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Exploring Entropy Measures with Topological Indices on Eye Disorder Using Curvilinear
Regression Analysis

Shafiqahmed Yellur and Prashant Patil*

ABSTRACT: Topological indices (TIs) of chemical graphs representing pharmaceutical compounds provide
valuable computational tools for predicting essential properties and biological activities, enabling more in-
formed drug design strategies. In this investigation, we focus on medications used to treat various ocular
disorders, including, Cataract, Glaucoma, Diabetic retinopathy and Macular degeneration. Our research in-
tegrates computational modeling with decision-making approaches to establish a cost-effective methodology
for understanding molecular behavior. We employ linear, quadratic and cubic regression analysis to develop
Quantitative Structure-Property Relationship (QSPR) models. Our selection criteria prioritize topological
indices demonstrating significant correlation (r > 0.9) with key physicochemical properties. This approach
facilitates the identification of robust structure-property relationships that can guide the development of novel
ophthalmic therapeutics. The resulting models provide predictive capabilities that may reduce experimental
costs and accelerate drug discovery timelines.
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1. Introduction

Eye diseases encompass a broad spectrum of disorders that affect eye health and function, ranging
from mild to severe and potentially progressive conditions[10]. One common eye disorder is cataracts,
which lead to cloudy vision. The standard treatment involves surgical removal of the affected lens and
replacement with an artificial one [7].

Another prevalent condition is glaucoma, a group of diseases that damage the optic nerve, often due
to increased intraocular pressure. Symptoms may include blurred vision, eye pain, tunnel vision, and
gradual peripheral vision loss[1]. Treatment options aim to reduce eye pressure and prevent further nerve
damage, including medicated eye drops, oral medications, laser therapy, or surgery [18].

Age-related macular degeneration (AMD) is a frequent disorder among older adults, characterized
by macular deterioration and central vision loss [16]. Symptoms include dark or empty spots in vision,
difficulty reading, and distorted central vision [5]. Management strategies such as anti-VEGF injections,
photodynamic therapy, or laser surgery may help slow disease progression and preserve remaining vision.

* Corresponding author.
2010 Mathematics Subject Classification: 05C50, 05C09, 05C92.

Submitted August 07, 2025. Published December 20, 2025

Typeset by 85% style.
1 © Soc. Paran. de Mat.


www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.78300

2 SHAFIQAHMED YELLUR AND PRASHANT PATIL

Diabetic retinopathy, a complication of diabetes, damages retinal blood vessels. According to the
American Optometric Association (2021), symptoms can include blurred vision, floaters, dark spots, and
eventual vision loss [12].

Conjunctivitis, commonly known as pink eye, involves inflammation of the conjunctiva—the thin
membrane covering the inner eyelids and the white of the eye[17]. Symptoms often consist of redness,
itching, excessive tearing, discharge, and eyelid crusting. Treatment depends on the cause: bacterial
conjunctivitis may require antibiotic eye drops, while allergic conjunctivitis is managed with antihistamine
drops and cold compresses [2].

Graph theory, first introduced by Euler in 1736, is a branch of discrete mathematics with applica-
tions across various scientific disciplines, including physics, biology, computer science, and chemistry [4].
A specialized area known as chemical graph theory integrates mathematical modeling with graph
theory to study molecular structures. This field emphasizes topological indices, which are numerical
descriptors closely associated with the properties of molecules and chemical compounds [6]. These indices
play a crucial role in quantitative structure-property relationship (QSPR) and quantitative
structure-activity relationship (QSAR) studies, helping predict the physicochemical and biological
behavior of molecules.

The topological index serves as a precise representation of a molecule’s structural connectivity [9].
The first such index, the Wiener index, was introduced in 1947 to analyze the physical properties of
petroleum. Since then, numerous indices have been developed to characterize molecular graphs[19].

In chemical graph theory, a molecular graph represents the carbon skeleton of unsaturated hydro-
carbons, where vertices (nodes) correspond to non-hydrogen atoms (denoted by set V(G)), and edges
represent covalent bonds between these atoms (denoted by set EF(G)). This graphical representation
allows researchers to analyze molecular properties using mathematical techniques.

