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1. Introduction

The measurement of the distance between two points is not always exact. During measurement, some
errors may occur. These errors may be slightly positive, slightly negative, or sometimes zero. If error
is zero, then it corresponds to the metric. To account for these, a positive error is subtracted and a
negative error is added during determining the exact value of the distance function. These errors may
play a significant role during measurement.
In order to overcome the difficulty, whenever error is added in metric, Mohamed Jleli and Bessem Samet
[10] gave the notion of a perturbed metric space. Perturbed metric spaces is improvement over the metric
spaces. The significance of perturbed metric spaces lies across a wide range of mathematical and applied
disciplines.
Even though for small positive errors, the structure of these spaces still retains the properties of metric
spaces. In this way, perturbed metric spaces help to bridge the gap between the mathematical models
and real-world situations, where exact distance are not measurable.

In 2025, Mohamed Jleli and Bessem Samet [10] introduced a more general form of distance function,
known as perturbed metric space as follows :

Definition 1.1. Let D,P : X × X → [0,∞) be two given functions. The function D is called a
perturbed metric on X with respect to P , if the function

D − P : X ×X → R,

defined by the relation
(D − P )(x, y) = D(x, y)− P (x, y),
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for all x, y, z ∈ X, is a exact metric on X, satisfies the following conditions

(i) (D − P )(x, y) ≥ 0;

(ii) (D − P )(x, y) = 0 if and only if x = y;

(iii) (D − P )(x, y) = (D − P )(y, x);

(iv) (D − P )(x, y) ≤ (D − P )(x, z) + (D − P )(z, y).

P is called a perturbing function and D = d+ P be an perturbed metric.
The set X endowed with D and perturbed function P denoted by (X,D,P ) is known as perturbed metric
spaces.

Notice that a perturbed metric on X is not necessarily a metric on X. But a metric is always perturbed
metric when perturbed error is zero.

Example 1.1. Let D : R× R → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y4, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed function

P : R× R → [0,∞)

given by
P (x, y) = x2y4, x, y ∈ R.

In this case, the exact metric is the mapping d : R× R → [0,∞) defined by

d(x, y) = D(x, y)− P (x, y) , where

d(x, y) = |x− y|, x, y ∈ R.

Here we note that D is not necessarily a metric, because D(1, 1) = 1 ̸= 0 as x = y, but D is perturbed
metric on X with respect to perturbed function P .

We now introduce topological structure in perturbed metric space.

The topological structure of the perturbed metric space (X,D,P ) is induced by the exact metric
d = D − P . The topology τD,P on X is defined as:

τD,P := τd = {U ⊆ X | ∀x ∈ U, ∃r > 0 such that Bd(x, r) ⊆ U} ,

where the open ball with respect to d is given by:

Bd(x, r) = {y ∈ X | d(x, y) = D(x, y)− P (x, y) < r} .

Definition 1.2. Let (X,D,P ) be a perturbed metric space with perturbed function P . A sequence {xn}
in X is said to be

(i) perturbed convergent sequence, if {xn} is convergent in the metric space (X, d), where d = D−P is
the exact metric.

(ii) perturbed Cauchy sequence, if {xn} is a Cauchy sequence in the metric space (X, d).

(iii) (X,D,P ) is a complete perturbed metric space if (X, d) is a complete metric space, i.e., every
perturbed Cauchy sequence converges in perturbed metric space.
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A mapping T defined on (X,D,P ) is a perturbed continuous mapping, if T is continuous with respect to
the metric d.

We recall some elementary properties of perturbed metric spaces [10] .

Proposition 1.1. [10] Let D,P,Q : X ×X → [0,∞) be three given mappings and α > 0.

(i) If (X,D,P ) and (X,D,Q) be two perturbed metric spaces, then
(
X,D, P+Q

2

)
is a perturbed metric

space.

(ii) If (X,D,P ) is a perturbed metric space, then (X,αD,αP ) is a perturbed metric space.

Here for the convenience of readers, we provide the proof of the proposition 1.1.

Proof.

(i) Since D − P and D −Q are two metrics on X, then

1

2
[(D − P ) + (D −Q)] = D − P +Q

2

is a metric on X, which proves (i).

(ii) Since D − P is a metric on X and α > 0, then

α(D − P ) = αD − αP

is a metric on X, which proves (ii).

Remark 1.1. If (X,D,P1), (X,D,P2), (X,D,P3) . . . (X,D,Pk) be k perturbed metric spaces, then(
X,D, (P1+P2+P3+...Pk)

k

)
is a perturbed metric space.

In 2025, Mohamed Jleli and Bessem Samet [10] proved the Banach contraction principle in the setting
of perturbed metric spaces.

Theorem 1.1. [10] Let (X,D,P ) be a complete perturbed metric space and T : X → X be a given
mapping. Assume that the following conditions hold:

(i) T is a perturbed continuous mapping;

(ii) There exists λ ∈ (0, 1) such that
D(Tu, Tv) ≤ λD(u, v)

for all u, v ∈ X.

Then, T admits unique fixed point.

In 2025, Maria Nutu, Cristina Maria Pacurar [12] proved the Kannan mappings in the setting of
perturbed metric spaces.

Definition 1.3. [12] Let (X,D,P ) be a perturbed metric space and T : X → X is a mapping such that
there exists λ ∈

[
0, 1

2

)
such that

D(Tx, Ty) ≤ λ [D(x, Tx) +D(y, Ty)] ,

for every x, y ∈ X. Then T is called a perturbed Kannan mapping.

Theorem 1.2. [12] Let (X,D,P ) be a complete perturbed metric space and T : X → X is a perturbed
Kannan mapping. Then, T admits a unique fixed point.
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2. Various Contractions in Perturbed Metric Spaces

Now we discuss various contractions such as Reich, Bianchini, and Chatterjea in the setting of the
perturbed metric spaces.

In 1971, Reich [21] gave a contraction known as Reich contraction in metric spaces and proved the
following fixed point theorem related to Reich contraction.

Theorem 2.1. [21] Let (X, d) be a metric space. T : X → X be a map satisfying the following condition:

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty), (2.1)

for all x, y ∈ X, where α, β, γ are non-negative numbers satisfying α+ β + γ < 1.

Then, there exists x∗ ∈ X such that xn → x∗ and x∗ is the unique fixed point of T . □

Now we prove Theorem 2.1. in the setting of perturbed metric spaces.

Theorem 2.2. Let (X,D,P ) be a complete perturbed metric space. Let T : X → X be a mapping
satisfying:

D(Tx, Ty) ≤ αD(x, y) + βD(x, Tx) + γD(y, Ty) (2.2)

for all x, y ∈ X, where α, β, γ are non-negative numbers such that α+ β + γ < 1.

Then, there exists x∗ ∈ X such that xn → x∗ and x∗ is the unique fixed point of T . □

Proof. Let x0 ∈ X be arbitrary. Define the sequence {xn} by xn+1 = Txn for all n ≥ 0. From (2.2) we
have

D(xn+1, xn) ≤ αD(xn, xn−1) + βD(xn, xn+1) + γD(xn−1, xn). (2.3)

Therefore,

D(xn+1, xn) ≤
α+ γ

1− β
D(xn, xn−1). (2.4)

Put λ = α+γ
1−β , λ ∈ [0, 1) and D(xn+1, xn) ≤ λD(xn, xn−1).

