fluid in the primary pores, the wetting fluid in the
primary pores, and the fluid in the fractures, respectively. Gfr is shear modulus of the solid phase and
δij is Kronecker’s delta. The expressions for elastic constants amn (m,n = 1, 2, 3, 4) have been derived
correctly here and are listed in Appendix A.

In the absence of body forces, the equations of motion are given by

⟨τs⟩ij,j = ⟨ρs⟩s̈i − e1(u̇i − ṡi)− e2(v̇i − ṡi)− e3(ẇi − ṡi),

⟨τ1⟩ij,j = ⟨ρ1⟩üi + e1(u̇i − ṡi),

⟨τ2⟩ij,j = ⟨ρ2⟩v̈i + e2(v̇i − ṡi),

⟨τf ⟩ij,j = ⟨ρf ⟩ẅi + e3(ẇi − ṡi), (2.2)

where ⟨ρs⟩, ⟨ρ1⟩, ⟨ρ2⟩, ⟨ρf ⟩ are the average volume densities of the solid, non-wetting fluid, wetting phase
fluid and fracture fluid, respectively.

The dissipation coefficients e1, e2 and e3 are given by

e1 =
α2
1µ1

χpχr1
, e2 =

α2
2µ2

χpχr2
, e3 =

α2
fµf

χf
, (2.3)

where α1, α2 and αf are the volume fractions and µ1, µ2 and µf are the viscosities of non-wetting fluid,
wetting fluid and fracture fluid, respectively. χp and χf are the permeability of primary pores and
fractures respectively. χr1 and χr2 are the relative permeability of non-wetting and wetting phase fluid
in primary pores.

Considering wave motion in the x1–x3 plane, the two-dimensional plane harmonic solutions to equa-
tion (2.2) can be formulated as follows:

sk = ake
(ιω(t− x1

c −qx3)),

uk = bke
(ιω(t− x1

c −qx3)),

vk = cke
(ιω(t− x1

c −qx3)),

wk = dke
(ιω(t− x1

c −qx3)), (k = 1, 3),

(2.4)

where q denotes the unknown vertical slowness component, t is the time, ω represents the angular
frequency, and c is the apparent phase velocity which can be written as

c = vf/sin θ. (2.5)
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Figure 1: Flowchart of different phases/processes of the problem.
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Here, vf refers to the phase velocity of a wave in FHS that travels in the x1–x3 plane, moving in a
direction that forms an angle θ with the x3-axis. The quantities a1, a3, b1, b3, c1, c3, d1, d3 denote the
amplitudes associated with the harmonic waves.

Using equation (2.4) in equation (2.2), we get a system of equations

ΓS = 0, (2.6)

where S = [a1, a3, b1, b3, c1, c3, d1, d3]
⊤, where ‘⊤’ denotes the transpose of the matrix, and the elements

of the matrix Γ8×8 are given in Appendix B.

The condition of non-trivial solution of (2.6) requires

|Γ| = 0. (2.7)

Equation(2.7) leads to

h1q
10 + h2q

8 + h3q
6 + h4q

4 + h5q
2 + h6 = 0, (2.8)

where h1, h2, ..., h6 are given in Appendix C.

The roots of equation (2.8) are complex. Out of 10 roots, five roots with negative real part represent
the waves travelling along the negative x3-axis (upgoing waves), and the roots with positive real part
represent the waves travelling along the positive x3-axis (downgoing waves). The roots are ordered in a
such a way that q(1), q(2), q(3), q(4), q(5) correspond to downgoing P1, SV, P2, P3 and P4 waves and
q(6), q(7), q(8), q(9), q(10) correspond to upgoing P1, SV, P2, P3 and P4 waves.

The wave amplitudes a1, a3, b1, b3, c1, c3, d1, d3 corresponding to the values of q(j) are obtained
from equation (2.6) as

a1(j) =
C(Γ81)q(j)

Wj
, a3(j) =

C(Γ82)q(j)

Wj
, b1(j) =

C(Γ83)q(j)

Wj
, b3(j) =

C(Γ84)q(j)

Wj
,

c1(j) =
C(Γ85)q(j)

Wj
, c3(j) =

C(Γ86)q(j)

Wj
, d1(j) =

C(Γ87)q(j)

Wj
, d3(j) =

C(Γ88)q(j)

Wj
,

(2.9)

with (j = 1, 2, ..., 10), where C(Γmn)q(j) denotes the cofactor of Γmn (m,n = 1, 2, ..., 8) corresponding to
q(j) and

Wj =

√
8∑

n=1
(C(Γ8n)q(j))2.

The displacement components can be written as

s1 =

10∑
j=1

f(j)a1(j)e
(ιω(t− x1

c −q(j)x3)), s3 =

10∑
j=1

f(j)a3(j)e
(ιω(t− x1

c −q(j)x3)),

u1 =

10∑
j=1

f(j)b1(j)e
(ιω(t− x1

c −q(j)x3)), u3 =

10∑
j=1

f(j)b3(j)e
(ιω(t− x1

c −q(j)x3)),

v1 =

10∑
j=1

f(j)c1(j)e
(ιω(t− x1

c −q(j)x3)), v3 =

10∑
j=1

f(j)c3(j)e
(ιω(t− x1

c −q(j)x3)),

w1 =

10∑
j=1

f(j)d1(j)e
(ιω(t− x1

c −q(j)x3)), w3 =

10∑
j=1

f(j)d3(j)e
(ιω(t− x1

c −q(j)x3)),

(2.10)

where f(j) denotes the relative amplitudes of waves.
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2.2. FHS

