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Averaged Controllability of the Klein-Gordon Equation with a Parametric
Electromagnetic Potential

Wissem Chougar and Abdelhak Hafdallah

ABSTRACT: In this paper, we consider the average null controllability problem for a Klein-Gordon equation
with an electromagnetic potential, which depends on a parameter, that represents the electromagnetic field
properties. These properties are affected by many different factors related to the behavior of particles. Thus,
to achieve the desired result, we apply the Hilbert Uniqueness Method, which provides direct and inverse
averaged inequalities. These inequalities assume the continuity and coercivity of a constructed operator, this
entails establishing a parameter independent control that brings the average (with respect to the parameter)
of the system to zero.

Key Words: averaged controllability, HUM, observability inequality, the Klein-Gordon equation, the
electromagnetic potential depends on a parameter.
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1. Introduction

This paper addresses the following averaged control problem of the wave equation with potential
depending on a parameter:

Yir — Ay +p(z,0)y =0 in Q,
y=1u on Y,
y=0 on¥\ %o, (1.1

y(x,0) = yo (), y: (x,0) = y1 (2) in Q.

With localized Dirichlet control u(x,t) € L?(30),Q = (0,T) x £, Q C R™ is an open bounded domain
with a regular boundary I' = 99, ¥ = (0,7) x I’ and X, is a nonempty part of ¥X. The potential
p(x,0), dependent on the space variable and the real unknown parameter o in [0,1], is considered a
random variable that follows the uniform probability law. The potential is assumed to be in L> (£2) for
all o €[0,1], and (yo,y1) are the initial datum independent of o in H} () x L? (€2). For each value of
o €[0,1], y (z,t,0) is the unique solution of (1.1) in C (0, T; Hg (2)) NC* (0,T; L? (Q)) , (see [26]). One

of the most widely used models in quantum field theory is the Klein-Gordon equation, a fundamental wave
equation describing the behavior of spinless scalar particles; according to [22], this equation is likewise
regarded as a more practical form of the Schrodinger equation. We refined the Klein-Gordon equation
with an electromagnetic potential to explain the interaction of a charged particle with the electromagnetic
field. This is related to the electric and magnetic fields ([16],[18]). Its exact controllability problem has
been studied in many works, such as [5], and [12]. In addition, the Klein-Gordon equation which has
electromagnetic potential is applicable in many fields, such as geophysics, medical imaging, hydrology,
and earth sciences (see [4], [3], [21], [24], [25], [17]). Its exact controllability in one dimension has been
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studied in [15], [7], while the case of several dimensions has been shown in [19]. The electromagnetic
potential is a practical and powerful tool in the Klein-Gordon equations. It combines the electronic field
and the magnetic field into a single quantity that can clearly and accurately describe the interaction
of charged particles with electromagnetic fields at the quantum level. This interaction depends on the
properties of the electromagnetic field represented by the parameter defined in (0,1). To this effect, the
classical controllability notion in [14] could not lead us to the desired result more precisely and is not
enough to determine the exact controllability concering the potential coefficient. Hence, the concept of
averaged controllability is a suitable notion for obtaining the main result. The average controllability
significantly increased, just as it appeared in 2014 by E. Zuazua [6] due to its application in numerous
fields, such as microbiology, electromagnetics, and economics ([1], [2], [3]), where their dynamic is
represented by parametric systems (PDEs, ODEs). In those systems, the parameter plays an important
role. The average controllability notion consists of manipulating the state average to find a parameter-
independent control, which differs from the classical notion. In this context, we find studies such as ([2],
[8], [9],[19], and [26]) for parameter-dependent wave equations and for randomly evolving PDEs in [23].
In addition, other studies have reported the mean controllability in finite dimensions, such as [10]. Thus,
one of the user methods for solving controllability problems is the Hilbert uniqueness method proposed
by J. L. Lions [13], [11] for classical controllability problems, which consist of providing a uniqueness
theorem, a direct inequality, and an inverse inequality [1]. This article aims to study the controllability
of the wave equation concerning potential depending on the parameter used to determine the properties
of the mixture of media.

This paper is organized as follows: First, we introduce our problem with some key results to use in
the second part, where the HUM method is applied to demonstrate the average null controllability by
giving an averaged direct and inverse inequalities.