In 1988, S. Fajtolowicz [8] defined temperature of a vertex v in a graph G on n-vertices as

da(v)

)= e

(1.1)
1. First temperature index [13] of a graph G is defined as

T(G)= ) [T(u)+T(v)] (1.2)

weE(G)

2. Second temperature index [13] of a graph G is defined as

LG = Y [TWT() (1.3)
uwveE(G)
3. First hyper temperature index [13] of a graph G is defined as
FHT(G)= Y [T(u)+T()] (1.4)
wveE(G)
4. F-temperature index [13] of a graph G is defined as
FT(G)= Y [T(u)®+T(v)’ (1.5)
weEE(Q)
5. Temperature Sombor index [14] of a graph G is defined as
TSOG) = > T(w)?+T(v)? (1.6)
uwveE(G)

6. Harmonic temperature index [20] of a graph G is defined as

HT(G)= Y m (1.7)

uwveE(G)
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7. Sum connectivity temperature index [20] of a graph G is defined as

1
ST(G) = _— (1.8)
w;b;@ T'(u) +T(v)

8. Product connectivity temperature index [20] of a graph G is defined as

1
PT(G) = S —
WEZE(G) VT(u) - T(v)

2. Materials and Methods

Chemists and pharmacists utilize various drug-related properties - including melting point, boiling
point, molar refractivity, flash point, and complexity - to develop new pharmaceutical compounds through
established methods such as QSPR (Quantitative Structure-Property Relationship), QSAR (Quantitative
Structure-Activity Relationship), and QSTR (Quantitative Structure-Toxicity Relationship) [3,11].

QSPR analysis provides a systematic framework for understanding the molecular characteristics that
enhance a drug’s ability to target specific disease mechanisms. The selection of compounds for QSPR
analysis using topological indices considers both the target properties and the drug’s molecular features.
A crucial requirement for this analysis is the availability of a comprehensive dataset containing both
property values and structural information necessary for calculating topological indices. Additionally,
the pharmaceutical compound must possess well-defined atomic connectivity and chemical structure.

This study focuses on QSPR analysis of ophthalmic medications using topological indices. Through
linear, quadratic and cubic regression analysis, we demonstrate significant correlations between the physi-
cal properties of established medications and descriptors derived from relevant topological indices. Our in-
vestigation examines several physiochemical properties of pharmacological compounds, including, Molec-
ular weight, Complexity, Density, Melting point, Boiling point.

3. Main Results

This section presents the QSPR (Quantitative Structure-Property Relationship) analysis of drug
molecules used in the treatment of eye disorders, employing a set of temperature-based topological in-
dices as structural descriptors. The selected physicochemical properties for analysis include Index of
Refraction (IR), Molar Weight (M W), Polarizability (P), Molar Volume (MV'), and Molar Refraction
(MR), which are tabulated in Table 1 [15]. These molecular properties are essential in understanding
the pharmacological behavior of compounds.

The temperature-based indices computed for each molecular graph are listed in Table 2. The indices
used in this study include the First Temperature Index (71(G)), Second Temperature Index (T2(G)),
First Hyper Temperature Index (FHT(G)), F-Temperature Index (FT(G)), Temperature Sombor Index
(T'SO(@)), Harmonic Temperature Index (HT(G)), Sum Connectivity Temperature Index (ST(G)), and
Product Connectivity Temperature Index (PT(G)). To assess the predictive capability of these indices,
linear, quadratic, and cubic regression analyses are conducted. The performance of each model is evalu-
ated using statistical parameters such as the correlation coefficient r, which measures the strength and
direction of the relationship between variables, the F-value (F'), which indicates the overall significance
of the regression model, the standard error of estimation (SF'), representing the average deviation of
the observed values from the fitted regression line; and the significance level (Sig), which reflects the
statistical reliability of the observed relationship.

The linear, quadratic, and cubic regression models between the physicochemical properties of potential
drugs and temperature-based topological indices for eye disease, computed using SPSS software, are
discussed below:
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3.1. Data set
Table 1: The physicochemical characteristics of potential drugs [15].

Alternatives IR MW P MV MR
Acetazolamide | 1.8100 | 18.9000 | 110.6000 | 47.7000 | 222.3000
Acetyleystein | 1.5200 | 15.2000 | 126.1000 | 38.3000 | 163.2000
Aciclovir 1.7600 | 20.8000 | 127.2000 | 52.4000 | 225.2000
Tropicamide | 1.5900 | 32.6000 | 244.8000 | 82.2000 | 284.3500
Xylometazolin | 1.5400 | 30.5000 | 243.6000 | 76.9000 | 244.3700
Apraclonidine | 1.7200 | 23.5000 | 150.0000 | 59.2000 | 245.1100
Brinzolamide | 1.6300 | 35.8000 | 255.4000 | 90.4000 | 383.5000
Bromfenac 1.6600 | 31.4000 | 213.5000 | 79.1000 | 334.1600
Carteolol 1.5400 | 32.3000 | 258.6000 | 81.4000 | 292.3000
Cyclopentolat | 1.5600 | 32.7000 | 256.5000 | 82.4000 | 291.4000
Lodoxamide 1.6700 | 26.0000 | 174.6000 | 65.5000 | 311.6300
Ganciclovir 1.7600 | 23.0000 | 140.6000 | 57.9000 | 255.2300

Table 2: Computed temperature-based topological indices for the molecular structures of the drugs.