Continuing in this way,we have

D(xn+1, xn) ≤ λnD(x1, x0), for all n ≥ 1. (2.5)

Let d = D − P be the exact metric. Then, from (2.5), we obtain that

d(xn, xn+1) + P (xn, xn+1) ≤ λnD(x1, x0), ∀n ≥ 0.

Since d(xn, xn+1) ≤ d(xn, xn+1) + P (xn, xn+1), it follows that

d(xn, xn+1) ≤ λnD(x1, x0), ∀n ≥ 0.

Then, we have

d(xn, xn+p) ≤ λnD(x1, x0) + λn+1D(x1, x0) + · · ·+ λn+p−1D(x1, x0)

= λnD(x1, x0)(1 + λ+ · · ·+ λp−1)

= λnD(x1, x0)

(
1− λp

1− λ

)
≤ λn

1− λ
D(x1, x0).
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Proceeding limit as n → ∞, we have {xn} is a Cauchy sequence in the metric space (X, d), so {xn}
is also perturbed Cauchy sequence w.r.t (X,D,P ). Thus, by completeness of the perturbed metric space
(X,D,P ), there exists a x∗ ∈ X such that

lim
n→∞

d(xn, x
∗) = 0.

Now we prove that x∗ is a fixed point of T . We have

D(Txn, Tx
∗) ≤ αD(xn, x

∗) + βD(xn, Txn) + γD(x∗, Tx∗).

Taking the limit as n → ∞ in the above equation, we obtain that

D(x∗, Tx∗) ≤ γD(x∗, Tx∗),

which implies
d(x∗, Tx∗) + P (x∗, Tx∗) ≤ γ[d(x∗, Tx∗) + P (x∗, Tx∗)].

If x∗ ̸= Tx∗, it follows that d(x∗, Tx∗) + P (x∗, Tx∗) ̸= 0, which implies the contradiction γ ≥ 1, so
x∗ = Tx∗, i.e., x∗ is a fixed point of T .

Let us assume that T admits two distinct fixed points x∗, y∗ ∈ X. Then, we have

D(x∗, y∗) = D(Tx∗, Ty∗) ≤ αD(x∗, y∗) + βD(x∗, Tx∗) + γD(y∗, T y∗),

i.e,
D(x∗, y∗) = D(Tx∗, T y∗) ≤ αD(x∗, y∗) ,

this implies
x∗ = y∗.

If x∗ ̸= y∗, it follows that d(x∗, y∗) + P (x∗, y∗) ̸= 0, which is a contradiction. Therefore, x∗ is the
unique fixed point of T . □

One can note the following :
(i) If we put γ = β = 0 in equation (2.2), then it yields the Banach fixed point theorem.
(ii) If we put α = 0, β = γ in equation (2.2), then it yields Kannan’s fixed point theorem. mentioned
in [13].

One can note that the Reich contraction is stronger than Banach’s and Kannan’s theorems.
Example 2.1. Let X = [0, 1], and define a perturbed metric D : X ×X → R as

D(x, y) = |x− y|+ |x− y|2 , for all x, y ∈ R

with the perturbation function P : X ×X → R given by

P (x, y) = |x− y|2, for all x, y ∈ R.

Defining T (x) = x/3 for 0 ≤ x < 1 and T (1) = 1
6 . T does not satisfy Banach’s condition because it is

not continuous at 1. Kannan’s condition also cannot be satisfied because

D(T (0), T ( 13 )) =
1
2

(
D(0, T (0)) +D(13 , T (

1
3 ))

)
.

But it satisfies condition (2.2) if we put a = 1
6 , b =

1
9 , c =

1
3 (these are not the smallest possible values).

In 1972, Bianchini [14] introduced the following contraction in metric spaces as follows:

Theorem 2.3. [14] Let (X, d) be a complete metric space and let f be a self-map satisfying (2.6)

d(fx, fy) ≤ h max{d(x, fx), d(y, fy)}, where h ∈ [0, 1) (2.6)
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for all x, y ∈ X. Then, f has a unique fixed point.
Now, we prove Bianchini fixed point theorem in setting of perturbed metric spaces.

Theorem 2.4. Let (X,D,P ) be a complete perturbed metric space and f : X → X be a given mapping.
Assume that the following conditions hold:

(i) f is a perturbed continuous mapping;

(ii) There exists h ∈ [0, 1) such that

D(fx, fy) ≤ h max{D(x, fx), D(y, fy)} (2.7)

for all x, y ∈ X.

Then, f admits a unique fixed point.

Proof:- Let x0 ∈ X be fixed. Define xn+1 = fxn for n = 0,1,2,3 . . . .

Now

D(xn, xn+1) = D(fxn−1, fxn).

D(fxn−1, fxn) ≤ h max{D(xn−1, fxn−1), D(xn, fxn)}

D(xn, xn+1) ≤ h max{D(xn−1, xn), D(xn, xn+1)}.

Case I : max{D(xn−1, xn), D(xn, xn+1)} = D(xn−1, xn)

D(xn, xn+1) ≤ hD(xn−1, xn). (2.8)

Continuing in this way,we have

D(xn, xn+1) ≤ hnD(xn−1, xn), n ∈ N (2.9)

Put D(x0, x1) = D0

D(xn, xn+1) ≤ hnD0, n ∈ N.

Let d = D − P be the exact metric,we deduce that

d(xn, xn+1) + P (xn, xn+1) ≤ hnD0 , n ∈ N.

Since,

d(xn, xn+1) ≤ d(xn, xn+1) + P (xn, xn+1).

Therefore,

d(xn, xn+1) ≤ hnD0 , n ∈ N.

Now

d(xn, xn+p) ≤ hnD0 + hn+1D0 + · · ·+ hn+p−1D0

= hnD0(1 + h+ h2 + · · ·+ hp−1)

= hnD0

(
1− hp

1− h

)

≤
(

hn

1− h

)
D0.
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Since, h ∈ [0, 1), therefore {xn} is a cauchy sequence in metric space (X, d), so {xn} is also a perturbed
Cauchy sequence in the perturbed metric space (X,D,P ). By the completeness of the perturbed metric
space (X,D,P ), there exists x∗ ∈ X such that

lim
n→∞

d(xn, x
∗) = 0. (2.10)

Now,we prove that x∗ is a fixed point of f . Since f is a perturbed continuous mapping.
From (2.7)

D(fxn, fx
∗) ≤ h max{D(xn, fxn), D(x∗, fx∗)}.

lim
n→∞

D(fxn, fx
∗) ≤ lim

n→∞
h max{D(xn, fxn), D(x∗, fx∗)}.

max{D(xn, fxn), D(x∗, fx∗)} = D(xn, fxn).

lim
n→∞

D(fxn, fx
∗) ≤ lim

n→∞
hD(xn, fxn).