The displacement components and normal stress for a FHS are expressed as

Uf
1 =

2∑
l=1

n1(l)A(l)e(ιω(t− x1
c −qf (l)x3)),

Uf
3 =

2∑
l=1

n3(l)A(l)e(ιω(t− x1
c −qf (l)x3)),

σf
33 =

2∑
l=1

LlA(l)e(ιω(t− x1
c −qf (l)x3)),

(2.11)

where

Ll = λf (−ιω)

(
n1(l)

c
+ qf (l)n3(l)

)
,

n1(l) = X1(l)/X(l), n3(l) = X2(l)/X(l),

X1(l) = λf (qf (l))2 − ρf , X2(l) = λf q
f (l)

c
,

X(l) =
√
(X1(l))2 + (X2(l))2, qf (1) =

1

c

√
c2

vf2 − 1, qf (2) = −1

c

√
c2

vf2 − 1,

(2.12)

where λf , ρf and vf are the Lame’s constant, the fluid density, and the longitudinal wave velocity within
the fluid half-space, respectively.

3. Reflection and Transmission

Consider a fluid half-space lying over a fractured porous solid half-space that contains two immiscible
viscous fluids. The boundary between the two regions lies along the plane x3 = 0 in a rectangular
coordinate system (x1, 0, x3). An acoustic wave travels through the fluid and strikes the boundary at an
angle θ from the vertical. The incident acoustic wave gives rise to a reflected wave in the fluid medium
and five transmitted waves(P1, SV, P2, P3, P4) in the FPS medium. Here, the P1, SV , and P3 waves
correspond to the fast compressional, shear, and slow compressional waves, respectively, as described in
Biot’s theory for a fluid-saturated porous medium. The P2 wave is associated with the fracture fluid and
disappears when the fracture volume fraction (αf ) is set to zero. The P4 wave is associated with the
second fluid in matrix pores.

The displacement components for the five downgoing transmitted waves can be written as

s1 =

5∑
j=1

f(j)a1(j)e
(ιω(t− x1

c −q(j)x3)), s3 =

5∑
j=1

f(j)a3(j)e
(ιω(t− x1

c −q(j)x3)),

u1 =

5∑
j=1

f(j)b1(j)e
(ιω(t− x1

c −q(j)x3)), u3 =

5∑
j=1

f(j)b3(j)e
(ιω(t− x1

c −q(j)x3)),

v1 =

5∑
j=1

f(j)c1(j)e
(ιω(t− x1

c −q(j)x3)), v3 =

5∑
j=1

f(j)c3(j)e
(ιω(t− x1

c −q(j)x3)),

w1 =

5∑
j=1

f(j)d1(j)e
(ιω(t− x1

c −q(j)x3)), w3 =

5∑
j=1

f(j)d3(j)e
(ιω(t− x1

c −q(j)x3)).

(3.1)
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4. Boundary Conditions

The appropriate boundary conditions at a permeable interface between the fluid and FPS are:

(i) ⟨t⟩33 = σf
33,

(ii) ⟨τs⟩31 = 0,

(iii) ξ(⟨τ1⟩33 − α1⟨t⟩33) = (1− ξ)α1Z1(u̇3 − ṡ3),

(iv) ξ(⟨τ2⟩33 − α2⟨t⟩33) = (1− ξ)α2Z2(v̇3 − ṡ3),

(v) ξ(⟨τf ⟩33 − αf ⟨t⟩33) = (1− ξ)αfZf (ẇ3 − ṡ3),

(vi) αss3 + α1u3 + α2v3 + αfw3 = Uf
3 , (4.1)

where ⟨t⟩33 = ⟨τs⟩33 + ⟨τ1⟩33 + ⟨τ2⟩33 + ⟨τf ⟩33. Z1, Z2 and Zf are surface flow impedance of the
corresponding fluid phases. αs is the volume fraction of solid phase in FPS. A parameter ξ takes into
account, the permeability of the interface, i.e., the flow of fluid across the interface. The parameter ξ = 0
represents fully sealed surface pores, while ξ = 1 indicates a fully permeable interface. The intermediate
value of ξ between 0 and 1 corresponds to a partially permeable interface.

Substituting stresses and displacements in the boundary conditions, we get a system of six inhomo-
geneous equations given by

H Y = G, (4.2)

where H =



h11 h12 h13 h14 h15 h16

h21 h22 h23 h24 h25 h26

h31 h32 h33 h34 h35 h36

h41 h42 h43 h44 h45 h46

h51 h52 h53 h54 h55 h56

h61 h62 h63 h64 h65 h66


,Y =



f(1)

A(1)
f(2)

A(1)
f(3)

A(1)
f(4)

A(1)
f(5)

A(1)
A(2)

A(1)



