(3s.) v. 2025 (43) 3:1-13. ISSN-0037-8712 doi:10.5269/bspm.78393

Impact of Socio-Economic Drivers on Environmental Complexity Through Chaotic Synchronization

Ayub Khan, Pardeep Kumar, Tripti Anand*, Ajeet Singh, Dhanpal Singh

ABSTRACT: In the field of environmental research, investigating the complexity of interactions between environmental systems and socio-economic drivers, such as financial market fluctuations, requires a variety of sophisticated scientific methodologies. This study aimed to examine the synchronization and antisynchronization phenomena between two distinct dissipative systems using an active control method, which will offer a prospect in modelling complex environmental interactions. The first chaotic system, introduced by Huang and Li (1993), and the second system, proposed by P. Kumar and S. Jha (2022), are analyzed in depth. By employing phase portraits and Poincaré sections across a range of parameters and initial conditions, we confirm the chaotic nature of both systems. Subsequently, a set of active control laws is designed and implemented to control the intended dynamical phenomena. To validate the theoretical results, comprehensive numerical simulations are conducted, which highlight the effectiveness of the proposed control scheme. This research highlights the relevance of coordination strategies of dissipative systems and managing the complexity inherent in environmental systems influenced by socio-economic dynamics.

Key Words: Attractor, demand, Lyapunov exponent, proliferation, supply, virus.

Contents

1	Introduction	1
2	Mathematical Model	2
3	Chaotic Dynamics	3
4	Designing of Controller to achieve Synchronization	6
5	Numerical Simulations for Synchronization	7
6	Anti-synchronization between the Systems (2.1) and (2.2)	g
7	Numerical Simulations for Anti-synchronization	10
8	Conclusion	11

1. Introduction

With rapid industrial growth, human civilization faces challenging concerns about the irregularity of the financial system and environmental issues. The irregularities are induced by the dissipative behaviour of the financial systems and the herculean task of managing the financial data. Normally, research in the financial area uses a variety of sophisticated scientific approaches to investigate the complexity of the financial system and study the dynamics of the financial market [1,2,3,4]. Over the years, researchers have focused on the relation between dynamics and time data [5,6,7]. Chen et al. [8] used the Hankel matrix approach and discussed dynamical systems which identified the time series data [9]. Based on noise observation data, Lu et al. reconstructed the dynamic system in 2003 [10], using the least squares method. Time parameter identification and dynamic system synchronization were topics covered by Yu et al. in 2007 [11]. In addition, Liu et al. (2013) rebuilt time series data [12] using a recursive graph of the power system.

Submitted August 13, 2025. Published October 02, 2025

^{*} Corresponding author. 2010 Mathematics Subject Classification: 34G20, 34H05, 34H10, 34H15.

The existing literature has a significant gap on the internal framework of financial data as a dissipative dynamical system [13] and the market index has not been examined for chaotic dynamics at various time scales. In this research work we examine the nonlinear qualities of the model by Huang-Li [13] and follow it by using an active control synchronization scheme to synchronize this finance model with an environmental model. Chaos is a very intriguing phenomenon in nature. Chaos was initially discovered by Lorenz [14] in the context of atmospheric convection, and since then it has found use in a number of scientific domains, both theoretically and practically. As a result, over the past five decades, intensive research by researchers has led to the creation of new chaotic models for applications. Some of the well-known models are the logistic and Henon maps [15], Chua's circuits [16], the Lorenz-like systems developed by Chen and Lu et. al. in [17,18], and more contemporary ones include the 4D chaotic Duffing system [19].

The long-term repercussions of economic actions cannot be predicted due to the great sensitivity of chaotic systems to changes in the initial conditions. Therefore, the crucial question is whether there is a set of parameter values for which the dynamics is regular and the system under consideration is integrable to enhance accurate economic predictions.

Recently, synchronization of chaotic systems has become a blooming area of research. In most of the chaos synchronization approaches, the systems considered as master and slave systems, and synchronization aims to use the dynamics of the master system for controlling the slave system as the difference of their outputs decays converges to zero asymptotically. Chaotic systems naturally resist synchronization, even two identical systems that begin with slightly dissimilar initial conditions evolve over time in an unsynchronized fashion, which means that the disparities between the systems' state's increase exponentially. As experimental initial circumstances can be practically challenging, therefore, this is an application orientation issue. To achieve any sort of collective (synchronized) behaviour is a highly consequential and intriguing problem. In the 17th century, when Huygen observed that two pendulum clocks which were very weakly connected (suspended from the same beam) happened to be synchronized in a phase [20]. Early discoveries also include the synchronized lighting of fireflies and the peculiarity of those neighbouring organ pipes, that can virtually speak in absolute synchrony or quiet one another, as in [21].