D(x∗, fx∗) ≤ hD(x∗, x∗).

D(x∗, fx∗) = 0.

x∗ = fx∗

that is, x∗ is a fixed point of f .

max{D(xn, fxn), D(x∗, fx∗)} = D(x∗, fx∗).

lim
n→∞

D(fxn, fx
∗) ≤ lim

n→∞
hD(x∗, fx∗).

D(x∗, fx∗) ≤ hD(x∗, fx∗),

i.e,
d(x∗, fx∗) + P (x∗, fx∗) ≤ h[d(x∗, fx∗) + P (x∗, fx∗)].

If x∗ ̸= fx∗,it follows that
d(x∗, fx∗) + P (x∗, fx∗) ̸= 0 ,

So,
x∗ = fx∗

that is, x∗ is a fixed point of f .
case II: max{D(xn−1, xn), D(xn, xn+1)} = D(xn, xn+1)

D(xn, xn+1) ≤ hD(xn, xn+1).

This case is not possible as 0 ≤ h < 1. □
In 1972 known as Chatterjea [16] contraction in complete metric spaces as follows :

Theorem 2.5. [16] Let (X, d) be a complete metric space and let T : X → X be a mapping such that
for every x, y ∈ X the inequality

d(fx, fy) ≤ λ [d(x, fy) + d(y, fx)] , (2.11)

holds, where 0 ≤ λ < 1
2 . Then, T has a unique fixed point.

Now we prove analogue of Theorem 2.5. in perturbed metric spaces.

Theorem 2.6. Let (X,D,P ) be a perturbed metric space and T : X → X a mapping such that there
exists λ ∈

[
0, 1

2

)
such that

D(Tx, Ty) ≤ λ [D(x, Ty) +D(y, Tx)] , (2.12)
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for every x, y ∈ X. Then, T admits a unique fixed point.

Proof. Let x0 ∈ X and {xn}∞n=1 be a sequence in X defined as xn = Txn−1 = Tnx0, n = 1, 2, . . ..
Now,

D(xn, xn+1) = D(Txn−1, Txn)

≤ λ [D(xn−1, Txn) +D(xn, Txn−1)]

= λ [D(xn−1, xn+1) +D(xn, xn)]

≤ λ [D(xn−1, xn) +D(xn, xn+1)] .

Thus, we have

D(xn, xn+1) ≤
λ

1− λ
D(xn−1, xn). (2.13)

Continuing in this way,

D(xn, xn+1) ≤ γnD0, (2.14)

where γ = λ
1−λ ∈ [0, 1) and D0 = D(x0, x1).

Let d = D − P be the exact metric. Then, from (2.14), we obtain that

d(xn, xn+1) + P (xn, xn+1) ≤ γnD0, n ∈ N, ∀n ≥ 0.

Since d(xn, xn+1) ≤ d(xn, xn+1) + P (xn, xn+1), it follows that

d(xn, xn+1) ≤ γnD0, ∀n ≥ 0.

Then, we have
d(xn, xn+p) ≤ γnD0 + γn+1D0 + · · ·+ γn+p−1D0

= γnD0(1 + γ + · · ·+ γp−1)

= γnD0

(
1− γp

1− γ

)
≤ γn

1− γ
D0.

Since γ ∈ [0, 1), Therefore, {xn} is a Cauchy sequence in the metric space (X, d), so {xn} is a perturbed
Cauchy sequence in (X,D,P ). Thus, by completeness of the perturbed metric space (X,D,P ), there
exists x∗ ∈ X such that

lim
n→∞

d(xn, x
∗) = 0.

Now we prove that x∗ is a fixed point of T . We have

D(Txn−1, Tx
∗) ≤ λ[D(xn−1, Tx

∗) +D(x∗, Txn−1)].

Taking the limit as n → ∞ , we obtain that

D(x∗, Tx∗) ≤ λD(x∗, Tx∗),

which implies
d(x∗, Tx∗) + P (x∗, Tx∗) ≤ λ[d(x∗, Tx∗) + P (x∗, Tx∗)].

If x∗ ̸= Tx∗, it follows that d(x∗, Tx∗) + P (x∗, Tx∗) ̸= 0, which implies λ ≥ 1 a contradiction, so
x∗ = Tx∗, i.e., x∗ is a fixed point of T . Let us assume that T admits two distinct fixed points x∗, y∗ ∈ X.
Then, by (2.12), we have

D(x∗, y∗) = D(Tx∗, T y∗) ≤ λ[D(x∗, Tx∗) +D(y∗, T y∗)] = 0,
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which implies

d(x∗, y∗) + P (x∗, y∗) ≤ 0.

If x∗ ̸= y∗, it follows that d(x∗, y∗) +P (x∗, y∗) ̸= 0, which is a contradiction. Therefore, x∗ is the unique
fixed point of T . □

Example 2.2. Let X = [0, 1] be endowed with the perturbed metric D : X ×X → R defined by

D(x, y) = |x− y|+ x2y2, for all x, y ∈ R,

with the perturbation function P : X ×X → R given by

P (x, y) = x2y2, for all x, y ∈ R.

Let T : X → X be defined by

T (x) =

{
0, if x ∈ [0, 1),
1
2 , if x = 1.

Here, T is not continuous. Indeed, for x ∈ [0, 1) and y = 1,∣∣∣∣0− 1

2

∣∣∣∣ ≤ hmax

{∣∣∣∣x− 1

2

∣∣∣∣ , |1− 0|
}

= h,

which is true for any h satisfying 1
2 ≤ h < 1. However, in Chatterjea’s contraction condition, we require

h < 1
2 , so (2.12) does not hold.

On the other hand, suppose T satisfies Chatterjea’s contraction condition (2.12). Then, on taking
x = 1

2 and y = 1 in (2.12), we get∣∣∣∣0− 1

2

∣∣∣∣ ≤ h

[∣∣∣∣12 − 1

2

∣∣∣∣+ |1− 0|
]
⇔ 1

2
≤ h <

1

2
,

a contradiction.

3. Jungck’s Fixed Point Theorem in Perturbed Metric Spaces

G. Jungck [4] proved an interesting result for commutative mapping in metric spaces as follows:

Theorem 3.1. Let (X, d) be a complete metric space and f be a continuous self-mapping of (X, d). If
there exists a mapping g : X → X and a constant 0 ≤ α < 1 such that
(3.1) fgx = gfx for every x ∈ X,
(3.2) g(X) ⊂ f(X),
(3.3) d(gx, gy) ≤ αd(fx, fy) for every x, y ∈ X,

then f and g have a unique common fixed point.

Now we prove the Jungck fixed point theorem in the setting of Perturbed metric spaces as follows:

Theorem 3.2. Let f be a continuous self-mapping in a complete perturbed metric space (X,D,P ). If
there exists a mapping g : X → X and a constant 0 ≤ α < 1 such that

(3.4) f(g(x)) = g(f(x)) for every x ∈ X,

(3.5) g(X) ⊆ f(X),

(3.6) D(gx, gy) ≤ αD(fx, fy) for every x, y ∈ X.
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Then f and g have a unique common fixed point.

