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Novel Coding Inequalities for Mean Codeword Length and Generalized Entropy using
Noiseless Communication
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ABSTRACT: Shannon’s entropy forms the basis for almost every aspect of information theory. It formulates the
foundational stone for various source coding theorems assuming statistical independence and extensive systems.
This research aims to investigate the possibility of deriving novel entropy measures using noiseless coding
theorem. The obtained results find a widespread application in information theory and applied mathematics.
To accomplish this, a novel expression for mean codeword length has been illustrated. Besides, established
relation between entropy measure and its corresponding codeword length. The results obtained pave the way
for a new avenue for entropy-based coding in non-extensive and information-rich environments.
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1. Introduction

Inequalities are used in mathematics to examine the overall magnitude of quantities. They may be
used to compare various mathematical expressions, factors, and numbers. When it comes to solving
problems involving the least or greatest potential attributes, inequality is quite useful. While indicates
that is strictly more than , indicates that is less than or equal to , and indicates that is higher than or
equal to , the idea means that is strictly smaller modest in size than . Not everything in mathematics is
about ”equals”; sometimes we merely realise that something is more notable or not. Inequalities are often
used by mathematicians to constrain values that have certain recipes that are not easily handled. There
are many such inequalities including Chebyshev’s inequality, Bernoulli, Holder’s and Cauchy-Schwarz.
One of the eminent inequalities used in the literature of information theory is Jensen inequality, given
by Johan Jensen, a Danish mathematician. Initially demonstrated in 1906, Jensen inequality establishes
the link between the estimation of a convex function of an integral and its integral. Although its ap-
parent simplicity, the inequality can take several forms based on the mathematical context in which it
is utilized. The idea of entropy was first presented by Shannon [1] and has since become a foundation
for assessing uncertainty in random variables. According to several scholarly references, including online
encyclopedias, entropy fundamentally describes the degree of unpredictability or randomness related to
a given variable. Shannon’s theory defines entropy as the predicted amount of information contained in
a message, which is commonly measured in bits, where a message is considered as the precise outcome
of a random variable. Shannon’s formulation provides a method for calculating the average information
loss caused by the variable’s implicit uncertainty in behavior. Entropy has played a significant impact on
current communication theory during the last few decades. Notably, [2] made substantial contributions
to our knowledge of probabilistic instability, which led to a wide range of applications. Subsequently, the
entropy theory finds its utility in various domains of information and coding theory including operational
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research, decision making, image construction, Error detection and correction, regional planning, bioin-
formatics, queuing theory, industrial productions and many more. Efficient data compression is essential
to information theory because it enables the removal of redundancy in data transfer while retaining in-
formation. The Noiseless Coding Theorem (Shannon’s Source Coding Theorem) is a basic result in this
discipline which establishes basic lower bound on the average length of codewords in terms of source en-
tropy. This theorem assures that no unique decodable code may compress on average, below the source’s
entropy. However, with growing demands for more efficient communication particular in situations involv-
ing skewed or complex distributions, classical entropy measure and corresponding bounds may fall short
of capturing real word subtleties. Keeping in mind that the RV collection F' = (¢1,..., 9501, P0M)
and its corresponding probabilities (p1,...,pan), pr > 0, >, pr = 1, are a subset of the discrete RV
Y1,...,0p, and so forth. For the finite information scheme, the uncertainty measure or the entropy
measure is given as:

M
h(py) = — Zﬁt pt log py (1.1)

t=1
For the code word length (to be conveyed) (mi,ma,...,my), the set of probabilities are given by
(p1,p2, .-, pm). Then let us assume for D being the coding alphabet size, the Kraft inequality satisfies

[3]:

M
> Dm<i (1.2)
t=1
Using the characteristics of [1], the constraints for mean code word can be obtained by solving:
M
119 :Zﬂtptmt (13)
=1

It is located in the range of h(p) and h(p) + 1. According to Feinstein [4], this is the codeword length
for a code that satisfies (1.2):

I > h(py) (1.4)
where equality holds if and only if

my :_IOgD(ﬁtPt)a = 1527"'7M (15)

The average length can be obtained close to h(py). This result can be understood by noiseless coding
theorem given by Shannon. In correspondence to this, Campbell [5] established an equivalent coding
theorem using Renyi’s [6] entropy and noiseless coding theorem. The authors also obtained bounds for
the results in terms of the expression:

hr(po) =

logp (D (0el)), >0 (r#1)

1—r "