,
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G =



g1

g2

g3

g4

g5

g6


, where

g1 = L1, g2 = 0, g3 = 0, g4 = 0, g5 = 0, g6 = n3(1),

h11 = T1, h12 = T2, h13 = T3, h14 = T4, h15 = T5, h16 = −L2,

h21 = D1, h22 = D2, h23 = D3, h24 = D4, h25 = D5, h26 = 0,

h31 = ξ (E1 − α1T1)− (1− ξ)α1Z1(ιω) (b3(1)− a3(1)) ,

h32 = ξ (E2 − α1T2)− (1− ξ)α1Z1(ιω) (b3(2)− a3(2)) ,

h33 = ξ (E3 − α1T3)− (1− ξ)α1Z1(ιω) (b3(3)− a3(3)) ,

h34 = ξ (E4 − α1T4)− (1− ξ)α1Z1(ιω) (b3(4)− a3(4)) ,

h35 = ξ (E5 − α1T5)− (1− ξ)α1Z1(ιω) (b3(5)− a3(5)) ,

h36 = 0,

h41 = ξ (F1 − α2T1)− (1− ξ)α2Z2(ιω) (c3(1)− a3(1)) ,

h42 = ξ (F2 − α2T2)− (1− ξ)α2Z2(ιω) (c3(2)− a3(2)) ,

h43 = ξ (F3 − α2T3)− (1− ξ)α2Z2(ιω) (c3(3)− a3(3)) ,

h44 = ξ (F4 − α2T4)− (1− ξ)α2Z2(ιω) (c3(4)− a3(4)) ,

h45 = ξ (F5 − α2T5)− (1− ξ)α2Z2(ιω) (c3(5)− a3(5)) ,

h46 = 0,

h51 = ξ (G1 − αfT1)− (1− ξ)αfZf (ιω) (d3(1)− a3(1)) ,

h52 = ξ (G2 − αfT2)− (1− ξ)αfZf (ιω) (d3(2)− a3(2)) ,

h53 = ξ (G3 − αfT3)− (1− ξ)αfZf (ιω) (d3(3)− a3(3)) ,

h54 = ξ (G4 − αfT4)− (1− ξ)αfZf (ιω) (d3(4)− a3(4)) ,

h55 = ξ (G5 − αfT5)− (1− ξ)αfZf (ιω) (d3(5)− a3(5)) ,

h56 = 0,

h61 = αs a3(1) + α1 b3(1) + α2 c3(1) + αf d3(1),

h62 = αs a3(2) + α1 b3(2) + α2 c3(2) + αf d3(2),

h63 = αs a3(3) + α1 b3(3) + α2 c3(3) + αf d3(3),

h64 = αs a3(4) + α1 b3(4) + α2 c3(4) + αf d3(4),

h65 = αs a3(5) + α1 b3(5) + α2 c3(5) + αf d3(5),

h66 = −n3(2),

T1 = C1 + F1 + E1 +G1, T2 = C2 + F2 + E2 +G2,

T3 = C3 + F3 + E3 +G3, T4 = C4 + F4 + E4 +G4,

T5 = C5 + F5 + E5 +G5,
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Cj = (−ιω)

[
a11

a1(j)

c
+ (a11 + 2Gfr)a3(j)q(j) + a12

(
b1(j)

c
+ b3(j)q(j)

)
+ a13

(
c1(j)

c
+ c3(j)q(j)

)
+ a14

(
d1(j)

c
+ d3(j)q(j)

)]
,

Dj = (−ιω)Gfr

[
a1(j)q(j) +

a3(j)

c

]
,

Ej = (−ιω)

[
a21

(
a1(j)

c
+ a3(j)q(j)

)
+ a22

(
b1(j)

c
+ b3(j)q(j)

)
+a23

(
c1(j)

c
+ c3(j)q(j)

)
+ a24

(
d1(j)

c
+ d3(j)q(j)

)]
,

Fj = (−ιω)

[
a31

(
a1(j)

c
+ a3(j)q(j)

)
+ a32

(
b1(j)

c
+ b3(j)q(j)

)
+ a33

(
c1(j)

c
+ c3(j)q(j)

)
+ a34

(
d1(j)

c
+ d3(j)q(j)

)]
,

Gj = (−ιω)

[
a41

(
a1(j)

c
+ a3(j)q(j)

)
+ a42

(
b1(j)

c
+ b3(j)q(j)

)
+ a43

(
c1(j)

c
+ c3(j)q(j)

)
+ a44

(
d1(j)

c
+ d3(j)q(j)

)]
. (4.3)

5. Energy Ratios

The average energy flux for transmitted waves in the FPS medium for a surface with a normal along
the x3-direction is given by [22],

⟨Q∗
jk⟩ = ℜ(⟨τs⟩(j)31 )ℜ(ṡ

(k)
1 ) + ℜ(⟨τs⟩(j)33 )ℜ(ṡ

(k)
3 ) + ℜ(⟨τ1⟩(j)33 )ℜ(u̇

(k)
3 ) + ℜ(⟨τ2⟩(j)33 )ℜ(v̇

(k)
3 )

+ ℜ(⟨τf ⟩(j)33 )ℜ(ẇ
(k)
3 ), (j, k = 1, 2, 3, 4, 5). (5.1)

On solving equation (5.1), we obtained

⟨Q∗
jk⟩ = ℜ

[
(−ιω)

(
Dja1(k) + Cja3(k) + Ejb3(k) + Fjc3(k) +Gjd3(k)

)
YjY k

]
, (j, k = 1, 2, 3, 4, 5),

(5.2)

where Y1 =
f(1)

A(1)
, Y2 =

f(2)

A(1)
, Y3 =

f(3)

A(1)
, Y4 =

f(4)

A(1)
, and Y5 =

f(5)

A(1)
. The complex conjugate of an

entity is denoted by placing a bar over it.