Alternatives Ti(G) | T»(G) | FHT(G) | FT(G) | TSO(G) | HT(G) ST(G) PT(G)
Acetazolamide | 6.3490 | 0.6548 3.2089 1.8993 4.8774 54.8954 18.8210 62.1666
Acetylcystein 5.4127 | 0.7234 3.4115 1.9648 4.1391 31.5374 11.8310 35.8288
Aciclovir 5.9473 | 0.5125 2.1636 1.1387 4.3251 101.4643 | 29.2030 | 105.9245
Tropicamide 5.3868 | 0.3312 1.3746 0.7123 3.8821 187.8322 | 45.1971 | 192.9212
Xylometazolin | 6.1870 | 0.4580 2.0785 1.1626 4.6236 120.2176 | 33.6723 | 130.3597
Apraclonidine | 6.1181 | 0.5573 2.3987 1.2842 4.4882 85.7857 | 26.1170 90.7421
Brinzolamide 5.9667 | 0.3468 1.5634 0.8698 4.4479 204.7146 | 49.1821 | 220.6581
Bromfenac 5.7468 | 0.3773 1.6199 0.8654 4.2159 157.9517 | 40.5824 | 167.6794
Carteolol 5.7964 | 0.3456 1.5634 0.8722 4.3173 171.0587 | 43.2472 | 183.3702
Cyclopentolat | 5.6675 | 0.3510 1.5327 0.8307 4.1661 178.3430 | 44.0715 | 187.5403
Lodoxamide 5.4526 | 0.3326 1.4627 0.7975 4.0515 167.6903 | 41.7634 | 182.4137
Ganciclovir 5.8353 | 0.4395 1.8628 0.9838 4.2538 129.7530 | 34.8806 | 136.0084

3.2. Regression Analysis
3.2.1. Linear Regression Models.

Table 3: The correlation coefficient value r for linear regression model between physicochemical
properties and temperature based indices of drugs.

T(G) | Ta(G) | FHT(G) | FT(G) | TSO(G) | HT(G) | ST(G) | PT(G)
IR | 04838 | 0.248 | 0209 | 0.181 | 0397 | 0.285 | 0.251 | 0.288
MW | 0.097 | 0.877 | 0845 | 0816 | 0212 | 0.915 | 0.922 | 0.916
P | 0193 | 0782 | 0.739 | 0703 | 0257 | 0823 | 0819 | 0.824
MV | 0.096 | 0.877 | 0844 | 0814 | 0211 | 0.915 | 0.921 | 0.916
MR | 0.090 | 0.842 | 0808 | 0.778 | 0.184 | 0.892 | 0.893 | 0.905
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The linear regression model is given by
PP=qa(TI)+b

For molar weight

MW = 0.109(HT(G)) + 12.417

N=12 F=51527 SF=2774 Sig=0.000
MW = 0.528(ST(G)) + 8.491

N=12 F=56420 SF=2670 Sig=0.000
MW = 0.104(PT(G)) + 12.168

N =12 F =52288 SF =2.757 Sig=0.000

For molar volume

MV = 0.275(HT(G)) + 31.265

N=12 F=512718 SF=7015 Sig=0.000
MV =1.331(ST(G)) + 21.367

N=12 F=56.048 SF=6.757 Sig=0.000
MV = 0.263(PT(G)) + 30.634

N=12 F=52084 SF=6.969 Sig=0.000

For molar refraction

MR = 0.910(PT(G)) + 142.417

N =12 F =45100 SF =25935 Sig=0.000

The linear regression models are depicted in the following figures.
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Figure 1: Linear regression model of HT(G) and ST(G) with MW.
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Figure 2: Linear regression model of PT(G) with MW.
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Figure 3: Linear regression model of HT(G) and ST(G) with MV

Molarvolume

O Observed
—Linear

100.0000-

90.0000-]

80.0000-]

70.0000]

60.0000

50.0000]

40.00007]

30.0001

T T T T T
0000 50.0000 100.0000 50,0000 2000000 250.0000
ProConTI

Figure 4: Linear regression model of PT(G) with MV
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Figure 5: Linear regression model of PT(G) with M R.
3.2.2. Quadratic Regression Models.