2. Averaged Null Controllability (Hilbert Uniqueness Method)
The average null controllability of the problem (1.1) is defined as follows:

Definition 2.1 [6] We say that the system (1.1) is average null controllable if there exists a control
u(w,t) in L? (X) independent of the parameter o such that

(/Oly(a:,T, o) da,/olyt (2.7, 0) da) ~ (0,0). (2.1)

To achieve average null controllability, we apply the HUM method, which consists of proving a unique-
ness theorem, and direct and inverse inequalities [12]. Let us begin by establishing the precise definition
of the operator A to introduce the main theorem (the uniqueness theorem).

Now, we introduce the backward equation and the homogenous equation:

Y = A 1*0]:5(35, o)y in Q,
Y= [, $2do on Yo,
P 0:%77 on E\OEO, ’ (22)
Y (z,T)=0 ;v (z,T)=0 in 2.
d)tt—Agb—I—p(x,a)qu:O inQa
=0 on X, (2.3)

¢ (1'70) = ¢o ({E) ; O (x, 0) =@ (:L’) in Q.

For all (4o, ¢1) in the Hilbertian space of the initial data X is independent of the parameter o.
We multiply the backward equation by ¢ and integrate on @) concerning ¢ using the integration by

parts to obtain:
1 1 1
/ /1/Jtt¢da:dtdo—/ /A¢¢d$dtdaz—/ /p(x,a)¢¢dzdtda.
0o JQ 0o JQ 0 JQ
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/01 /Q%Wfda - /0 1 [ 1 @.0)6 (2.0) dador
+/1/w(ﬂc,0)¢t (z,0) dzdo
0 Q

1
+/ / 1/J¢ttd$dtda.
0 JQ
We use Green’s formula,

/ / Avodrdtdo = / / bApdrdtdo + / w—dl‘dtd

Where 7 is the unit normal vector directed outward from @Q and n; is n’s i’" component.

Implies that:
1 1
([ @i a@) ([ wdnw)
0 L2(Q) 0 L2(Q)

1 1
+/0 /Q (P — A+ p(x,0) ¢) Ydaxdtdo + /o wg—idfdtda =0.

3o

Where g () =¥ (.,0) and ¢ () = ¢4 (., 0)

/ zow dthda a </ b1 (@) do; do (= ) (/ Yo (@) do; 1 (z )>L2(Q).

L . ! .
/ 0 | oo ‘ drdt — ( [ oo <x>)m— < o) doson (“"))mm'

Moreover, we define the operator A as follows:

A X — X*
Ao, ¢1} = {fol 1 (o) do, — fol Yo (0) dg} ) (2.4)

Where X* the adjoint space of X, and we define a semi norm on X as follows:

. Loy |
||¢0,¢1||X—/E‘/0 Fnda

Now, we prove the coercivity and the continuity of the operator A by introducing direct and inverse
inequalities.
Therefore, we define the average energy for later use.

We multiply the homogenous equation by ¢;, and we integrate on ) with respect to the parameter o.
The average energy is defined in (2.6), Vt € (0,T).

Ea(t)=;</01/ﬂ¢t|2 da;da+/01/Q|V¢|2 dxda+/ol/ﬂp(x,a)|¢|2 dmda). (2.6)

Hence, in the following lemma, we prove the conservation of the average energy in (2.6).

drdt. (2.5)

Lemma 2.1 We take ¢ = ¢ (z,t,0) as the solution of the homogenous equation, then the average energy
(2.6) is conserved for all t € (0,T).

1 ! 2 ! 2 ! 2 )
E,(0)=E,(t) == dxd Vol|® dxd , dzdo | .
O=50=5([ [1ofas [ [V dwios [ [ oo dods
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Proof: By multiplying the homogenous equation with ¢;, integrate on (0, 1) x €2, using the Green formula
and the Fubini theorem, and taking boundary conditions into account, we find that for all ¢ € (0,7):

2dt/ /|¢t dxdo+/ /Vd)thSda:da

- /1 [ oo nd89d0+2dt// 2,0) 6|’ dzdo
_ 2dt (/ /\@ d:cd0+/ /|v¢| dz do
[ [ ptorlof asdo)

1
/ /Q (b1 — Ad+ p(, o)) da do
0

d

= —FE,.(1).
g Ba(t)

Then,
d
—FE, (t) =0.
g Ba (1)
This is precisely the assertion of the lemma. O

3. Averaged Inverse and Direct Inequalities

We start by proving a lemma that we will use later.