Proof. (Necessary condition) suppose that f(a) = a for some a ∈ X.
Define g : X → X by g(x) = a for all x ∈ X. Then g(f(x)) = a and f(g(x)) = f(a) = a (x ∈ X), so
f(g(x)) = f(g(x)) for all x ∈ X and g commutes with f .
Moreover, g(x) = a = f(a) for all x ∈ X so that g(X) ⊆ f(X). Finally, for any α ∈ (0, 1) we have for all
x, y ∈ X:

D(g(x), g(y)) = D(a, a) = 0 ≤ αD(f(x), f(y)).

Thus (3.6) holds.

On the other hand, suppose there is a mapping g of X into itself which commutes with f and for
which (3.6) holds. We show that this condition is sufficient to ensure that f and g have a unique common
fixed point.
Let us define a sequence ⟨yn⟩ in X by

yn = gxn−1 = fxn, for all n = 0, 1, 2, . . . , where x0 ∈ X. (3.7)

Therefore, from (3.6), we have

D(yn, yn+1) = D(fxn, fxn+1) = D(gxn−1, gxn) ≤ αD(fxn−1, fxn)

= αD(yn−1, yn)

...

≤ αnD(y0, y1). (3.8)

i.e.,
D(yn, yn+1) ≤ αnD(y0, y1).

Let d = D − P be the exact metric. Then, from (3.8), we obtain that

d(yn, yn+1) + P (yn, yn+1) ≤ αnD(y0, y1) ∀n ≥ 0.

Thus,we have
d(yn, yn+p) ≤ αnD(y0, y1) + αn+1D(y0, y1) + · · ·+ αn+p−1D(y0, y1)

= αnD(y0, y1)(1 + α+ · · ·+ αp−1)

= αnD(y0, y1)

(
1− αp

1− α

)
≤ αn

1− α
D(y0, y1).

Since α ∈ [0, 1) we obtain that < yn > is a cauchy sequence in the metric space (X, d), so from Definition
(1.2)< yn > is a perturbed cauchy sequence in (X,D,P ) so complete in perturbed metric spaces (X,D,P )
, yields the existence of t ∈ X such that

f(xn) → t. (3.9)

But then (3.7) implies that
g(xn) → t. (3.10)

Now, since f is continuous, by the statement, both f and g are continuous. From (3.9) and (3.10) we
have g(f(xn)) → g(t) and f(g(xn)) → f(t) . But f and g commute so that g(f(xn)) = f(g(xn)) for all n.
Thus, f(t) = g(t), and consequently f(f(t)) = f(g(t)) = g(g(t)) by commutativity. Therefore, we have

D(g(t), g(g(t))) ≤ α D(f(t), f(g(t))) = αD(g(t), g(g(t))). (3.11)

Hence, (1−α)(D(g(t), g(g(t)))) ≤ 0. Since α ∈ (0, 1),g(t) = g(g(t)).We now have g(t) = g(g(t)) = f(g(t))
;i.e., g(t) is a common fixed point of f and g .
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To see that f and g can have only one common fixed point, suppose that x = f(x) = g(x) and y =
f(y) = g(y). Then (3.6) implies

D(x, y) = D(g(x), g(y)) ≤ αD(f(x), f(y)) = αD(x, y),

or D(x, y)(1− α) ≤ 0. Since α < 1, x = y.

Example 3.1. Let X = [0, 1] and define a perturbed metric D : X ×X → R as

D(x, y) = |x− y|+ |x− y|2 , for all x, y ∈ R

with the perturbation function P : X ×X → R given by

P (x, y) = |x− y|2, for all x, y ∈ R.

Now define the mappings f, g : X → X as

f(x) =
1

2
x, g(x) =

1

4
x

Then

f(g(x)) = f

(
1

4
x

)
=

1

8
x = g

(
1

2
x

)
= g(f(x)) ⇒ f(g(x)) = g(f(x)) For all x ∈ X, so that f and g commute.

Also

g(X) =

[
0,

1

4

]
⊆

[
0,

1

2

]
= f(X) ⇒ g(X) ⊆ f(X).

Also it is easy to show that

D(gx, gy) ≤ αD(fx, fy) for all x, y ∈ X.

All the conditions of Theorem 3.2 are satisfied for the functions f(x) = 1
2x and g(x) = 1

4x in the
perturbed metric space (X,D,P ). Therefore, 0 is unique common fixed point.

Corollary 3.1. Let f and g be commuting mappings of a complete perturbed metric space (X,D,P )
into itself. Suppose that f is continuous and g(X) ⊆ f(X). If there exists α ∈ (0, 1) and a positive
integer k such that

D(gk(x), gk(y)) ≤ αD(f(x), f(y)) for all x, y ∈ X,

then f and g have a unique common fixed point.
Proof. Clearly, gk commutes with f , and since gk(X) ⊆ g(X) ⊆ f(X), the theorem (from the main
result) applies to gk and f . So there is a unique a ∈ X such that:

a = f(a) = gk(a).

But then, since f and g commute, we can write

g(a) = f(g(a)) = g(f(a)) = g(a).

That is,
g(a) = g(gk(a)) = gk+1(a),

which shows that g(a) is a common fixed point of both f and gk. By the uniqueness of a, we get g(a) = a,
so

f(a) = a = g(a).

Thus, a is a common fixed point of f and g and uniqueness follows from the main theorem. ■

We obtain the Banach contraction principle as a consequence of Corollary 3.1 if we set k = 1 and let
f be the identity map I(x) = x. In fact, if we let f be the identity map and keep the general k, we obtain
the generalization of Banach’s theorem [10]. Note that Corollary 3.1 does not require g to be continuous.
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4. Weakly Commuting Mappings and its Variants

In this section, we investigate the existence of common fixed points for weakly commuting mappings
in the setting of perturbed metric spaces.

Definition 4.1. Two self-mappings f and g be of a metric space (X, d) are said to be commuting
mapping if and only if

f(g(x)) = g(f(x)) for all x ∈ X.

In 1982, Sessa [17] introduced the concept of weak commutativity in metric spaces as follows:
Definition 4.2. Two self-mappings f and g be of a metric space (X, d) are said to be weakly commuting
if

d(fgx, gfx) ≤ d(gx, fx) for all x ∈ X.

Pant [15] gave the notion of R-weakly commuting mappings as follows:
Definition 4.3. A pair of self-mappings (f, g) of a metric space (X, d) is said to be R-weakly commuting
if there exists some R > 0 such that

d(fgx, gfx) ≤ Rd(fx, gx), for all x ∈ X.

This leads to a natural question: Can fixed point theorems be extended to cases where the metric spaces
is not complete and the mappings f and g are not continuous on the entire space X? A partial response
to this question was provided by Pant [15].

In 1997, Pathak, Cho and Kang [7] improved the notion of R-weakly commuting mappings to the notion
of R-weakly commuting mappings of type (Ag) and R-weakly commuting mappings of type (Af ).

