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A Novel Fractional-Order Approach for Modelling Glucose Regulation with Meal Spikes
and Periodic Noise
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ABSTRACT: In this work, we develop a novel fractional order model for glucose-insulin-lactate dynamics
in diabetic patients, incorporating both time-varying noise and meal-induced glucose spikes to enhance the
realism of the system. This framework is about non-linear fractional differential equations that capture
the chaotic behaviour of glucose regulation in the presence of noise and periodic fluctuations. To simulate
real-world conditions, time-varying noise is introduced as physiological variability, including noise levels that
fluctuate based on circadian rhythms and metabolic processes. In addition, we introduce meal spikes as a
sudden increase in glucose levels, reflecting the physiological response to food intake. The glucose surge is
modelled using a Gaussian function, with intensity and duration adjustable to simulate different meal patterns.
The proposed model successfully captures the complex, real-world behaviour of glucose metabolism, providing
insights into the effectiveness of control strategies under realistic conditions. From this approach, we offer a
more comprehensive representation of the metabolic control system in diabetic patients and provide a practical
method to examine intervention strategies.

Key Words: Fractional-order dynamics, glucose-insulin-lactate system, time-varying noise,
meal-induced glucose spikes.
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1. Introduction

The human glucose-insulin regulatory system is a biologically complex and dynamic network, con-
stantly adjusting to internal metabolic cues and external stimuli such as meals, stress, and circadian varia-
tions. In people affected by diabetes mellitus, this regulatory network is impaired, leading to uncontrolled
glycemic excursions and long-term complications. In recent years, the modeling of this physiological sys-
tem has seen major developments, transitioning beyond traditional linear representations to embrace
more biologically faithful approaches, such as nonlinear fractional-order differential equations (FODEs),
chaotic systems theory, and noise-driven dynamics. These advanced models have become instrumental
in simulating real-world glucose-insulin-lactate interactions, capturing physiological unpredictability, and
aiding the development of intelligent therapeutic systems.

Wang, Y., and Wang, H. laid foundational work by using dynamical system modeling to simulate
glucose-insulin interactions. Their model captured glucose response curves and introduced nonlinear
feedback relationships [1]. A key evolution came with the concept of closed-loop systems for insulin
infusion. Hovorka et al. conducted a randomized controlled trial demonstrating the safety and efficacy
of overnight artificial pancreas systems, marking a shift from simulation to real-world implementation.
This clinical work emphasized the critical need for robust and adaptive control algorithms, particularly
in the presence of physiological variability [2].
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To address model instability under unpredictable metabolic states, N'Doye et al. introduced a
fractional-order control strategy, demonstrating enhanced stability through fractional dynamic feedback
[3]. Alongside this, Bequette reviewed core challenges in artificial pancreas development, including mod-
eling of delayed insulin action and postprandial glucose surges-problems that were inadequately addressed
by earlier integer-order systems [4]. In complementary work, N'Doye et al. designed an unknown in-
put fractional-order observer, enhancing state estimation in the presence of unmeasurable disturbances-a
frequent issue in real-time diabetes monitoring [5].

These approaches emphasized the need to embed real-time responsiveness and physiological adapt-
ability into diabetic management [6]. In industrial biotechnology, Craven et al. applied nonlinear model
predictive control (NMPC) to regulate glucose in fed-batch bioreactors, offering useful cross-domain in-
sights for medical glucose regulation [7].

Cho et al. introduced a fractional-order extension of the MINMOD Millennium model, enhancing its
capability to simulate long-term glucose-insulin memory effects, such as those seen in insulin resistance
[8]. Heydarinejad and Delavari observed a robust glucose control, even in systems subjected to sudden
meal spikes or irregular hormonal activity [9]. Oviedo et al. conducted a comprehensive review of
personalized blood glucose prediction strategies, advocating for the use of patient-specific physiological
models rather than generic, population-based ones. They highlighted the role of adaptive algorithms and
data-driven personalization in glucose modeling [10]. In parallel, Panahi et al. developed a fractional
chaotic model for glucose-insulin dynamics, showing how chaos theory could replicate postprandial surges
and hormonal variability more accurately than traditional models [11].