Lemma 3.1 Let ¢ = (qx) be a vector field in [Cl (Q)] independent of the parameter o then, for all

weak solutions for the homogenous equation (2.3), we have:

e ) ! oo \"
= ¢ |Vo|” midldtdo = o | @ dxdo (3.1)
2/ Js 0 JQ 0x; 0

1 ! 5ql 9 9 )
+ / 1 / 09 00 093 1 drdo

0 JQ Ox; O Ox;

L[t op(z,0) )
B 5/0 /ani% |¢|” dzdtdo.

Proof: First, for simplicity of notation, the convention of repeated indices will be applied as follows:
q; gfb = E?Zl qi% Then, we make the convention with the homogeneous equation, and q1—¢ and

integrate on @ x [0, 1].

! 1
/ /(¢tt—A¢+p(as,a) o) qi@md:l:dtdo' = / /(btt(h@idl'dtda'
0 Jo O0x; o Jo or;
1 96
/0 /Q Pq oz,
1
+/0 /Qp(xag)ﬁsqigfidxdtda.
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Hence,

1
//@tqi%dmdtda
0 JQ Ox;
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( 0 JQ Ly
T 1
1
= / / ((b i ) dxda—f/ /qii|¢t|2dxdtda
L 0 2 0 Q 8:61
1t 9
tqz dxdo— f/ /qi |p¢|” dTdtdo
i 2J)o Js

1
/ aqz |¢t|2 dedtdo

//(th%' 3(;5) dxdo + = //6% e |? dadtdo.
0 JQ Oz;

For the second integral term, we obtain:

1 1 1
/ / A¢Q¢%du’cdtda = / / V¢ (C]z‘ad)) ndldtdo — / / VoV (qi 09 ) dxdtdo.
0 Q axl 0 b 6561 0 Q 81‘1

Then,

_l_

99 000000 1,

Consequently,

Adg;

/0 /Q Ox;

_1/1/ 9
2 0 quaxz

We thus obtain:

——/ /qha |Vo|? da dtda——f/ /qz|v¢| ndldtdo + = / / 0di - |V¢|? dudtdo.
Where,
1 1
//|v¢|2mdrdtdo://
0 P 0 >

1
/ / 2o 22 dudtde = / / g |Vo|? dUdtdo + = / / 04; Vo drdtdo
o Jo Ox;
- / / <a¢ 04 a¢)dwdtda.
0 Q 6$j 81‘]‘ 8.131

1

8qz (z,0)
—*/ / oz, ,0) |o|? dadtdo.

1t 2 ! ¢ 0q; 0
2/0 / qi | C<75| ndldtdo —/0 / (5% ixj CE1> drdtdo

This gives:

The last integral is rewritten as follows:

/Ol/Qp(%G)aSqigi
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1
/ / b <qig¢'> dado + = / / 04; ¢y |? dadtdo
0 Q Zq
1 ! 8(]1 2 8¢ aQi 8¢)
- /0 /Q o Vo[ dadido + /0 /Q (8%_ o 8xi)da:dtda
1
_1/ /L(xj”)% |6 dadtdo
- / / aql o) |¢|? dedtdo
= //¢t <qi'> dxdo
Ti/ o
n / / (‘% 94; a(b)dxdtda
0 Q 8xj 8$j axl
1 ! ap(x70') 2

As a result, we obtain (3.1). O

Consequently,

1 1
: / / 4 IVo[> dUdtdo
2 0 >

dq;
q |¢t\2 — V> —p(z,0) \¢I2) dxdtdo

3.1. The average direct inequality

In this section, we prove the following theorem:

Theorem 3.1 (The direct inequality): Let ¢, the solution of (2.3), verify the following inequality:

LA el

C is a positive constant. Under the above result, we assume that the reqularity property for the solution

of (2.3) holds.
99

o

1
avir<C [ [ [lo1 + V00l + 0 (2. 7) "] dede (32)
0

(z,t,0) € L* (¥ x (0,1)). (3.3)
n is the outward unit normal vector.

Proof: Now, according to Lemma 1 and [12], we take g =h ;h-n=1onI:

2 1 b T
—| dl'dtdo = / haoy dxdo
0 Ja

1
T / / Vi (1ouf? = [V — p (2:0) 6] drdtdo

9¢ 9¢
+ / / Vh— o, 5 dzdtdo

Op(x,0), 2

2
dUdtdo < CE, (0).

We estimate each integral then,

Iy

99

on
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According to Cauchy-Schwarz, we obtain:

LI e

2
dTdtdo (3.4)

2 1
ﬂmgK//
0o J=

99
n

Where k£ > 0.