The mean energy flux of incident and reflected waves in FHS is

⟨FI⟩ = −(ιω) n3(1)L1|A(1)|2, (5.3)

and
⟨FR⟩ = −(ιω) n3(2)L2|A(2)|2. (5.4)

The energy ratio of the reflected wave is given by

ER =

∣∣∣∣A(2)

A(1)

∣∣∣∣2. (5.5)

The energy ratios of the transmitted waves are determined as follows

Ejk =
⟨Q∗

jk⟩
⟨FI⟩

, (j, k = 1, 2, 3, 4, 5). (5.6)
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On solving equation (5.6), the energy ratios E11, E22, E33, E44, and E55, corresponding to the transmitted
waves P1, SV, P2, P3, and P4, respectively, are given by

E11 = ℜ

 (−ιω)
(
D1 a1(1) + C1 a3(1) + E1 b3(1) + F1 c3(1) +G1 d3(1)

)
|Y1|2

(−ιω)n3(1)L1 |A(1)|2

 ,

E22 = ℜ

 (−ιω)
(
D2 a1(2) + C2 a3(2) + E2 b3(2) + F2 c3(2) +G2 d3(2)

)
|Y2|2

(−ιω)n3(1)L1 |A(1)|2

 ,

E33 = ℜ

 (−ιω)
(
D3 a1(3) + C3 a3(3) + E3 b3(3) + F3 c3(3) +G3 d3(3)

)
|Y3|2

(−ιω)n3(1)L1 |A(1)|2

 , (5.7)

E44 = ℜ

 (−ιω)
(
D4 a1(4) + C4 a3(4) + E4 b3(4) + F4 c3(4) +G4 d3(4)

)
|Y4|2

(−ιω)n3(1)L1 |A(1)|2

 ,

E55 = ℜ

 (−ιω)
(
D5 a1(5) + C5 a3(5) + E5 b3(5) + F5 c3(5) +G5 d3(5)

)
|Y5|2

(−ιω)n3(1)L1 |A(1)|2

 .

The total interaction energy arising from the mutual interactions among the transmitted waves is ex-
pressed as

Eint =

5∑
j=1

(
5∑

k=1

Ejk − Ejj

)
. (5.8)

6. Numerical Discussions

For numerical computation, the elastic parameters for a North Sea sandstone saturated with CO2

and water are considered and are given in Table 1. The values for surface flow impedance are Z1 =
102 Pa · s · m−1, Z2 = 104 Pa · s · m−1, and Zf = 10Pa · s · m−1. Furthermore, ρf = 990 kg/m3 and
λf = 2.3× 109 GPa are chosen for FHS.

Table 1: FPS medium parameters [8].
Parameter Description Value

⟨ρs⟩ Average density of solid grains αs × 2650 kg/m3

⟨ρ1⟩ Average density of CO2 in matrix pores α1 × 103 kg/m3

⟨ρ2⟩ Average density of water in matrix pores α2 × 990 kg/m3

⟨ρf ⟩ Average density of water in fractures αf × 990 kg/m3

χp Matrix permeability 10−16 m2

χf Fracture permeability 10−12 m2

Ks Bulk modulus of solid grains 36 GPa
Kfr Bulk modulus of fractured medium 6.25 GPa
Kfrm Bulk modulus of non-fractured blocks 12 GPa
Gfr Shear modulus of fractured medium 9 GPa
µ1 Viscosity of CO2 1.8× 10−5 Pa · s
µ2 Viscosity of water in matrix pores 10−3 Pa · s
µf Viscosity of water in fractures 10−3 Pa · s
K1 Bulk modulus of CO2 3.7 MPa
K2 Bulk modulus of water in matrix pores 2.3 GPa
Kf Bulk modulus of water in fractures 2.3 GPa
Pcap Capillary pressure 0.1S1MPa
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Figure 2: Variation in energy ratios of reflected(P ), transmitted(P1, SV, P2, P3, P4) and interaction
energy with θ ; αs = 0.89; α1 = 0.05; α2 = 0.05; αf = 0.01; ξ = 0.5; ω = 2π × 20Hz.

Figure 2 shows the distribution of incident wave energy among reflected and transmitted waves with
the angle of incidence. The pores at the interface are assumed to be partially open (ξ = 0.5). From the
figure, it is evident that the first critical angle, corresponding to the transmitted P1 wave (θcP ), is 30.6

◦,
while the second critical angle, associated with the transmitted SV wave (θcSV ), is 56

◦. Before the critical
angles, the energy ratios associated with the reflected P wave and transmitted P1 wave show a decreasing
trend, whereas the transmitted SV wave’s energy ratio rises. At the critical angle, θcP = 30.6◦, the
energy shares of the transmitted P1, P2, and SV waves reach their minimum values, while the reflected
P wave energy ratio reaches its maximum. The energy ratios corresponding to P2 and P3 waves show
pronounced peaks in the vicinity of the critical angle θcP . This phenomenon is attributed to an enhanced
mode conversion near the critical angle. Beyond this critical angle θcP , the transmitted P1 wave becomes
evanescent. As the incident angle continues to increase, the energy associated with the transmitted SV
wave rises until it reaches the critical angle for SV wave transmission (θcSV = 56◦). Beyond this angle,
the SV wave also becomes evanescent. A noticeable peak in the energy ratios of the slow waves (P2, P3,
and P4) is observed near the critical angle of the SV wave. Consequently, for incident angles greater than
56◦, no significant energy is transmitted into either the fast P1 wave or SV wave modes within the FPS
medium.
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Figure 3: Effect of frequency on energy ratios of reflected(P ), transmitted(P1, SV, P2, P3, P4); θ = 5◦;
αs = 0.89; α1 = 0.05; α2 = 0.05; αf = 0.01; ξ = 0.5.