In the last three decades, we have seen a great deal of research in this direction. Numerous researchers have worked on this problem with focus on either complete or identical synchronization. Complete synchronization described by [22], appears to be the elementary type of synchronization method. These revolutionary studies encourage the search for synchronization phenomena in different artificial or natural systems. Despite decades of research, forecasting climate change continues to pose a significant challenge, largely owing to the human-induced variability in CO_2 emissions. Key indicators of atmospheric climate change include variations in temperature, barometric pressure, humidity levels, wind speed, and the concentration of trace gases. Current literature has largely neglected the role of environmental microbes—key players in carbon and nutrient dynamics—in relation to changing climate conditions. The cause of variability in climate conditions by some financial aspects was recently explored by [23]. In their investigation, the financial condition of society is also a factor in the environment's temperature shift.

In this paper, we focus on the variation in climate conditions due to these financial aspects. We have used a model illustrating the dissipating behavior in the environment [24], and have synchronizing it with a financial model. Thus we have tried to investigate the intertwining relation between the financial conditions and the environmental conditions. We employ the active control strategy developed by [25] to synchronize and anti-synchronize our models, which consist of two dissimilar dissipative systems that are not identical. Using the synchronization approach and numerical simulations, we have demonstrated synchronization of environmental aspects with the financial aspects.

2. Mathematical Model

Recent advances in research have focused on the Huang–Li system, which serves as a representative model for chaotic dynamics in financial systems. It is given by the following system of equations:

$$\frac{dg_1}{dt} = i_1 + (h_1 - a) g_1,
\frac{dh_1}{dt} = 1 - b h_1 - g_1^2,
\frac{di_1}{dt} = -g_1 - c i_1.$$
(2.1)

where (g_1, h_1, i_1) are time-dependent variables which were initialize as $g_1(0) = g_{1_0}, h_1(0) = h_{1_0}, i_1(0) = i_{1_0}$, and (a, b, c) are real nonnegative parameters. Here, g_1 represents the interest rate, h_1 is the investment demand, and z_1 is the price index. Parameters (a, b, c) denote the saving amount, the cost per investment and the elasticity demand of commercial markets, respectively. The complex behavior of system [2.1] was first noted by Ma and Chen in 2001 [26].

We now consider a dynamical system proposed by Pardeep et al. [24], which captures the complex interactions between microorganisms and the atmosphere, specifically the interplay between viral and bacterial populations within a suitable environmental context. This system is mathematically formulated as a set of three coupled ordinary differential equations:

$$\frac{dg_2}{dt} = -\alpha g_2 + h_2,$$

$$\frac{dh_2}{dt} = \beta h_2 - g_2 i_2,$$

$$\frac{di_2}{dt} = \alpha g_2 h_2 - \gamma i_2,$$
(2.2)

where (g_2, h_2, i_2) are time-dependent variables and (α, β, γ) are real nonnegative parameters. Here, α represents the rate of variation in temperature, β is the rate of variation in population of bacteria, and γ is the rate of variation in virus population, respectively. Also, the temperature and the population of bacteria and viruses are initialized as $g_2(0) = g_{2_0}, h_2(0) = h_{2_0}, i_2(0) = i_{2_0}$.

3. Chaotic Dynamics

Lyapunov exponents quantify the chaotic behavior of dynamical systems, as it is a measure of sensitivity to tiny changes in initial circumstances can be used to define chaotic behaviour and estimated by using separation (d_0) initially, as follows:

$$\lambda = \lim_{n \to \infty} \left(\frac{1}{n\Delta t} \sum_{i=1}^{n} \ln \left| \frac{d_i}{d_0} \right| \right). \tag{3.1}$$

Where di is the distance between neighbouring points at step i [27]. Only the maximal Lyapunov exponent (MLE) will be explored in this work, as "MLE > 0 implies chaotic behaviour".