Definition 4.4. A pair of self-mappings (f, g) of a metric space (X, d) is said to be

(i) R-weakly commuting mappings of type (Ag) if there exists some R > 0 such that

d(gfx, ffx) ≤ Rd(fx, gx), for all x ∈ X.

(ii) R-weakly commuting mappings of type (Af ) if there exists some R > 0 such that

d(fgx, ggx) ≤ Rd(fx, gx), for all x ∈ X.

In 2010, Kumar [22] introduced the notion of R-weakly commuting mappings of type (P) as follows:

Definition 4.5. A pair of self-mappings (f, g) of a metric space (X, d) is said to be R-weakly commuting
mappings of type (P) if there exists some R > 0 such that

d(ffx, ggx) ≤ Rd(fx, gx) for all x ∈ X.

Now we introduce the analogues notions of weakly commuting mappings and their variants in setting of
perturbed metric spaces.

Definition 4.6. Let f and g be two self-mappings on X in a perturbed metric space (X,D,P ). Then,
a pair (f, g) is said to be weakly commuting mapping if and only if

D(fgx, gfx) ≤ D(gx, fx) for all x ∈ X.

Remark 4.1. Weakly commuting mappings need not be commuting.
Example 4.1. Let A,B : [0, 2] → [0, 2] defined by A(x) = x

x+2 , B(x) = x
2 for all x.

Let D : R× R → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y2, for all x, y ∈ R.
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Then D is a perturbed metric on R with respect to the perturbed mapping P ,

P : R× R → [0,∞)

given by

P (x, y) = x2y2, x, y ∈ R.

Here, (A,B) is weakly commuting mapping but not commuting. We compute

A(Bx) = A
(x
2

)
=

x
2

x
2 + 2

=
x

x+ 4
, B(Ax) = B

(
x

x+ 2

)
=

x

2(x+ 2)
.

Clearly, A(Bx) ̸= B(Ax), so A and B are not commuting.
But D(ABx,BAx) ≤ D(Ax,Bx), so A and B are weakly commuting.

Definition 4.7. A pair of self-mappings (f, g) of a perturbed metric space (X,D,P ) is said to be R-weakly
commuting if there exists some R > 0 such that

D(fgx, gfx) ≤ RD(fx, gx), for all x ∈ X.

Definition 4.8. A pair of self-mappings (f, g) of a perturbed metric space (X,D,P ) is said to be

(i) R-weakly commuting mappings of type (Ag) if there exists some R > 0 such that

D(gfx, ffx) ≤ RD(fx, gx), for all x ∈ X.

(ii) R-weakly commuting mappings of type (Af ) if there exists some R > 0 such that

D(fgx, ggx) ≤ RD(fx, gx), for all x ∈ X.

Definition 4.9. Let (X,D,P ) be a perturbed metric space and f, g : X → X be two self-mappings. The
pair (f, g) is said to be R-weakly commuting of type (P ), if there exists a constant R > 0 such that

D(ffx, ggx) ≤ RD(fx, gx) for all x ∈ X.

Remark 4.2. Now we gave an example which show that R-weakly commuting mappings, R-weakly
commuting of type (Ag), R-weakly commuting of type (Af ), and R-weakly commuting of type (P ) are
independent.

Example 4.2. Let D : R× R → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y2, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed mapping

P : R× R → [0,∞)

given by

P (x, y) = x2y2, x, y ∈ R.

Let f, g : X → X defined by fx = x and gx = x2, for all x, where X = [0, 1]. Then, by a straightforward
calculation, one can show that for all x ∈ X,

f(f(x)) = x, g(f(x)) = x2, f(g(x)) = x2, g(g(x)) = x4,
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and

D(fg(x), gf(x)) = D(x2, x2)

= |x2 − x2|+ x4 · x4 = x8,

D(f(x), g(x)) = D(x, x2)

= |x− x2|+ x2 · x4 = |x− x2|+ x6,

D(gf(x), ff(x)) = D(x2, x) = |x2 − x|+ x4,

D(fg(x), gg(x)) = D(x2, x4) = |x2 − x4|+ x4 · x8 = |x2 − x4|+ x12.

Therefore, we conclude as follows:

1. The pair (f, g) is R-weakly commuting for all positive real values of R ≥ 1.

2. For R = 2, the pair (f, g) is R-weakly commuting of type (Af ), type (Ag), and of type (P ).

3. For R = 1, the pair (f, g) is R-weakly commuting and type (Af ), but not of type (P ) and type
(Ag).

Now we prove theorems for these mappings.
Theorem 4.1. Let (X,D,P ) be a complete perturbed metric space and f and g be R-weakly commuting
self-mappings of X satisfying the following conditions:

(4.1) g(X) ⊆ f(X);

(4.2) f or g is continuous;

(4.3) D(gx, gy) ≤ αD(fx, fy) for every x, y ∈ X and 0 ≤ α < 1.

Then f and g have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. By (4.1) one can choose a point x1 in X such that fx1 = gx0.
In general choose

yn = gxn−1 = fxn, for all n = 0, 1, 2, . . . , where x0 ∈ X. (4.4)

Therefore, from (4.4), we have

D(yn, yn+1) = D(fxn, fxn+1) = D(gxn−1, gxn) ≤ αD(fxn−1, fxn)

= αD(yn−1, yn)

...

≤ αnD(y0, y1). (4.5)

i.e.,
D(yn, yn+1) ≤ αnD(y0, y1).

Let d = D − P be the exact metric. Then, from (4.5), we obtain that

d(yn, yn+1) + P (yn, yn+1) ≤ αnD(y0, y1) ∀n ≥ 0.

Thus, we have

d(yn, yn+p) ≤ αnD(y0, y1) + αn+1D(y0, y1) + · · ·+ αn+p−1D(y0, y1)

= αnD(y0, y1)(1 + α+ · · ·+ αp−1)

= αnD(y0, y1)

(
1− αp

1− α

)
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≤ αn

1− α
D(y0, y1).

Since α ∈ [0, 1), we obtain that < yn > is a cauchy sequence in the metric space (X, d), so < yn > is a
perturbed cauchy sequence in (X,D,P ). By the completeness of the perturbed metric space (X,D,P ),
there exists t ∈ X such that

f(xn) → t. (4.6)

But (4.4) implies that
g(xn) → t. (4.7)

Let us suppose that the mapping g is continuous. Therefore

lim
n→∞

gfxn = lim
n→∞

ggxn = gt.

Since f and g are R-weakly commuting,

D(g(f(xn)), f(g(xn))) ≤ R D(g(xn), f(xn)). (4.8)

By letting n → ∞, we get
lim
n→∞

fgxn = lim
n→∞

gfxn = gt.

We now prove that t = gt. Suppose t ̸= gt, then D(t, gt) > 0.
From (4.3), on letting x = xn, y = gxn

D(g(xn), g(g(xn))) ≤ α D(f(xn), fg(xn)). (4.9)

Proceeding limit as n → ∞, we get

D(t, gt) ≤ α D(t, gt) < D(t, gt), a contradicition.