To handle system uncertainty, Heydarinejad et al. applied fuzzy type-2 controllers in conjunction
with fractional observers. Their model integrated learning mechanisms for adaptive response and observer
correction [12]. Paiva et al. improved both transient and steady-state performance by managing the blood
sugar levels governs by fractional order method [13]. Munoz-Pacheco and Posadas-Castillo demonstrated
the effectiveness of non-local fractional operators, further refining the modeling of metabolic memory and
delay propagation in glucose-insulin systems [14].

Expanding on these control strategies, Ivanov et al. introduced the concept of network physiology,
advocating for integrative modeling across cardiovascular, endocrine, and neural networks. This holistic
view redefined diabetes as a system-level disorder [15]. Ferndndez-Carreén and Munoz-Pacheco imple-
mented this thinking in their time-delay fractional-order glucose-insulin model, successfully simulating
the delayed insulin response post-meal intake [16].

Askariand Mohammad Reza developed adaptive insulin delivery modules that incorporated chaotic
glucose patterns and predictive models to offer real-time insulin adjustments [17]. Saleem and Igbal
introduced a complex-order PID controller for improved glycemic control, capable of handling high vari-
ability in unstructured daily activities [18]. Vijaya et al. extended diabetic prediction capabilities using
metaheuristic optimization algorithms, enhancing control performance through global optimization of
controller parameters [19].

Meal-induced glucose spikes-among the most difficult variables to manage in diabetic patients-received
special focus in 2024. Batool et al. introduced a Mittag-Lefller kernel-based glucose-insulin-glucagon
model, which modeled postprandial spikes as Gaussian pulses, capturing their sharp onset and gradual
decay [20]. Kamat and Sweet validated this mathematically through biological experiments demonstrat-
ing that glucose surges lead to hypertonicity-induced insulin release, consistent with Gaussian-shaped
models [21]. Ganguly et al. highlighted the integration of such models into biosensor ecosystems, advo-
cating for sensor-driven control loops [22].

The evolution of fractional modeling continued with Alhazmi, who compared Caputo and Caputo-
Fabrizio operators, recommending modeling strategies based on desired memory depth and computational
efficiency [23]. Selma et al. further introduced a model-free feedback control strategy for meal-induced
glucose spikes, by passing the need for explicit meal announcement and supporting autonomous artificial
pancreas operations [24].

More recent efforts in 2025 focused on refining fractional control frameworks. Toopchi et al. presented
a backstepping-based nonlinear control design optimized for the fractional-order nature of glucose-insulin
dynamics [25]. Nisar and Farman formulated a PID feedback synthesis approach for closed-loop glucose
control, while their second work demonstrated formal controllability analysis of such fractional systems-an
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essential criterion for ensuring robust clinical performance [26].

Additional control innovation was shown by Dagher and Haggege, who developed a genetic fuzzy
controller to manage glycemic variability [27]. Nisar and Farman explored hybrid control techniques for
fractional-order models, showing enhanced performance under both meal-based disturbances and sensor
noise [28]. Finally, Saber and Mirgani presented fractional disease-informed neural networks, combining
data-driven AI with fractional model structures for adaptive learning in diabetic systems [29].

In this reseacrh work, we will use the neural network method for the proposed model due to their
strong generalization capabilities and adaptability. The application of neural networks spans multiple
domains, including visual perception, language modeling, biomedical data analysis, diagnostic systems,
and dynamic control processes. The conceptual foundation of neural networks was established by Mc-
Culloch and Pitts, who introduced a simple computational model of a neuron [30]. Later, Rosenblatt
developed the Perceptron, a learning algorithm capable of binary classification, sparking early interest
in artificial neural systems [31]. However, due to limitations in solving non-linear problems (e.g., XOR),
highlighted in Minsky and Papert’s work, research declined, leading to the first ” AT winter” [32]. Interest
was revived in the 1980s with the development of the backpropagation algorithm by Rumelhart, Hinton,
and Williams, which enabled multi-layer networks to learn effectively [33].

This progress, along with growing data availability and computational power, resulted in transforma-
tive models like transformer-based architectures found in [34]. Neural networks play a vital role in cancer
detection and prognosis by learning complex patterns from medical images and genomic data. Kourou
et al. highlighted the effectiveness of neural networks in predicting cancer outcomes using clinical and
molecular data [35]. Also, Esteva et al. showed that CNNs can classify skin cancer at a dermatologist-
level [36]. Neural networks have been validated as effective across numerous diseases beyond oncology,
offering enhanced diagnostic and prognostic capabilities. In ophthalmology, neural networks are widely
utilized for diagnosis of diabetic patients with high sensitivity, supporting early intervention and screening
programs Gulshan et al. [37].