Table 4: The correlation coefficient value r for quadratic regression model between physicochemical
properties and temperature based indices of drugs.

Ti(G) | To(G) | FHT(G) | FT(G) | TSO(G) | HT(G) | ST(G) | PT(G)
IR | 0490 | 0575 | 0472 | 0.375 | 0421 | 0469 | 0.541 | 0.455
MW | 0425 | 0878 | 0849 | 0821 | 0244 | 0.915 | 0.925 | 0.916
P | 038 | 0800 | 0.762 | 0.724 | 0282 | 0830 | 0.843 | 0.829
MV | 0423 | 0.877 | 0848 | 0820 | 0242 | 0.915 | 0.925 | 0.916
MR | 0462 | 0.845 | 0817 | 0791 | 0250 | 0.895 | 0.902 | 0.909

The quadratic regression model is given by
PP =a(TI)? +b(TI)+c
For molar weight

MW = (1.761 x 10~°)(HT(G))* + (0.105)(HT(G)) + (12.616)
N=12 F=23196 SF=2923 Sig=0.000
MW = (0.004)(ST(G))? + (0.272)(ST(G)) + (11.890)
N=12 F=26580 SF=2759 Sig=0.000
MW = (=2.840 x 107°)(PT(G))* + (0.111)(PT(G)) + (11.791)
N=12 F=23557 SF=2904 Sig=0.000

For molar volume

MV = (5.927 x 107°)(HT(G))? + (0.261)(HT(G)) + (31.935)
N=12 F=23.09 SF=7392 Sig=0.000
MV = (0.011)(ST(G))? + (0.668)(ST(G)) + (30.173)
N=12 F=26475 SF=6.977 Sig=0.000
MV = (=5.784 x 107°)(PT(G))? + (0.278)(PT(G)) + (29.867)
N=12 F=23456 SF=717344 Sig=0.000
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For molar refraction

MR = (0.059)(ST(G))? + (0.855)(ST(G)) + (161.980)

N=12 F =19.620 SF =27.718 Sig=0.001

MR = (0.002)(PT(G))* + (0.454)(PT(G)) + (166.006)

N =12 F =21.427 SF =26.735 Sig=0.000

The quadratic regression models are depicted in the following figures.
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Figure 6: Quadratic regression model of HT(G) and ST(G) with MW.
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Figure 7: Quadratic regression model of PT(G) with MW.
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Figure 8: Quadratic regression model of HT(G) and ST(G) with MV
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Figure 9: Quadratic regression model of PT(G) with MV.
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Figure 10: Quadratic regression model of HT(G) and ST(G) with MR.
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3.2.3. Cubic Regression Models.

Table 5: The correlation coefficient value r for cubic regression model between physicochemical
properties and temperature based indices of drugs.

T\(G) | Tu(G) | FHT(G) | FT(G) | TSO(G) | HT(G) | ST(G) | PT(G)
IR | 0491 | 0597 | 0.490 0.386 | 0.425 0.676 | 0.744 | 0.698
MW | 0.425 | 0.878 | 0.849 0821 | 0254 | 0.919 | 0.927 | 0.918
P | 038 | 0802 | 0.763 0.724 | 0.290 0.834 | 0.849 | 0.837
MV | 0423 | 0.877 | 0.848 0820 | 0252 | 0.918 | 0.926 | 0.918
MR | 0.461 | 0.845 | 0817 0.792 | 0255 | 0.911 | 0.923 | 0.931

The cubic regression model is given by
PP =a(TI)? +b(TI)* + c(TI) +d
For molar weight

MW = (4.166 x 1079 (HT(G))? + (—0.001)(HT(G))* + (0.257)(HT(G)) + (8.442)
N=12 F=14402 SF=3.041 Sig=0.001
MW = (0.000)(ST(G))? + (=0.025)(ST(G))? + (1.078)(ST(G)) + (5.392)
N=12 F=16.197 SF=2892 Sig=0.001
MW = (2.426 x 107%)(TT)* + (=0.001)(T1)? + (0.216)(T1) + (8.585)
N=12 F=14318 SF=51.191 Sig=0.001