Therefore t = gt. Since g(X) ⊆ f(X), we can find t1 in X such that t = gt = ft1.
Now from (4.3), take x = gxn, y = t1, we have

D(g(g(xn)), g(t1)) ≤ α D(f(g(xn)), f(t1)). (4.10)

Taking limit as n → ∞, we get

D(gt, gt1) ≤ α D(gt, ft1) = αD(gt, gt) = 0,

which implies that gt = gt1, i.e.,

t = gt = gt1 = ft1.

Also, by using definition of R− weak commutativity,

D(gt, ft) = D(g(ft1), f(gt1)) ≤ R D(gt1, ft1) = 0,

which again implies that
ft = gt = t.

Thus t is a common fixed point of f and g.
Uniqueness: We assume that t2(̸= t) be another common fixed point of f and g.
Then D(t, t2) > 0 and

D(t, t2) = D(gt, gt2) ≤ α D(ft, ft2) = αD(t, t2) < D(t, t2),

a contradiction, therefore t = t2. Hence uniqueness follows.

Theorem 4.2. Theorem 4.1 remains true if R− weakly commuting property is replaced by any one
(retaining the rest of the hypothesis) of the following:
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(a) R-weakly commuting property of type (Ag),

(b) R-weakly commuting property of type (Af ),

(c) R-weakly commuting property of type (P ).

Proof: Let x0 be an arbitrary point in X. By (4.1) one can choose a point x1 in X such that fx1 = gx0.
In general choose

yn = gxn−1 = fxn, for all n = 0, 1, 2, . . . , where x0 ∈ X. (4.11)

From the proof of Theorem 4.1 we conclude that < yn > is a perturbed cauchy sequence in (X,D,P ).By
the completeness of the perturbed metric space (X,D,P ), there exists t ∈ X such that

f(xn) → t. (4.12)

But (4.11) implies that
g(xn) → t. (4.13)

Let us suppose that the mapping g is continuous. Therefore

lim
n→∞

gfxn = lim
n→∞

ggxn = gt.

(a) In case (f, g) is an R-weakly commuting property of type (Ag), then

D(g(f(xn)), f(f(xn))) ≤ R D(g(xn), f(xn)). (4.14)

By letting n → ∞, we get
lim
n→∞

ffxn = lim
n→∞

gfxn = gt.

We now prove that t = gt. Suppose t ̸= gt, then D(t, gt) > 0.
From (4.3), on letting x = xn, y = gxn

D(g(xn), g(g(xn))) ≤ α D(f(xn), fg(xn)). (4.15)

Proceeding limit as n → ∞, we get

D(t, gt) ≤ α D(t, gt) < D(t, gt), a contradicition.

Therefore t = gt. Since g(X) ⊆ f(X), we can find t1 in X such that t = gt = ft1.
Now from (4.3), take x = gxn, y = t1, we have

D(g(g(xn)), g(t1)) ≤ α D(f(g(xn)), f(t1)). (4.16)

Taking limit as n → ∞, we get

D(gt, gt1) ≤ α D(gt, ft1) = αD(gt, gt) = 0,

which implies that gt = gt1, i.e.,

t = gt = gt1 = ft1.

Also, by using definition of R− weak commutativity of type (Ag),

D(gt, ft) = D(g(ft1), f(ft1)) ≤ R D(gt1, ft1) = 0,

which again implies that
ft = gt = t.

Thus t is a common fixed point of f and g.
(b) In case (f, g) is an R-weakly commuting property of type (Af ), then

D(f(g(xn)), g(g(xn))) ≤ R D(g(xn), f(xn)). (4.17)
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By letting n → ∞, we get
lim
n→∞

ffxn = lim
n→∞

gfxn = gt.

Similarly, using above proof we can show
ft = gt = t.

Thus t is a common fixed point of f and g.
(c) In case (f, g) is an R-weakly commuting property of type (P ), then

D(f(f(xn)), g(g(xn))) ≤ R D(g(xn), f(xn)). (4.18)

By letting n → ∞, we get
lim
n→∞

ffxn = lim
n→∞

gfxn = gt.

Similarly, using above proof we can show
ft = gt = t.

Thus t is a common fixed point of f and g.

5. Weakly Compatible Mappings and Property (E.A.)

In this section, we investigate the existence of common fixed points for weakly compatible mappings
in the setting of perturbed metric spaces. We consider these mappings under the additional assumption
of property (E.A.), which allows us to establish fixed point results without requiring completeness of the
space.

We begin with the preliminaries.

In 1996, Jungck and Rhoades [6] introduced the notion of weakly compatible mappings as follows:
Definition 5.1. Two self-maps f and g defined onX (X may be a metric space, perturbed metric space)
are said to be weakly compatible if the maps commute at their coincidence points.

Example 5.1. Let X = [0, 3]. Define self maps f and g on X as fx = x
2 and gx = x, then f(0) = g(0)

and fg(0) = gf(0). Hence f and g are weakly compatible.

Aamri and El Moutawakil [1] introduced notion property (E.A.) and proved common fixed point theorems
for the property (E.A.) along with weakly compatible maps. A major benefit of property (E.A.) is that
it ensures convergence of desired sequences without completeness. Aamri and Moutawakil [1] introduced
the notion of property (E.A.) as follows:

Definition 5.2. Let S and T be two self-maps in a perturbed metric space (X,D,P ). The pair (S, T ) is
said to satisfy property (E.A.), if there exists a sequence {xn} in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X.

Example 5.2. Let X = [0,+∞). Define S, T : X → X by Tx =
x

2
and Sx =

3x

5
, for all x ∈ X.

Consider the sequence xn =
1

n
. Clearly,

lim
n→∞

Sxn = lim
n→∞

Txn = 0.

Then S and T satisfy property (E.A.).

Example 5.3. Let X = [4,+∞). Define S, T : X → X by Tx = x+ 2 and Sx = 3x+ 2, for all x ∈ X.
Suppose that the property (E.A.) holds. Then, there exists a sequence {xn} in X satisfying

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X.
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Therefore

lim
n→∞

xn = z − 2 and lim
n→∞

xn =
z − 2

3
.

Thus, z = 2, which is a contradiction, since 2 /∈ X. Hence S and T do not satisfy property (E.A.).

Notice that weakly compatible and property (E.A.) are independent of each other in perturbed metric
spaces.

Example 5.4. Let X = R+ and D be the perturbed metric on X. Define f, g : X → X by

fx =

{
0, if 0 < x ≤ 1

1, if x > 1 or x = 0
and gx = ⌊x⌋,

the greatest integer less than or equal to x, for all x ∈ X.

Consider a sequence {xn} =
{
1 + 1

n

}
, n ≥ 2 in (1, 2), then we have

lim
n→∞

fxn = 1 = lim
n→∞

gxn.

Similarly, for the sequence {yn} =
{
1− 1

n

}
, n ≥ 2 in (0, 1), we have

lim
n→∞

fyn = 0 = lim
n→∞

gyn.

Thus the pair (f, g) satisfies property (E.A.). However, f and g are not weakly compatible as each
u1 ∈ (0, 1) and u2 ∈ (1, 2) are coincidence points of f and g, where they do not commute. Moreover,
they commute at x = 0, 1, 2, . . . but none of these points are coincidence points of f and g.