Further, Kieffer [7] deals with source coding with side information or multiple source coding, and more
specifically with choosing between two sources for coding data in such a way that the expected cost
per symbol is minimized in the asymptotic limit. Jelinek [8] worked on the problem of buffer overflow
with real time data encoding. He used Campbell [5] mean length and created source symbols in case

when symbols are stored in a finite buffer. The extension of mean length given by Campbell were also
illustrated by Hooda and Bhaker [9]
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And proved as a result, (1.6)’s smallest value is between h,(py) and h,(pg) + 1.

hrs(pﬁ) < 1519 < hrs(pﬁ) + ]-7 T > 07 r 7& ]-7 s>1

Under the condition

M=

M
(Depe) ' D™ <Y (Dpr)°
t=1

t=1

This is in line with the Tsallis entropy [10]. Numerous scholars have examined a range of generalized
entropy measures. Considering uniquely decipherability, generalized CWL and theorems were developed
based on these measures. A case in point is [11]. By applying the weighted entropy that was explained
n [12], [13] was able to determine the least value of a meaningful MCWL. In [14], the Noiseless Coding
Theorem (NCT) was developed. The average and lowest values of CWL were also covered. [15] examined
the limit and average codeword length (CWL), which is significant data. Many applications of significant
generalized theorems in coding information theory are discussed by well-known authors, such as [16,17,
18],and [19,20,21,22]. Some of the important results were also examined in [23].

In this research, we examine numerous coding theorems by proposing a novel function that depends
on parameters. We are looking at this new function since it generalizes a number of entropy functions
that are already known from the literature, including the entropy used by [24,25,26,27] in physics.

2. Noiseless Coding Theorem

We define a completely new measure that is described as follows:

hes(py) = ! 1_2?11(1%/);)5 r>0,r#1,s>0, 9 >0 >0,t=1,2 M (2.1)
rs 09 r—1 Zi\il(’ﬂtpt)s ) ) ) s Ut y Pt = Y, 9Ly ey .

Since p; gives the probability distribution, we have Zt]\i 1pe =1

Assume s = 1, the equation (2.1) takes the form discussed in [24]:

1 M
he(po) = —1 {1 - Zﬁtl);} (2.2)

Equation (2.1) relates to [1] with s =1 and r — 1:

M
h(ps) = — Zﬁtﬂt log py (2.3)

t=1

If 9 =1 and r — 1, (2.1) reduces to a measure of “useful” information as in [19]:

M () 1og ()
h = — 2.4
v Sty (pe)’ 20

Definition 2.1 In accordance with the entropy measure, the useful mean length is denoted and defined
as:
-
M _ my(r—1)

1 1 T ma(r=1)
L= —— [1-05" (Wupr)° () D" , (2.5)
r—1 Z L Wepy)®

t=1

where v > 0 withr #1, s >0, 9 >0, and py > 0 fort =1,2,..., M. Since p; gives the probability
o M
distribution, we also have Y ,—, py = 1.

Fors=1 andr — 1, I,.s9 becomes the optimal code length as defined by [1]:
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M
Iy = Z mg Vi ps.

t=1

If so, the MCWL (2.5) becomes the new MCL:

1 M 9 _ mu(r—1) "
Iy = — |1- ; e DT | (2.6)

Theorem 2.1 The code word length D > 1 satisfies the following for all integers:

Irsﬁ 2 hrs(pﬂ)a (27)

under the condition
M

Y Dm<l,

t=1

where equality holds if and only if

my; = —logp <W> . (2.8)

M

Zt:1(19tpf)s

Here,
M 1 "
1 1 r me(r—1)
et [ S (Y o)

r—1 t=1 t=1(Vepr)®

and

1 1\{ 19 pT S
hrs(pﬂ) = 1 1- % .
r =1 (Tipe)*

Proof: Holder’s disparity is known to be caused by

M Ve , m 1/f M
<Z(at)e> (Z(bt)f> < Z atby, (2.9)

t=1 t=1

for all a; > 0,b; > 0, t =1,2,..., M, with equality if and only if there exists a positive number e such
that
af = ebf, (2.10)

where

el fl=1, e=——, f=1-r

For the present case, we choose

rs 1 r—1
ay = (V¢py)r—1 () D=,
Sl (Depr)®

and

rs 1 1—r
bt = (ﬁtpt) 1—s <> .
YL, (Depe)®
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The equality holds if and only if