We obtain the average direct inequality defined in (3.2), which implies (3.3).

3.2. The average inverse inequality

In the following section, we will demonstrate a theorem to ensure the inverse inequality.

Theorem 3.2 (The inverse  inequality) Assume  R(x°) = [m (@) @y —and

T(CL‘O) = 2aR(x0)max{17é} where o > 0 then, for every T > T(mo) and every weak solution for
(2.3), the next averaged observability inequality holds:

R (2° 1 2
(T =T (%)) B, (0)§(x)/ / % 45| drat. (3.5)
2 2(z0) |J0 on
To simplify the calculation, we use the following notations: following:
Let 2 € R" and 2° fixed in R", m(x) = x — 2° a partition of the boundary where

I'py={z € ';m(z).n(z) > 0}where n(x) is a unit normal vector directed outward Q [12].

m(z) = x—2a°

mi(z) = x;—a?,1<i<n,

I'(2%) ={z €I m(z).n(z) >0},
% (2%) =T (=) x 0, T7.

R (2°) = [m()]| = (q) = sup ||z = 2°],
z€Q

dg; 1 sii=j
8:Ej = 57;]‘, where 51']' = { 0 sii #]
- Jq; . ) ) 0\ _
; 8:51- B ; 8.’L’i (xZ xl) ="
96 06 06 _ 000606 _ oo
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Proof: We rewrite Lemma 2 as follows:

% /01 /E m; () 99 2 n; (z) dUdtdo = /01 /Q o (mi () gi):d:pda
1
+ %/0 /Q”(I¢tl2lv¢2p(x,a)|¢|2) dzdtdo
+ /1/ \Vo|? dedtdo

3p (z,0)
— // 0w, (z) |4 dedtdo

_ //@(ml 59?1) P //\d)t\ drdtdo

+

2 0 Q
n 1 2
— —/ /p(x,0)|¢| dxdtdo

8p (z,0)
— / / e () |¢|° dedtdo

ad’) 2L e
m; (x dxdo + — dzxdtdo
/O/Q¢>( @ 52 ). 5 e
2—n [t
2 0 Q
n 1 2
— —/ /p(x,0)|¢| dzdtdo.
2 0 Q

In the next steps, we estimate each integral, and we use the Cauchy-Schwarz inequality on ¥ (xo) as
follows:

IN

0 < m()n) <|m@)|n@)] <R ().

We estimate the first member,

1 1/ 06 |? 1/1/ " oo
— m; (z).n; (x) | =—| dldtde < — m; (x).n; (x) | =—| dl'dtdo
5| Lm@aw]; ) [Xm @ me|g
11/ o0 |?
< ||m(x i ()| = —| dl'dtdo
< Im@im@iz [ [ |5
R(z%) [ 2
< 7// 221 drdtdo.
2 Jo Je@o

We take,

//¢t (mz 82) dedo 77/ / 3”8;" (z) |6|? dzdtdo.

‘We thus obtain:

n ! 2 2—n ! 2 n ! 2
+*/ /|d)t| dmdtda—{—i/ /|V¢| dxdtdo—f/ /p(x,a)|¢>| dzdtdo
R (2) /1/ 99|
2 Jo Ju@oy|On

dl'dtdo.
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Moreover, we have:

Pyl / I
—*/ /p(x7o)|¢l2dwdtdo+f/ /\gbt\zdmdtdo
2J)o Jg 2Jo Jo
1 [t 1 /!
—7/ /|¢t|2d$dtd0+*/ /p(m,o)|¢|2dxdtda
2 Jo Q 2 Jo Q
1/t )
—5/ /p(x,a) |¢|” dedtdo
0 J@Q

— F+;/01/Q{|¢t|2+v¢2+p(x,a) |¢|2} drdtdo

1
[ 1o = 1¥67 ~p (0.0 10 dadrdo

Implies that:

1
; [l¢tl2 — Vo> = p(z,0) W] dxdtdo + TE, (0)

2 0
R (xO) /1 / a¢ 2
2 0 Ju(x0) on

dl'dtdo.