In this paper, we introduce a fractional-order model for glucose-insulin-lactate dynamics in diabetic
patients, incorporating time-varying noise and meal-induced glucose spikes to reflect real-life metabolic
fluctuations. The model uses nonlinear fractional differential equations to capture chaotic glucose regu-
lation influenced by circadian and metabolic noise. Meal spikes are modeled with adjustable Gaussian
functions to simulate various dietary patterns. Results show the model effectively represents complex
glucose behavior, offering a realistic tool for analyzing and optimizing therapeutic strategies in diabetes
management.

2. Mathematical Model

A growing body of research has proposed models to capture the dynamic behavior of glucose regula-
tion in diabetic patients, often structured based on multiple physiological compartments [38]. The study
conducted by us specifically focused on non-linear glucose-insulin-lactate interactions in diabetic condi-
tions, where the inter-system feedback between glucose, insulin, and lactate was taken into consideration.
To achieve this, we will design a three-dimensional dissipative system of fractional order which incorpo-
rates: non-linear interactions between glucose, time varying noise, meal spikes and no equillibrium points
ensuring potentially hidden or transient chaotic attractors. For this, we made a compartmental model for
which the state variables as: x(t), y(t) and z(t) represented glucose concentration, insulin concentration
and lactate concentration, which governs by the following postulates:

e System has no equillibrium point

e Meal spike acts as external time dependent input into the glucose particularly Gaussian input
e Noise is time varying particularly Gaussian noise

e The fractional orders lies in the interval (0.9,1)

In compliance with this fundamental postulates, the proposed mathematical model consists three com-
partments, corresponding to each state variables as shown in the Figure 1
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Figure 1: Comparmental Diagram of Proposed Mathematical Model

Based on the Figure 1 and interactions between glucose, insulin and lactate, we have designed a novel
dynamical system by employing the above postulates.The model comprising a set of ordinary differential
equation which is expressed as:

D% =o(y — )+ kizz + M(t) + n.(t)
D% = w(p — 2) — y + kayz + M(t) + n,(t) (2.1)
D%z = wy — Bz + ksz® + M(t) + n-(t)

_ (tfcenteTofaspike)2)
where M(t) = meal spike function ( at some time tp) considered as Aexp twice(widthofspike)?

A(mmolL™1) is an amplitude, 7, (t)(mmolL=1),n,(t)(pmolL=1) and n,(t)(mmolL~") are time vary-
ing noise (small Gaussian noise). Further, o(min=1), p(mmolL~1'), B(min~!) are the control parameters
and kq, k2, ks((mmolL=1)"tmin~1) are the small nonlinear perturbation parameters. Biologically the
terms in the system 2.1 interpreted as o(y — x) represents insulin—glucose regulatory feedback; zz as
lactate’s modulatory effect on glucose; z(p — z) as glucose stimulates insulin secretion (p as threshold);
—y as natural insulin clearance from the bloodstream; yz as interaction where lactate modulates insulin
release or degradation; xy as interaction term indicating lactate production linked to glucose metabolism
under insulin action (glycolysis); Bz as natural lactate clearance via liver (Cori cycle); 22 as extra lac-
tate production under high glucose load (anaerobic metabolism). The phase portrait of the system (2.1)
illustrates the existence of chaos and attractor which was observed in the Figure 2. Moreover, for a
particular choice of parameter o = 10,p = 28,8 = 8/3,k; = 0.05, k3 = 0.03, k3 = 0.02,« = 0.95 and the
initial condition is X (0) = (1,1, 1), we have made a phase portrait of the system (2.1) and it’s projection
represented in Figure 2 and 3. In addition, we have observed the dissipative nature of the system in
Figures (5 - 7) through the variation in the value of a.