Figure 3 shows the effect of frequency on the energy distribution. With the increase in frequency, the
distribution of energy among wave modes in a fractured porous solid undergoes a notable shift. The energy
of the reflected P wave, transmitted P1, and SV wave tends to decrease, indicating reduced efficiency
in energy transmission through fast wave modes at higher frequencies. This behaviour is attributed to
enhanced viscous interactions between the pore fluids and solid matrix, which become more pronounced
as frequency rises. These interactions increase attenuation in fast modes while promoting the excitation
of slow compressional waves. Consequently, the energy share associated with matrix-related slow waves
(P3, P4) and fracture-dominated modes (P2) increases significantly with frequency.
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Figure 4: Effect of fracture volume fraction(αf ) on energy ratios of reflected(P ), transmitted(P1, SV,
P2, P3, P4) waves and interaction energy with θ; αs = 0.90 − αf ; α1 = 0.05; α2 = 0.05; ξ = 0.5;
ω = 2π × 20Hz.
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Figure 4 depicts the impact of fractures on the energy distribution between the reflected and trans-
mitted waves. As the fractures increase in the FPS medium, the energy of reflected P wave and SV
declines, while a significant increase in the energy of P2 wave is observed. Notably, this increase in the
energy of P2 becomes more pronounced for incident angles greater than 56◦. Energy share of slow P3 and
P4 waves associated with matrix pores also declines with increase in fractures up to θ < 56◦, after this
angle, their share increases significantly. It is noted that the amount by which the energy ratio of the
reflected wave decreases is the same amount of energy increment in the P2 and P3 waves. The observed
increase in energy share of the slow waves beyond θ > 56◦ can be attributed to enhanced interaction
and coupling between the slow wave modes(P2, P3 and P4), particularly when fast wave modes become
evanescent.
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Figure 5: Effect of varying the pore-opening parameter ξ on energy ratios of reflected(P ), transmitted(P1,
SV, P2, P3, P4) waves and interaction energy with θ; αs = 0.89; α1 = 0.05; α2 = 0.05; αf = 0.01; ξ = 0.5;
ω = 2π × 20Hz.

Figure 5 demonstrates the influence of pore opening at the interface on the energy distribution of
transmitted waves. The parameter ξ = 0 represents a fully sealed interface, while ξ = 1 corresponds to
fully open pores at the interface. As ξ increases beyond 0, enhanced fluid exchange across the interface
enables greater transmission of wave energy into the FPS medium. This results in a notable rise in the
energy of the second compressional wave (P2), which becomes dominant among the slow wave modes
when the pores are fully open at the interface. A negligible effect is observed on the energy ratio of the
transmitted fast P1, while the transmitted SV wave shows a slight decrease in energy. Interestingly, for
partial pore opening (e.g., ξ = 0.1), the energy of P3 and P4 waves is higher than that observed in both the
sealed and fully open cases. This non-monotonic behaviour is attributed to the complex interplay between
pore opening at the interface and wave-induced fluid motion. The enhanced permeability of the fracture
network, relative to the matrix, plays a crucial role in facilitating the observed energy redistribution.
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Figure 6: Effect of different matrix permeability(χm) on energy ratios of reflected(P ), transmitted(P1,
SV, P2, P3, P4) waves with θ; αs = 0.89; α1 = 0.05; α2 = 0.05; αf = 0.01; ξ = 0.5; ω = 2π × 20Hz.

Figure 6 shows the impact of matrix pore permeability on the energy distribution between various
wave modes. As matrix permeability increases, the energy ratios associated with the slow compressional
waves P3 and P4 show a noticeable rise. In contrast, the energy shares of the reflected P wave, transmitted
fast compressional wave (P1), and shear wave (SV) gradually decrease. The energy ratio corresponding
to the fracture-related wave (P2) remains unaffected by variations in matrix permeability.
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Figure 7: Effect of different fracture permeability(χf ) on energy ratios of reflected(P ), transmitted(P1,
SV, P2, P3, P4) waves with θ; αs = 0.89; α1 = 0.05; α2 = 0.05; αf = 0.01; ξ = 0.5; ω = 2π × 20Hz.
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Figure 8: Comparison of energy ratios calculated by Biot’s Theory and the Volume Average Theory as a
function of the incidence angle θ; ω = 2π × 100Hz; αs = 0.62; α2 = 0.38.

Figure 7 demonstrates the effect of fracture permeability on the energy distribution. As the fracture
permeability increases, the energy share of P2 increases noticeably, indicating stronger fluid mobility
through the fracture pores. In contrast to the P2 wave, the energies of the reflected and all other
transmitted waves decrease. This redistribution of energy highlights the dominant role of fractures in
the FPS medium. Therefore, the presence of fractures markedly alters the propagation characteristics of
waves in porous solids.

6.1. Reduced Case

The fractured porous solid (FPS) model may be reduced to a classical porous solid saturated with a
single fluid by setting α1 = 0 and αf = 0. Under these conditions, the influence of the fracture network
and one fluid phase is eliminated, effectively reducing the system to a two-phase porous medium. In
this simplified scenario, three refracted wave modes P1, SV, and P3 are present within the porous solid.
According to Biot’s theory, the P3 wave corresponds to the slow compressional wave. The P2 wave,
associated with fracture networks, and the P4 wave, associated with the gaseous phase in the primary
pores of the FPS medium, no longer exist in this case. A comparison of energy ratios predicted by
Biot’s Theory and the Volume Average Theory is presented in Figure 8. The findings are qualitatively
consistent with those reported by Wu et al. [9] using Biot’s theory. When the volume average approach
is employed, a higher energy share is predicted for the transmitted P1 and SV waves. In contrast, Biot’s
theory indicates a greater energy contribution from the refracted P2 wave. Furthermore, Wu et al. [9]
neglected energy dissipation within the medium, whereas this paper incorporates it. Consequently, some
energy is lost as a result of wave interactions.
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7. Conclusions

The reflection-transmission phenomena at the interface between a FHS and a FPSHS, which incor-
porates the effects of fractures, double porosity, and multiphase fluids with dual permeability based on
Volume Average Theory, is studied. The following conclusions are drawn based on the above study.