The Lyapunov spectrum (0.0918, 0.0133, -1.1107) corresponding to the parameter values a = 0.1, b = 0.3, and c = 1.5 unequivocally demonstrates that System (2.1) exhibits chaotic dynamics, as depicted in Figure 2. In addition Figures (3-5) depicts the projections of financial model in g_1i_1 -plane, h_1i_1 -plane and g_1h_1 -plane.

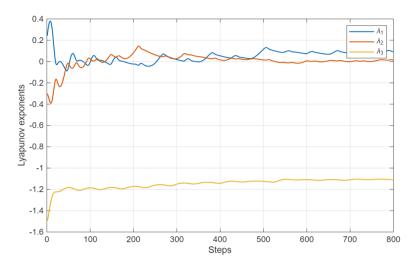


Figure 1: Lyapunov spectrum for system (2.1).

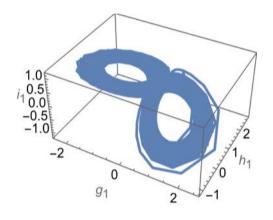


Figure 2: Chaotic Attractor of Financial Model when $g_{1_0}=1, h_{2_0}=11, i_{1_0}=11$

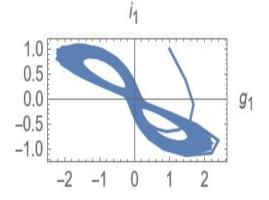


Figure 3: Projection of Figure 2 in g_1i_1 -plane

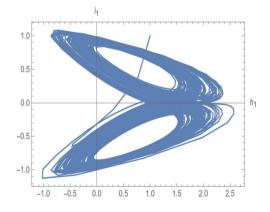


Figure 4: Projection of Figure 2 in h_1i_1 -plane

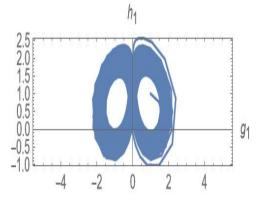


Figure 5: Projection of Figure 2 in g_1h_1 -plane

The positive Lyapunov exponent (0.1453) obtained for System (2.2) with $\alpha = 36$, $\beta = 13$, and $\gamma = 4$ indicates chaotic behavior, which is corroborated by the corresponding phase portrait shown in Figure (7). In addition Figures (8-10) depicts the projections of tumor in g_2i_2 -plane, h_2i_2 -plane and g_2h_2 -plane.

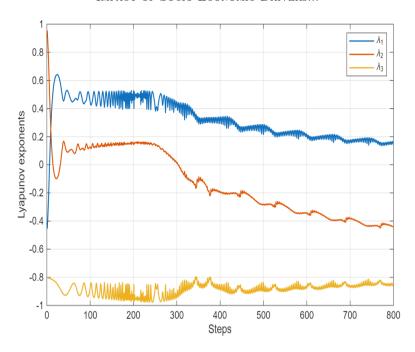


Figure 6: Lyapunov spectrum for system (2.2).

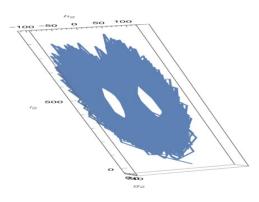


Figure 7: Chaotic Attractor of Environmental Model when $g_{2_0}=20, h_{2_0}=10, i_{1_0}=10$

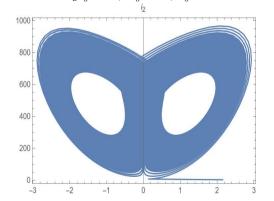


Figure 9: Projection of Figure 7 in h_2 – i_2 plane.

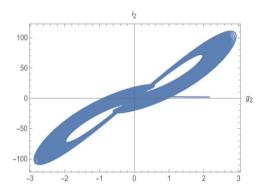


Figure 8: Projection of Figure 7 in g_2i_2 -plane

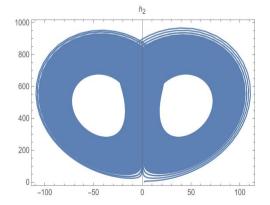


Figure 10: Projection of Figure 7 in g_2 - h_2 plane.