D—mt — ](Mﬁtp;)g ,
21 (Depp)?
which gives
(Fepi)®
my = —logp < . (2.1)
?i1(19tpz)s
O
Theorem 2.2 I,.; can satisfy the subsequent condition if the lengths my,...,my; in Theorem 2.1 code
are chosen correctly:
1
(1—r) _ pn-r)
Lo < DO hyg(po) + — (1 D ) (2.11)
where y ;
M T
1 1 (r—1)
Lo = —— 1= S (Wipy)* <M> D ,
r—1 t:zl 2t=1 (Dipr)?
and u
1 Do} )?
hrs(po) = {1ZtM1( Pt) }, r>0, s>0.
r—1 11 (Vepe)*
Proof: Let m; be a positive integer that fulfils
(Vepy)° (Vepi)?
—logp (M <my < —logp| —3——— | 1 (2.12)
21 (Depf)? 21 (Dep)?
Consider the interval of length 1
(Vepy)* (Vepy)*
o0 = [—logD<M_ y —logp | =7———— +1] (2.13)
21 (Depy)? 21 (Depy)?
Then, for each 9, there exists exactly one positive integer m; such that
19 7\S 19 T\S
0< —logp (W) <m; < —logp (M) + 1 (2.14)
21 (Depy)? 21 (Depf)?
From the upper bound in (2.14) we obtain
19 7\S
mt<—10gD<1\(/[tpt)>+17
> =1 (Depy)?
hence 900
D™ > ]€4 tpt) D*l’
> i1 (9epi)®
and therefore .
my(r—1) )8 T 1—p
D> (W) DT . (2.15)
D1 (Depf)?

Multiplying both sides of (2.15) by

1 1/r
1975 t ® —M . ’
( p ) (Zi\il(,ﬂtpt)s>
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summing over ¢ = 1,..., M, and simplifying (and then taking the factor 1/(r — 1) for r > 1) yields the
inequality (2.11).
O

Theorem 2.3 For every codeword length my, I.s9 must satisfy the following inequality, according to
Theorem 2.1:

1
Irs,ﬁ Z hrs<p19) > hrs(pﬂ)D + ﬁ(l - D) (216)
Here
M : '
1 1 T ma(r=1)
Irso = 1 - (Depe)* (M > D~ s ;
r—1 tzzl > =1 (Uepe)?
and
M
1 19 T\S
hrs(py) = {1_%71(%}7 r>0, s>0.
r—1 =1 (Depr)*

Proof: Suppose

__ (Vep})°
P=—logp { — 2.17
5 { S k)" } (247

It can be clearly seen that equation (2.9) can be satisfied by 7; and 77 + 1 with the help of Hélder’s
inequality. Let us assume m; is the only integer between m; and my; + 1, then we have the following

result:
I

M . :
(ﬂtpt)s <> Dfmt(rfl)/r
t=21 St (Wipr)®

r
M

1 -
< Op)® | ——— | DC=D/r 2.18
B Z( g (Zt]\{l(ﬂtpt)s> (2.18)

t=1

M

1 -
<D (Depe)® () D=/
t=1 Zt]\i1wtpt>s

1 T
T

Hence, since
-

M T M T\S
S (Wip)* <Ml> pmtr-n/r | — ZaealUipt)”
t=1 >ot=1(epe)? 11 (Depe)®

equation (2.18) turns into

T

M r 7\5 r\S
Z(ﬁtms< ! ) Domrnr| < S @) St Wepp)*
=1 Zt]\il(ﬁtpt)s Zﬁ\iﬂﬁtpt)s Zt]\il(’ﬁtpt)s

The outcome is equation (2.16).
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3. Conclusion

The key objective of encoding is to maximize the number of messages transferred in a certain stretch
of time and minimize the data loss during the transmissions. To deal with this, we present generalized
noiseless coding theorems based on the generalized mean codeword length and an inaccuracy measure
that we established. These expansions provide modelling flexibility for source distributions, particularly
when standard entropy measurements are insufficient. Our approach includes adjustable parameters,
allowing for more precise control over codeword allocation based on probability irregularities. The the-
orems provided keep crucial characteristics that include different decodability and prefix-freeness while
improving mean codeword constraints. The generalized entropy-based approach promotes the accuracy
of coding schemes, which makes them suitable for applications in real-life data compression for safe digital
communication.

4. Future Research Endeavours

Experts provide information based on their understanding of the system to assist in resolving the
decision-making dilemma. In addition to the study mentioned above, algorithms for use in decision-
making can also be investigated in parallel with mathematical studies. It is also possible to illustrate
and compare alternative information estimations in the context of the noiseless theorem and the best 1:1
code. Using the noiseless coding theorem, R-Norm entropy metrics are described and used.
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