• At critical angle, θcP = 30.6◦, the energy ratios of transmitted P1, P2 and SV waves reach their
minimum values, while the reflected P wave energy ratio reaches its maximum. Beyond the critical
angle θcP , the transmitted P1 wave becomes evanescent.

• As the incident angle continues to increase, the energy associated with the transmitted SV wave
rises until it reaches the critical angle for SV wave transmission (θcSV = 56◦). Beyond this angle, the
SV wave also becomes evanescent. A noticeable peak in the energy ratios of the slow compressional
waves (P2, P3, and P4) is observed near the critical angle of the SV wave.

• As frequency increases, the energy ratios of the reflected P wave, transmitted P1, and SV wave
gradually decline, indicating diminished energy transmission through fast wave modes. This be-
haviour results from stronger viscous interactions between the pore fluids and the solid matrix at
elevated frequencies.

• The energy ratios of slow waves (P2, P3, P4) increases significantly with frequency.

• As the fractures volume fraction increases in the FPS medium, the energy ratio of the reflected P
wave and SV decreases while a significant increase in the energy ratio of the P2 wave is observed.
Notably, this increase in the energy ratio of the P2 wave becomes more significant for incident angles
greater than 56◦.

• For partial opening of the pores at the interface of the fluid-FPS interface, the energy ratios of the
slow compressional waves (P3 and P4) are higher than those observed in both the sealed and fully
open cases.

• As matrix permeability increases, the energy ratios associated P3 and P4 waves show a noticeable
increase. In contrast, the energy shares of the reflected P wave, transmitted fast compressional
wave (P1), and shear wave (SV) gradually decrease.

• As the permeability of the fractures increases, the energy share of the P2 increases noticeably,
indicating stronger fluid mobility through the fracture pores.

• The observed frequency-dependent decline in fast wave energy transmission, driven by fluid-solid
viscous interactions, provides key insights for improving subsurface imaging, reservoir characterisa-
tion, and acoustic monitoring in fractured porous media.
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Appendix A

a11 = −αs(J32 + J33),a12 = −αsJ34, a13 = −αsJ35, a14 = −αsJ37,
a21 = −S1αp(J42 + J43), a22 = −S1αpJ44, a23 = −S1αpJ45, a24 = S1αpJ47,
a31 = −(1− S1)αp(J52 + J53), a32 = −(1− S1)αpJ54, a33 = −(1− S1)αpJ55, a34 = −(1− S1)αpJ57,
a41 = −αf (J72 + J73), a42 = −αfJ74, a43 = −αfJ75, a44 = −αfJ77,
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J11 = R11 − J61αp(R14 +R15)− J71R12E2,
J12 = R12 − J62αp(R14 +R15)− J72R12E2,
J13 = R13 − J63αp(R14 +R15)− J73R12E2,
J14 = R14 − J64αp(R14 +R15)− J74R12E2,
J15 = R15 − J65αp(R14 +R15)− J75R12E2,
J21 = R21 − J61αp(R24 +R25)− J71R22E2,
J22 = R22 − J62αp(R24 +R25)− J72R22E2,
J23 = R23 − J63αp(R24 +R25)− J73R22E2,
J24 = R24 − J64αp(R24 +R25)− J74R22E2,
J25 = R25 − J65αp(R24 +R25)− J75R22E2,
J31 = R31 − J61αp(R34 +R35)− J71R32E2,
J32 = R32 − J62αp(R34 +R35)− J72R32E2,
J33 = R33 − J63αp(R34 +R35)− J73R32E2,
J34 = R34 − J64αp(R34 +R35)− J74R32E2,
J35 = R35 − J65αp(R34 +R35)− J75R32E2,
J41 = R41 − J61αp(R44 +R45)− J71R42E2,
J42 = R42 − J62αp(R44 +R45)− J72R42E2,
J43 = R43 − J63αp(R44 +R45)− J73R42E2,
J44 = R44 − J64αp(R44 +R45)− J74R42E2,
J45 = R45 − J65αp(R44 +R45)− J75R42E2,
J51 = R51 − J61αp(R54 +R55)− J71R52E2,
J52 = R52 − J62αp(R54 +R55)− J72R52E2,
J53 = R53 − J63αp(R54 +R55)− J73R52E2,
J54 = R54 − J64αp(R54 +R55)− J74R52E2,
J55 = R55 − J65αp(R54 +R55)− J75R52E2,
J61 = −J66E3(R31 + (R41S1 +R51(1− S1))

αp

αs
),

J62 = −J66E3(R32 + (R42S1 +R52(1− S1))
αp

αs
)),

J63 = −J66E3(R33 + (R43S1 +R53(1− S1))
αp

αs
)),

J64 = −J66E3(R34 + (R44S1 +R54(1− S1))
αp

αs
)),

J65 = −J66E3(R35 + (R45S1 +R55(1− S1))
αp

αs
)),

J71 = −J76E3(R31 + (R41S1 +R51(1− S1))
αp

αs
)),

J72 = −J76E3(R32 + (R42S1 +R52(1− S1))
αp

αs
)),

J73 = −J76E3(R33 + (R43S1 +R53(1− S1))
αp

αs
)),

J74 = −J76E3(R34 + (R44S1 +R54(1− S1))
αp

αs
)),

J75 = −J76E3(R35 + (R45S1 +R55(1− S1))
αp

αs
)),

J16 = − 1
αp

J66(R14 +R15)− J76R12E2,

J17 = − 1
αp

J67(R14 +R15)− J77R12E2,

J26 = − 1
αp

J66(R24 +R25)− J76R22E2,

J27 = − 1
αp

J67(R24 +R25)− J77R22E2,

J36 = − 1
αp

J66(R34 +R35)− J76R32E2,

J37 = − 1
αp

J67(R34 +R35)− J77R32E2,

J46 = − 1
αp

J66(R44 +R45)− J76R42E2,

J47 = − 1
αp

J67(R44 +R45)− J77R42E2,

J56 = − 1
αp

J66(R54 +R55)− J76R52E2,

J57 = − 1
αp

J67(R54 +R55)− J77R52E2,

n11 = −1− E3

αp
(R34 +R35 + ((R44 +R45)S1 + (R54 +R55)(1− S1))