We take,

6= [ [ (16 = 968 = pte.0) 6] s

F+—G+TE

dthda. (3.6)

3(x0)

Now, we return to the homogenous equation, multiply it by ¢, and integrate it into (0, 1) x @), we obtain:

1
/ /Q¢ (P — Ap+ p(x,0) ¢) dedtdo = 0.
0

Hence,

/01/9(¢t¢)0Tdm do—/ol/Q|¢t|2 dedtdo
/OI/Q|V¢|2dxdtda+/Ol/Qp(m7o)¢2dxdth
0

1
/ /Q O (P — AP+ p(x,0) ¢) dedtdo
0

+

Implies that:

./01 /Q (¢t¢)oT drdo =Y.
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We have,

¢t (mz
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Moreover, we use Cauchy e—inequality to find that:

[fo(mo e

Additionally, we have that:

WAL

We use the Green formula:

£ o

We rewrite (3.8) as follows:
n -1 8 2
83:1 2
Implies that:
1
9¢
m; (x
/0 /Q )53%

2
Ls

1
)d:vOTd + n—l/ /(qbt(b)gdxda
= / / ap (z) || dadtdo
T
= //(ét(mi(x) +n—1¢> dxdo
€T 2 0
- / /ap $.9) i (@) |6f? dudido.
1
1¢>dazda < E/ /\¢t|2dxda
n—l 2d d
5‘:& 3 ¢| dxdo.
2 1 2
1¢ dxdo = //mi (x) dxdo
Q z;

(5 [ oo

coenf]
A e

2
dxdo

z) ox;

(5 [ s

—7_/ /|¢|2d1:da
2 0o Ja
1

2
dxdo —

m; ()

8xi

dxdo

IN

IN

IA

x) 5‘;;3‘ o| dzdo.

1
——@/ /|¢|2dxda.
2 0 Q

drdo

T;
|

0 Q
1
‘ 2 2
s @) / / Vo[ dedo
1
0\2 2
R («°) /O /Q Vo[ dado.

(3.7)
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Now, by taking e = R (zo) in (3.7), we obtain:

/Ol/ﬂaﬁt <mi($)gi+n21¢) drdo < / /|¢>| dxda+R / /|v¢\ dzdo.

Then,
n—1 B 0p n— Op(z,0)
‘ ‘ = ¢t (mz (2) oz, + 5 > dxdo — / / . (z)|¢|* dzdtdo

< //|¢\ drdo +R(;0 //le dzdo.

Conversely, we have:

1 T 1
dp ~n—1 0p n—1
o (mi T + ¢> drdo| <2 o <mi T + QS) dxdo
Q ¢ ( ) 8361 2 0 Q ¢ ( ) 8:61' 2 L>=(0,T)
This implies that:
-1
’F+ i G' < 2R (2°) B, (0).
We take 2R (2°) = T (29),
‘F+ "_1G‘ < T (2°) B, (0).
Consequently,
F — dI‘dtda.
3 (x0)
and,
—1
TE,(0) - T (2°) B, (0) < TE,(0)— <F+ n . G>
< a (0)

dl'dtdo.

2
R (2) /1 / 9|
2 Jo Ju@oy|On
xO) 1
/E(a:o)/o
2 1 2
— dadl—‘dtS/ (/ a(bda) dl'dt.
s0) \Jo On

i R (z°)
(T =T (a") Ea (0) = —5 /z(w

Which is the averaged inverse inequality. O

Implies that:

(T —1T (2°)) E, (0) < i dodldt.

Moreover,

3(z0) JO
Which yields:

Theorem 3.3 (Uniqueness theorem) ¢ is a solution for the homogeneous equation, if g—‘f; (z,t,0) =0
on ¥ % (0,1) then, =0 in Q x (0,1).

Consequently, ||¢o, 61|/% = [ ‘fl 3¢do‘ dU'dt is a norm on X, (see [11]).
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Proof: In the context of the HUM method, the uniqueness theorem depends on proving direct and

inverse effects. In detail, the averaged inequalities show that the seminorm in (2.5) is a norm on X (the
Hilbert space of the initial data), which is identified in Hg (Q) x L? (Q):

1
/ / @do
%(z9) [Jo on

o[ [ [l 160 +p(o.0) o] deto. (39)

2

2 ar'dt

R (x9)

(T =T (2")) Ea (0)

IN

IN

Importantly, A is an isomorphism on H{ () x L? (Q) to Hy ' () x L? (Q). More specifically (2.4) has a
unique solution given by

{60,01} = A" ( / (o) do / o o) d")Hlezm) - (3.9)

This approach aims to design parameter-independent control to achieve the averaged null controlla-
bility of the problem in (1.1) mentioned in (2.1).
O
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