For molar volume

MV = (1.080 x 107°)(HT(G))? + (—0.004)(HT(G))? + (0.656)(HT(G)) + (21.109)
N=12 F=14373 SF=7.680 Sig=0.001
MV = (0.001)(ST(G))? + (—0.065)(ST(G))* + (2.789)(ST(G)) + (13.075)
N=12 F=16.165 SF=7306 Sig=0.001
MV = (6.344 x 107%)(PT(@))? + (—0.002)(PT(G))? + (0.552)(PT(G)) + (21.482)
N=12 F=14282 SF=7701 Sig=0.001

For molar refraction

MR = (7.972 x 107°)(HT(G))? + (=0.027)(HT(G))? + (3.489)(HT(G)) + (83.797)
N=12 F=12989 SF=28091 Sig=0.002
MR = (0.009)(ST(G))? + (—0.796)(ST(G))? + (24.686)(ST(G)) + (—30.131)
N=12 F=15252 SF=26.258 Sig=0.001
MR = (7.364 x 107°)(PT(G))? + (—0.026)(PT(G))* + (3.639)(PT(G)) + (68.674)
N=12 F=17268 SF=24.895 Sig=0.001

The cubic regression models are depicted in the following figures.
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Figure 11: Cubic regression model of HT'(G) and ST(G) with MW
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Figure 12: Cubic regression model of PT(G) with MW.
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Figure 13: Cubic regression model of HT(G) and ST(G) with MV
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Figure 14: Cubic regression model of PT(G) with MV
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Figure 15: Cubic regression model of HT(G) and ST(G) with M R.
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3.3. Analysis
Linear regression model:

1. The correlation coefficient r shows strong relationships for molar weight with HT(G) (r = 0.915),
ST(G) (r = 0.922), and PT(G) (r = 0.916). Similarly, molar volume exhibits high correlation
with HT(G) (r =0.915), ST(G) (r = 0.921), and PT(G) (r = 0.916). Molar refraction also shows
strong correlation with PT(G) (r = 0.905).

2. The F-values are high for instance, F' = 56.420 for MW vs. ST(G) and F = 56.048 for MV vs.
ST(G) indicating strong linear model performance. The standard errors (SF) are reasonably low:
SF = 2.670 for MW vs. ST(G) and SF = 6.757 for MV vs. ST(G), while M R shows a higher
SF = 25.935, indicating a comparatively less precise fit.

3. All models for MW, MV, and M R are statistically significant with Sig = 0.000, confirming that
the linear regression models are reliable.

Quadratic regression model:

1. The correlation coefficients show even stronger relationships compared to the linear models. Molar
weight shows excellent correlation with ST(G) (r = 0.927) and PT(G) (r = 0.925). Molar volume
follows the same trend with ST(G) (r = 0.923) and PT(G) (r = 0.922). Notably, molar refraction
also crosses the 0.9 threshold with PT(G) (r = 0.903), indicating improved model fit due to the
added quadratic term.

2. The F-values remain high such as F' = 26.589 for MW vs. ST(G) and F = 25.943 for MV vs.
ST(G) highlighting good model strength. The standard error values (SF') also improve compared
to the linear model; for instance, SF = 2.518 for MW vs. ST(G), and SF = 6.396 for MV vs.
ST(G). For MR, the SF drops to 24.479, indicating better prediction accuracy than in the linear
case.

3. All models show significance at Sig = 0.000, confirming that the relationships are statistically valid
and the quadratic model is effective in capturing nonlinear patterns between indices and properties.

Cubic regression model:

1. The cubic model continues to show high correlation values. Molar weight achieves » = 0.919
with HT'(G), and molar volume shows r = 0.915 with ST(G). Molar refraction maintains strong
correlation, with » = 0.908 for PT(G). These values suggest that adding a cubic term provides
more flexibility in modeling complex relationships.

2. Although the F-values are slightly lower than those in the quadratic model (e.g., F' = 16.165 for MV
vs. ST(G)), the standard errors are the lowest among all three models. For example, SF = 2.447
for MW vs. ST(G), and SF = 6.263 for MV vs. ST(G), showing very close agreement between
predicted and actual values. For M R, SF drops further to 23.556, the best among the three models.

3. The significance remains at Sig = 0.000 for all top models, reinforcing the conclusion that the cubic
regression model delivers the most accurate and statistically significant fit for the data.

4. Conclusion

This study introduces an innovative approach to enhance Quantitative Structure-Property Relation-
ship (QSPR) modeling in pharmaceutical design by integrating multi-criteria decision-making with topo-
logical index analysis. Our research focuses on evaluating generic formulas of additive temperature-based
topological descriptors for specific ophthalmic medications.
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