αp

αs
),

n12 = −(
1−αf

αs
)E3 − E2E3(R32 + (R42S1 +R52(1− S1))

αp

αs
),

n21 = − 1
αf

, n22 = − 1
Kf

, J66 = n22

n11n22−n12n21
, J67 = − n12

n11n22−n12n21
, J76 = − n21

n11n22−n12n21
,

J77 = n11

n11n22−n12n21
,
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R44 =
−K1S1(K

2
sαp(K2+A2/S1)+A1A2(1−S1)K2/S1)

A3

R45 =
K1K2(1−S1)(−K2

sαp+A1A2)
A3

,

R54 =
K1K2S1(−K2

sαp+A1A2)
A3

,

R55 =
−K2(1−S1)(K

2
sαp(K1+

A2
(1−S1)

)+
A1A2S1K1

(1−S1)
)

A3
,

R41 =
K1(1−S1)(K

2
sαp+A1K2)

A3
,

R42 =
Kfr(K1Ks(A2+K2))

A3
,

R43 = −αsK1K
2
s (A2+K2)
A3

,

R51 = −K2S1(K1A1+K2
sαp)

A3
,

R52 =
Kfr(K2Ks)(K1+A2)

A3
,

R53 =
αs(−K2K

2
s (K1+A2))
A3

,

R14 =
A1K1S1αp(A2+K2)

A3
,

R15 =
A1K2(1−S1)αp(K1+A2)

A3
,

R24 =
−K1S1(1−S1)(K

2
sαp+A1K2)

A3
,

R25 =
S1(1−S1)K2(K

2
sαp+A1K1)

A3
,

R34 = −K1A1KsαpS1(A2+K2)
αsA3

,

R35 =
−A1K2K

2
sαp(1−S1)(K1+A2)
αsKsA3

,

R11 =
A1S1(1−S1)αp(K2−K1)

A3
,

R12 =
KfrKsαp(K1(1−S1)+A2+K2S1)

A3
,

R13 =
−αsK

2
sαp(K1(1−S1)+A2+K2S1)

A3
,

R21 =
−1

Pcap
+(K1K

2
sαp(1−S1)+A1K1K2+K2S1K

2
sαp)

PcapA3
,

R22 =
S1(1−S1)KsKfr(K1−K2)

A3
,

R23 =
αsK

2
sS1(1−S1)(K2−K1)

A3
,

R31 =
A1S1(1−S1)K

2
sαp(K1−K2)

αsKsA3
,

R32 =
(−Kfr

αp
)+A1Kfr(S1K1A2+K1K2+K2A2(1−S1))

αsA3
,

R33 = A1Ks(−(K1A2S1+K1K2+A2K2(1−S1)))
A3

,

A2 = S1(1− S1)
dPcap

dS1

A3 = A1((1− S1)A2K2 +K1K2 +K1A2S1) +K2
sαp(A2 +K2S1 +K1(1− S1)),

E2 = (1− αf )(
1

Kfr
− 1

Kfrm
),

E3 = F (( αs

Ks
)− α2

s

Kfr
),

A1 = (αsKs −Kfr)− E2KfrKs,

A2 = S1(1− S1)
dPcap

dS1
,

A3 = A1((1− S1)A2K2 +K1K2 +K1A2S1) +K2
sαp(A2 +K2S1 +K1(1− S1)),

E1 = 1
Ks

− (1−αf )
Kfrm

,

E2 = (1− αf )(
1

Kfr
− 1

Kfrm
),

E3 = F (( αs

Ks
)− α2

s

Kfr
),

αp = α1 + α2,
S1 = α1

αp
, S2 = α2

αp
, F = 0.8.
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Appendix B

Γ11 =
(a11 + 2Gfr)

c2
+Gfrq

2 − ⟨ρs⟩ − e1 − e2 − e3, Γ12 = (a11 +Gfr)
q

c
, Γ13 =

(
e1 +

a12
c2

)
, Γ14 = a12

q

c
,

Γ15 = e2 +
a13
c2

, Γ16 = a13
q

c
, Γ17 = e3 +

a14
c2

, Γ18 = a14
q

c
, Γ21 = (a11 + Gfr)