Thus we can conclude that, property (E.A.) does not imply weak compatibility.

Now we prove fixed point theorems in the setting of perturbed metric space for a pair of weakly compat-
ible maps and property (E.A.).

Theorem 5.1. Let (X,D,P ) be a complete perturbed metric space and f and g be self-maps of X
satisfying the condition

D(gx, gy) ≤ αD(fx, fy), (5.1)

where 0 ≤ α < 1 and g(X) ⊆ f(X). If one of the subspaces f(X) or g(X) is a complete subspace in X,
then f and g have a unique common fixed point, provided f and g are weakly compatible maps.

Proof : Let us define a sequence ⟨yn⟩ in X by

yn = gxn−1 = fxn, for all n = 0, 1, 2, . . . , where x0 ∈ X. (5.2)

Therefore, from (5.1), we have

D(yn, yn+1) = D(fxn, fxn+1) = D(gxn−1, gxn) ≤ αD(fxn−1, fxn)

= αD(yn−1, yn)

...

≤ αnD(y0, y1). (5.3)

By induction,we obtain that
D(yn, yn+1) ≤ αnD(y0, y1).

Let d = D − P be the exact metric.Then, from (5.3), we obtain that

d(yn, yn+1) + P (yn, yn+1) ≤ αnD(y0, y1) ∀n ≥ 0.
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Thus,we have

d(yn, yn+p) ≤ αnD(y0, y1) + αn+1D(y0, y1) + · · ·+ αn+p−1D(y0, y1)

= αnD(y0, y1)(1 + α+ · · ·+ αp−1)

= αnD(y0, y1)

(
1− αp

1− α

)
≤ αn

1− α
D(y0, y1).

Since, α ∈ [0, 1), therefore ⟨yn⟩ is a cauchy sequence in metric space (X, d), so ⟨yn⟩ is also a perturbed
Cauchy sequence in the perturbed metric space (X,D,P ). By the completeness of the perturbed metric
space (X,D,P ), there exists t ∈ X such that

f(xn) → t. (5.4)

But then (5.2) implies that

g(xn) → t. (5.5)

Without loss of generality, assume f(X) is a complete subspace of X, so there exists a point p such that
f(p) = z.
Now from (5.1), we have,

D(gp, gxn) ≤ αD(fp, fxn) = αD(z, yn).

Taking limit as n → ∞, we get g(p) = z. Since f and g are weakly compatible, therefore, fgp = gfp,
i.e., fz = gz.

Now we show that z is a common fixed point of f and g. From (5.1),

D(gp, gxn) ≤ αD(fp, fxn).

Proceeding with the limit n → ∞, we get gz = z. Hence, z is a common fixed point of f and g.
Uniqueness:

Let w(̸= z) be another fixed point of f and g.

D(z, w) = D(gz, gw)

≤ αD(fz, fw)

= αD(z, w),

a contradiction, as α < 1. Hence, z = w.

Now we prove Theorem 5.1 with minor modifications as follows:

Theorem 5.2. Let (X,D,P ) be a complete perturbed metric space and f and g be self-maps of X
satisfying the condition:

D(gx, gy) ≤ αD(fx, fy), (5.6)

where 0 ≤ α < 1 and g(X) ⊆ f(X). If one of the subspaces f(X) or g(X) is a closed subset of X, then
f and g have a unique common fixed point, provided f and g are weakly compatible maps.

Proof : Let us define a sequence ⟨yn⟩ in X by

yn = gxn−1 = fxn, for all n = 0, 1, 2, . . . , where x0 ∈ X. (5.7)

From the proof of Theorem 3.1, we conclude that ⟨yn⟩ is a Cauchy sequence in X. Since either f(X) or
g(X) is closed, for definiteness assume that g(X) is a closed subset of X, so it has a limit point in g(X),
call it z. Therefore for some p ∈ X we have gp = z. Now we show that fp = z.
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From (5.6), we have,

D(gxn, gp) ≤ αD(fxn, fp),

D(gxn, gp) ≤ αD(yn, z).

Let lim
n→∞

, we get fp = z. Rest part of the proof follows from Theorem 5.1.

Now we proved a fixed point theorem for a pair of weakly compatible maps satisfying property (E.A.) in
the setting of perturbed metric spaces.

Theorem 5.3. Let (X,D,P ) be a perturbed metric space and f and g be self-maps of X satisfying the
condition

D(gx, gy) ≤ αD(fx, fy), (5.8)

where 0 ≤ α < 1 and f and g satisfy the property (E.A.). Further, f(X) is a closed subspace of X. then
f and g have a unique common fixed point, provided f and g are weakly compatible maps.

Proof. Let us define a sequence ⟨yn⟩ in X by

yn = gxn+1 = fxn for all n = 0, 1, 2, . . .

where x0 ∈ X.

Since f and g satisfy the property (E.A.), there exists a sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = z ∈ X.

Since f(X) is a closed subspace of X and limn→∞ fxn = z, it follows that

z = fp = lim
n→∞

fxn = lim
n→∞

gxn for some p ∈ X.

This implies z = fp ∈ f(X). Now we show that fp = gp.

From condition (5.8), we have

D(gp, gxn) ≤ αD(fp, fxn).

Since yn = gxn+1 = fxn and taking the limit as n → ∞, we get

lim
n→∞

D(gp, gxn) ≤ lim
n→∞

D(fp, fxn).

Hence, fp = gp = z.

The rest of the proof follows from Theorem 5.2.

Example 5.5. Consider X = [0, 2] with perturbed metric D. Define the self maps f and g on X as
follows:

g(x) =

{
0 if 0 ≤ x < 1

1 if 1 ≤ x ≤ 2
f(x) =

{
0 if 0 ≤ x < 1

2 if 1 ≤ x ≤ 2

Consider the sequence xn = 1
n . Clearly lim

n→∞
fxn = lim

n→∞
gxn = 0.

Then f and g satisfy property (E.A.). Also g(X) = {0, 1} and f(X) = {0, 2}. Here we note that
neither f(X) is contained in g(X) nor g(X) is contained in f(X). Theorem 5.3 holds for 1

2 ≤ α < 1.
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6. Expansion Mapping Theorems

In this section, we discuss fixed point theorems for expansion mappings in perturbed metric spaces.
In 1984, Wang, Li, Gao and Iséki [18] and Rhoades [2] proved some fixed point theorems for expansion
mappings, which correspond to some contractive mappings in metric spaces.

Now we prove expansion mappings in the setting of perturbed metric spaces, which correspond to
some contractive mappings in metric spaces.

Let f be a mapping of a perturbed metric space (X,D,P ) into itself. Then f is said to be an expansive
mapping if there exists a constant α > 1 such that for all x, y ∈ X, we have

D(fx, fy) ≥ αD(x, y).

Theorem 6.1. Let (X,D,P ) be a complete perturbed metric space and let T : X → X be a surjective
mapping. Suppose that α > 1 such that

D(Tx, Ty) ≥ αD(x, y), (6.1)

for all x, y ∈ X. Then T has a unique fixed point.