Figure 2: Phase portrait of the system (2.1)
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Figure 3: Projection of the system (2.1)
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Figure 6: Time- series of the state variable x, y and z when a = 0.98
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3. Chaotic Dynamics

In the upcoming analysis, we establish that the system displays dissipative behavior under the selected
set of parameters. We provide evidence of Shilnikov-type connections and present the computed Lyapunov
exponents along with the corresponding Lyapunov dimension to support this claim.

Chaotic dynamics in a system can be characterized through Lyapunov exponents, which quantify how
small variations in initial conditions evolve over time. These exponents reflect the system’s sensitivity
to initial perturbations. To numerically estimate the Lyapunov exponents, one must perform multiple
iterations using fine time intervals, sampling different locations on the attractor. The Lyapunov exponent
can be computed by tracking how an initial separation dy between nearby trajectories changes with respect
to time step t.
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Figure 7: Lyapunov Spectrum of system (2.1) when zo =3, yo =2, 20 = 1

The Figure 7 illustrates the time evolution and convergence of the three Lyapunov exponents indicate
that the nonlinear dynamical system exhibits dissipative behaviour. Chaos can be quantified, if one
of the Lyapunov exponent is positive and Lyapunov exponents corresponding to the proposed model
are computed as (2.72,—2.18, —11.96) which have been observed in Figure 7. In the initial part of the
simulation (for small values of time), the exponents display rapid fluctuations, which means system does
not evolved towards equilibrium into its long-term behavior. During this phase, the numerical method
is still adapting to the local geometry of the attractor, and the exponents are still evolving and have not
converged to their final asymptotic behavior.

As time progresses, all three curves begin to stabilize. By approximately t= 30-40, the values of
the Lyapunov exponents level off, indicating convergence. This convergence confirms that the system
has converged to its asymptotic regime and that the computed exponents are reliable indicators of its
long-term behavior. Together, the spectrum of Lyapunov exponents shown in the figure- one positive, one
near zero, and one negative- is a classic indicator of chaotic behavior in continuous dynamical systems.
The convergence of these exponents over time not only confirms the chaotic nature of the proposed model
but also validates the performance of the numerical algorithm used in their computation.

The bifurcation diagram shown in Figure 8 depicts the evolution of the system’s long-term behavior
as modulated by the control parameter p, with the variable z plotted along the vertical axis. Each point
on the diagram represents a value of z at a steady state or during the long-term oscillatory regime for a
given p, after discarding transients. As the parameter p increases from 20 to 40, the system undergoes a
sequence of qualitative changes in its dynamics. For lower values of p (approximately p< 22), the system
converges to a stable fixed point, as indicated by a single point at each p-value. This reflects regular and
non-chaotic behavior.
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Figure 8: Bifurcation Diagram for Fractional-Order System (2.1)

However, as p increases, the diagram begins to show multiple discrete points for each p, signifying the
emergence of period-doubling bifurcations. These bifurcations are characteristic of systems transitioning
from periodic to chaotic regimes. The increased density and vertical spread of points reflect the growth
in dynamical complexity. In the range p = 24 to p =~ 40, the system exhibits high sensitivity to initial
conditions and aperiodic trajectories-hallmarks of chaos. The irregular and fragmented vertical structures
in this region suggest the presence of chaotic attractors, where the system no longer follows a predictable
cycle, and the trajectories diverge exponentially over time within a bounded region.

The presence of such chaotic bands is strong visual evidence of chaotic dynamics in the fractional-order
system. This is unvarying with the known behavior of nonlinear systems, where parameter variations lead
to complex transitions through bifurcations into chaos. The bifurcation diagram thus serves as a powerful
diagnostic tool, revealing the onset and range of chaotic behavior in relation to the control parameter p.
Further, we have observed bifurcation structure in a fractional-order system under appropriate parameter
conditions.

4. Designing of Controller using Neural Network Method

The fundamental operation of a neural network involves computing a weighted sum of inputs, adding
a bias term, and applying a non-linear activation function. Through this layered structure, the network is
capable of approximating complex and highly non-linear relationships between inputs and outputs. The
network ”learns” these relationships by adjusting the weights and biases based on a defined loss function.