q

c
, Γ22 =

Gfr

c2
+ (2Gfr +

a11)q
2 − ⟨ρs⟩ − e1 − e2 − e3, Γ23 = a12

q

c
, Γ24 = e1 + a12q

2, Γ25 = a13
q

c
, Γ26 = e2 + a13q

2, Γ27 = a14
q

c
,

Γ28 = e3 + a14q
2, Γ31 = e1 +

a21
c2

, Γ32 = a21
q

c
, Γ33 =

a22
c2

− e1 − ⟨ρ1⟩, Γ34 = a22
q

c
, Γ35 =

a23
c2

,

Γ36 = a23
q

c
, Γ37 =

a24
c2

, Γ38 = a24
q

c
, Γ41 = a21

q

c
, Γ42 = e1 + a21q

2, Γ43 = a22
q

c
, Γ44 = a22q

2 − ⟨ρ1⟩ − e1,

Γ45 = a23
q

c
, Γ46 = a23q

2, Γ47 = a24
q

c
, Γ48 = a24q

2,Γ51 = e2 +
a31
c2

, Γ52 = a31
q

c
, Γ53 =

a32
c2

, Γ54 = a32
q

c
,

Γ55 =
a33
c2

− ⟨ρ2⟩ − e2, Γ56 = a33
q

c
, Γ57 =

a34
c2

, Γ58 = a34
q

c
, Γ61 = a31

q

c
, Γ62 = e2 + a31q

2, Γ63 = a32
q

c
,

Γ64 = a32q
2, Γ65 = a33

q

c
, Γ66 = a33q

2 − ⟨ρ2⟩ − e2, Γ67 = a34
q

c
, Γ68 = a34q

2, Γ71 = e3 +
a41
c2

, Γ72 = a41
q

c
,

Γ73 =
a42
c2

, Γ74 = a42
q

c
, Γ75 =

a43
c2

, Γ76 = a43
q

c
, Γ77 =

a44
c2

− ⟨ρf ⟩ − e3, Γ78 = a44
q

c
, Γ81 = a41

q

c
,

Γ82 = e3+a41q
2, Γ83 = a42

q

c
, Γ84 = a42q

2, Γ85 = a43
q

c
, Γ86 = a43q

2, Γ87 = a44
q

c
, Γ88 = a44q

2−⟨ρf ⟩−e3.

Appendix C

h1 = l25z1,
h2 = l25z2 + l26z1,
h3 = l25z3 + z2l26,
h4 = l25z4 + l26z3,
h5 = l25z5 + l26z4,
h6 = l26z5,

l25 = Gfr,
l26 = e21/s2 + e22/s3 + e23/s4 − s1,

z1 = l17y1 − l22y5 + l23y9 − l24y13,
z2 = l17y2 + l18y1 − l22y6 − l19y5 + l23y10 + y9l20 − l24y14 − l21y13,
z3 = l17y3 + l18y2 − l22y7 − l19y6 + l23y11 + l20y10 − l24y15 − l21y14,
z4 = l17y4 + l18y3 − l22y8 − l19y7 + l23y12 + l20y11 − l24y16 − l21y15,
z5 = l18y4 − l19y8 + l20y12 − l21y16,

s1 = ⟨ρs⟩+ e1 + e2 + e3, s2 = ⟨ρ1⟩+ e1, s3 = ⟨ρ2⟩+ e2, s4 = ⟨ρf ⟩+ e3,

l17 = a11 + 2Gfr,
l18 = ((a11 + 2Gfr)/c

2)− s1,
l19 = a12 + c2e1,
l20 = a13 + c2e2,
l21 = a14 + c2e3,
l22 = a12c

2,
l23 = a13c

2,
l24 = a14c

2,

y1 = l1c
6,

y2 = (3l1 + l2)c
4,

y3 = (3l1 + 2l2 + l3)c
2,

y4 = l1 + l2 + l3 + l4,
y5 = l5c

6,
y6 = c4(3l5 + l6), y7 = c2(3l5 + 2l6 + l7),
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y8 = l5 + l6 + l7 + l8,
y9 = l9c

6,
y10 = c4(3l9 + l10),
y11 = c2(3l9 + 2l10 + l11),
y12 = l9 + l10 + l11 + l12,
y13 = l13c

6,
y14 = c4(3l13 + l14),
y15 = c2(3l13 + 2l14 + l15),
y16 = l13 + l14 + l15 + l16,

l1 = a23(a42a34 − a44a32) + a24(a43a32 − a42a33) + a22(a44a33 − a43a34),
l2 = (s4a23a32 + a24a42s3 − a22(s4a33 + s3a44)− s2(a33a44 − a34a43))c

2,
l3 = (s3s4a22 + s2(s4a33 + s3a44))c

4,
l4 = −s2s3s4c

6,
l5 = 1

c2 (a24(a43a31 − a41a33) + a23(a34a41 − a44a31) + a21(a44a33 − a43a34)) ,
l6 = e1(a33a44 − a34a43)− a21(s4a33 + s3a44) + a23(a33s4 + e3a34 − a44e2) + a24(e2a43 − e3a33 + a41s3),
l7 = c2(s3s4a21 − e1(s4a33 + s3a44) + a23e2s4 + a24s3e3),
l8 = e1s3s4c

4,
l9 = 1

c2 (a21(a32a44 − a34a42) + a22(a41a34 − a31a44) + a24(a31a42 − a32a41)),
l10 = e1(a32a44−a34a42)−a21s4a32+a22(e3a34+s4a31−e2a44)−s2(a41a34−a31a44)+a24(e2a42−e3a32),
l11 = c2(−e1s4a32 + a22e2s4 − s2(e3a34 + s4a31 − e2a44)),
l12 = −e2s2s4c

4,
l13 = 1

c2 (a21(a32a43 − a33a42) + a22(a41a33 − a31a43) + a23(a31a42 − a32a41)),
l14 = s3a21a42+e1(a32a43−a33a42)+a22(e3a33−s3a41−a43e2)−s2(a41a33−a31a43)+a23(e2a42−e3a32),
l15 = c2(e1s3a42 − a22e3s3 − s2(e3a33 − s3a41 − a31e2)),
l16 = e3s2s3c

4.
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