Proof. Let x0 ∈ X and define
xn = Txn+1, n = 0, 1, 2, . . . .

If x0 = x1, then x1 is a fixed point of X and the proof is complete. Suppose x0 ̸= x1. Thus D(x1, x0) ≥ 0,
without loss of generality we assume xn ̸= xn+1. So D(xn+1, xn) > 0 for all n = 0, 1, 2, . . .. Therefore,
from (6.1),

D(xn+1, xn) = D(Txn+2, Txn+1) ≥ αD(xn+2, xn+1),

1

α
D(Txn+2, Txn+1) ≥ D(xn+2, xn+1),

1

α
D(xn+1, xn) ≥ D(xn+2, xn+1),

⇒ D(xn+2, xn+1) ≤
1

α
D(xn+1, xn)

≤ 1

α2
D(xn, xn−1)

≤ 1

α3
D(xn−1, xn−2)

...

≤ 1

αn+1
D(x1, x0). (6.2)

Let d = D − P be the exact metric. Then, from (6.2), we obtain that

d(xn, xn+1) ≤ d(xn, xn+1) + P (xn, xn+1) ≤
1

αn+1
D(x0, x1) ∀n ≥ 0.

d(xn, xn+1) ≤
1

αn+1
D(x0, x1) ∀n ≥ 0.

d(xn, xn+p) ≤
1

αn+1
D(x0, x1) +

1

αn+2
D(x0, x1) + · · ·+ 1

αn+p−1
D(x0, x1).

Therefore,

d(xn, xn+p) ≤ D(x0, x1) ·
1− 1

αp

1− 1
α

· 1

αn
.
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As n → ∞, the term 1
αn → 0, and the remaining factors are bounded. Hence

d(xn, xn+p) → 0 as n → ∞

the sequence {xn} is a Cauchy sequence in the metric space (X, d). So {xn} is also a perturbed Cauchy
sequence in a perturbed metric space (X,D,P ). By the completeness of the perturbed metric spaces
(X,D,P ), therefore, the sequence {xn} converges to a point, say z ∈ X.

Suppose D(z, Tz) > 0 for all z ∈ X,

D(xn−1, T z) = D(Txn, T z) ≤
1

α
D(xn, z).

Taking limit as n → ∞, we have
D(z, Tz) = 0,

which implies Tz = z.
Hence z is the fixed point of T .

Uniqueness: Let w(̸= z) be another fixed point for T .
Since

D(w, z) ≤ 1

α
D(Tw, Tz) =

1

α
D(w, z),

a contradiction since α > 1. This implies z = w.
Hence T has a unique fixed point in X. □

We further generalize Theorem 6.1. for a pair of weakly compatible mappings in perturbed metric spaces.

Theorem 6.2. : Let (X,D,P ) be a complete perturbed metric space. Let f and g be weakly compatible
self maps on X and there exists a number 1 < α such that

D(fx, fy) ≥ αD(gx, gy) for every x, y ∈ X, (6.3)

and the following g(X) ⊆ f(X).
If one of the subspaces g(X) or f(X) is complete, then f and g have a unique common fixed point.

Proof: Let us define a sequence ⟨yn⟩ in X by

yn = gxn−1 = fxn, for all n = 0, 1, 2, . . . , where x0 ∈ X.

Therefore, from (6.3), we have

D(yn, yn+1) = D(fxn, fxn+1) = D(gxn−1, gxn) ≤
1

α
D(fxn−1, fxn) (6.4)

=
1

α
D(yn−1, yn)

...

≤ 1

αn
D(y0, y1).

By induction,we obtain that

D(yn, yn+1) ≤
1

αn
D(y0, y1). (6.5)

Let d = D − P be the exact metric.Then, from (6.5), we obtain that

d(yn, yn+1) ≤ d(yn, yn+1) + P (yn, yn+1) ≤
1

αn
D(y0, y1) ∀n ≥ 0.

d(yn, yn+1) ≤
1

αn
D(y0, y1) ∀n ≥ 0.
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d(yn, yn+p) ≤
1

αn
D(y0, y1) +

1

αn+1
D(y0, y1) + · · ·+ 1

αn+p−1
D(y0, y1).

Therefore,

d(yn, yn+p) ≤ D(y0, y1) ·
1− 1

αp

1− 1
α

· 1

αn
.

As n → ∞, the term 1
αn → 0 and the remaining factors are bounded. Hence,

d(yn, yn+p) → 0 as n → ∞.

Thus, the sequence {yn} is a Cauchy sequence in the metric space (X, d), so < yn > is a perturbed
cauchy sequence in (X,D,P ), which by completeness of the perturbed metric space (X,D,P ) yields the
existence of z ∈ X such that

lim
n→∞

yn = lim
n→∞

fxn = lim
n→∞

gxn−1 = z.

Without loss of generality, assume f(X) is a complete subspace of X, so there exists a point p such that
fp = z.

Now from (6.4), we have,

D(gp, gxn) ≤
1

α
D(fp, fxn) =

1

α
D(z, yn).

Taking limit as n → ∞, we get gp = z. Since f and g are weakly compatible, therefore, fgp = gfp,
i.e., fz = gz.

Now we show that z is a common fixed point of f and g. From (6.4),

D(gp, gxn) ≤
1

α
D(fp, fxn).

Proceeding with the limit n → ∞, we get gz = z. Hence, z is a common fixed point of f and g.
Uniqueness: Let w(̸= z) be another fixed point of f and g.

D(z, w) = D(gz, gw)

≤ 1

α
D(fz, fw)

=
1

α
D(z, w),

a contradiction, as q > 1. Hence, z = w.
Now we prove the following results after relaxing the condition of completeness of the space:
Theorem 6.3. Let (X, d) be a metric space. Let f and g be weakly compatible self maps of X satisfying
conditions (6.3) and the following g(X) ⊆ f(X). If one of the subspaces g(X) or f(X) is complete, then
f and g have a unique common fixed point.

Proof: From the proof of Theorem 6.2, we conclude that {yn} is a Cauchy sequence in X. Now
suppose that f(X) is a complete subspace of X, then the subsequence of {yn} must get a limit in
f(X). Call it be v and u ∈ f−1v. Then fv = u. As {yn} is a Cauchy sequence containing a convergent
subsequence, therefore the sequence {yn} also converges implying thereby the convergence of subsequence
of the convergent sequence. On setting x = v and y = xn in (6.3),

D(gv, gxn) ≤ D(fv, fxn)/q,

which implies that fv = gv = u, which shows that the pair (f, g) has a point of coincidence. Since f and
g are weakly compatible, therefore,

fgv = gfv, i.e., fu = gu.
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Now we show that u is a fixed point of f and g. From (6.3)

D(fu, fxn) ≥ q D(gu, gxn).

Proceeding limit as n → ∞, we have

D(fu, u) ≥ q D(fu, u),

which implies that fu = u. Hence u is a fixed point of f and g. Uniqueness follows easily.
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