The original fractional-order model is augmented by introducing control inputs us (t), us(t), us(t) into
the respective differential equations:

D% =o(y —x) + kixz + M(t) + 1. (t) + u1(t)
DY =x(p—z) —y+ koyz + M(t) + ny(t) + ua(t) (4.1)
D%z = xy — Bz + kaa® + M(t) + n.(t) + us(t)

Let us denote:
e1(t) = z(t) — za(t)

ea(t) = y(t) — ya(t) (4.2)
es(t) = z(t) — zq(t)

where z4(t), ya(t), zq(t) are the desired trajectories.
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Apply the Caputo derivative to each error term of system (4.2), we have
D% = D% — D%y
D%y = D%y — D%yy (4.3)
D% 3 = D% — D%y4
Using system (4.2) and (4.3), error dynamical system written as
D% =0y — ) + k1zz + M(t) + 1. () + ui(t) — D%zq
D%y = x(p — 2) — y + kayz + M (t) + 0y (t) + ua(t) — D%y (4.4)
D%z = Bz + kzx?® + M(t) +n.(t) + uz(t) — D24
The goal is to design uj, us, ug such that:

lim e;(t) =0 where i =1,2,3 (4.5)

t—o00
4.1. Neural Network Approximation

We approximate the unknown dynamics f(x), f(y) and {(z) using Radial Basis Function (RBF) Neural
Networks:

filz) =W ®(z)
Faly) = W, @(y) (4.6)

where:
e ®(-) € RY is the RBF vector,
e W; € RY is the estimated weights,

Each radial basis function is defined by:

;(s) = exp <_(s—c])2) i=1,2,...,N (4.7)

202

Control Law Designed (RBF-NN + Feedback) as:

u(t) = Wi @(a(t) — ke,en(t)
up(t) = =Wy @ (y(t)) — keye2(t) (4.8)
us(t) = —W5 @(2(1)) — keges(t)

. Wi—r@(') is the NN approximation of unknown dynamics,

o k., is the error feedback gain.

Weight Adaptation Laws described as

Wy = I 0(x)er (t)
W = ~To®(y)eal(?) (4.9)
Wy = —Ta®(2)es(t)

where:
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e I'; is the learning rate matrix (usually I'; = 4I).

Controller Expressions:

202

N 2
ui(t) = — Z Wy (t) exp (-“(t)_%)) ~ kesei(t) (4.10)

e For uy: s1(t) = z(t), e1(t)

x(t) — zq4(t)
o For uy: s5(t) = y(t), e2(t) = y(t) — ya(t)
o For uz: s3(t) = 2(t), e3(t) = 2(t) — zq(t)

Radial Basis Function Vector:

207 (4.11)

(s —cn)?
exp | ——5—"—
L Y 207 )

(centres ¢; and width oy, were set in the script).
Weight Update Laws:

Wi(t) = —T1D(x(t)) ex (1),
Wa(t) = —Ta®(y(t)) ea(t), (4.12)
Wi(t) = —Ts®(2(t)) es(t),  Ti=nly.

The simulation is carried out in MATLAB and Mathematica with the particular set of parameters and
initial conditions, we found the controller u, us, us3 equipped with the system (2.1), controlled the chaotic
behaviour and the error dynamical system (4.4) converged towards zreo after sometime observed in Figures
9 and 10.

6.6

Bal M

5 L 1 1 L 1
0 5 10 15 20 25 30

Time

Figure 9: Controlled Fractional Order Chaotic System under the Updated Controller (4.10)
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Figure 10: Convergence of Error Dynamical System (4.4)

5. Conclusion

The purpose of this study is to propose the non-linear chaotic system of novel fractional order Glucose
regulation with meal spikes and periodic noise. In contrast to the work of Shaban Mohammadi and S. Reza
Hejazi (2022), our proposed model demonstrates a more rapid convergence toward disease regulation.
While their framework consists of two fractional-order equations and one integer-order equation, our
approach employs three fully fractional-order equations, thereby capturing system memory and hereditary
properties more comprehensively. Furthermore, unlike most existing models in the literature that rely
on the existence of equilibrium points, our proposed model operates without any equilibrium point,
offering a new perspective on the chaotic dynamics of glucose-insulin regulation. Moreover, this modeling
approach offers the potential to improve prediction of glucose fluctuations under realistic conditions that
include irregular meal patterns and physiological noise. In future, this framework will be integrated
with advanced stochastic control strategies to optimize insulin dosing in real time, followed by rigorous
validation against large-scale clinical trial datasets.
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