4. Designing of Controller to achieve Synchronization

Describing drive and the corresponding response systems as follows:

$$\begin{cases}
\dot{g_1} = i_1 + (h_1 - a)g_1, \\
\dot{h_1} = 1 - b h_1 - g_1^2, \\
\dot{i_1} = -g_1 - c i_1,
\end{cases}$$
(4.1)

$$\begin{cases}
\dot{g}_2 = -\alpha \ g_2 + h_2 + v_1(t), \\
\dot{h}_2 = \beta \ h_2 - g_2 i_2 + v_2(t), \\
\dot{i}_2 = \alpha \ g_2 h_2 - \gamma \ i_2 + v_3(t),
\end{cases}$$
(4.2)

where, $v_1(t)$, $v_2(t)$ and $v_3(t)$ are control functions to be determined. The error dynamical system corresponding to (4.1) and (4.2) is described as

$$\begin{cases}
e_1 = g_2 - g_1, \\
e_2 = h_2 - h_1, \\
e_3 = i_2 - i_1.
\end{cases}$$
(4.3)

This research work's decisive purpose is to develop active nonlinear control functions $v_i(t)$, (i = 1, 2, 3) such that the state error variable set out in (4.3) assure that

$$\lim_{t \to \infty} e_i(t) = 0 \quad \text{for} \quad (i = 1, 2, 3)$$

Using (4.2) and (4.1), the emerging error dynamical System is

$$\begin{cases}
\dot{e}_1 = -\alpha \ g_2 + h_2 - i_1 - (h_1 - a)g_1 + v_1(t), \\
\dot{e}_2 = \beta \ h_2 - g_2 i_2 - 1 + b \ h_1 + g_1^2 + v_2(t), \\
\dot{e}_3 = \alpha \ g_2 h_2 - \gamma \ i_2 + g_1 + c \ i_1 + v_3(t).
\end{cases} (4.4)$$

Active control functions $v_1(t), v_2(t)$ and $v_3(t)$ are defined as follows:

$$\begin{cases}
v_1(t) = w_1(t) - h_2 + i_1 + g_1 h_1 - a g_1 + \alpha g_1 \\
v_2(t) = w_2(t) + g_2 i_2 + 1 - \beta h_1 - g_1^2 - b h_1 \\
v_3(t) = w_3(t) - \alpha g_2 h_2 + \gamma i_1 - g_1 - c i_1.
\end{cases}$$
(4.5)

where $w_1(t)$, $w_2(t)$ and $w_3(t)$ are control inputs, which are a function of error state variables e_1 , e_2 and e_3 , to be determined.

Using System (4.5), and (4.4), we have

$$\begin{cases} \dot{e}_1 = -\alpha \ e_1 + w_1(t), \\ \dot{e}_2 = \beta \ e_2 + w_2(t), \\ \dot{e}_3 = -\gamma \ e_3 + w_3(t). \end{cases}$$
(4.6)

Stabilization of the system (4.6) through the appropriately designed control inputs $w_1(t)$, $w_2(t)$, and $w_3(t)$ ensures that the error states e_1 , e_2 , and e_3 asymptotically converge to zero as $t \to \infty$. This asymptotic convergence directly implies that Systems (2.1) and (2.2) achieve complete synchronization. To realize this objective, we define the control inputs as follows:

$$\begin{bmatrix} w_1(t) \\ w_2(t) \\ w_3(t) \end{bmatrix} = A \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}. \tag{4.7}$$

where A is 3×3 constant matrix. For System (10) to exhibit asymptotic stability, it is required that all eigenvalues of its system matrix possess strictly negative real parts. To achieve this, let us consider the Lyapunov function V as:

$$V(t) = \frac{1}{2} \left[e_1^2 + e_2^2 + e_3^2 \right],$$

which implies that V is positive definite. On differentiating the Lyapunov function V, we can get

$$\dot{V}(t) = e_1 \dot{e}_1 + e_2 \dot{e}_2 + e_3 \dot{e}_3. \tag{4.8}$$

Using (4.6) and (4.7) in (4.8), we can get

$$\dot{V}(t) = -2\alpha e_1^2 - \beta e_2^2 - 2\gamma e_3^2 < 0 \tag{4.9}$$

Using (4.9), matrix A can be determined as:

$$A = \begin{bmatrix} -2 & \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & -2 & \gamma \end{bmatrix}. \tag{4.10}$$

Then, by using (4.10) the error dynamical System (4.4) can converge to origin asymptotically that is $\lim_{t\to\infty} ||e(t)|| = 0$, which implies that the synchronization between Systems (2.1) and (2.2) is achieved.

5. Numerical Simulations for Synchronization

The numerical simulations were performed using the software Mathematica. To perform the investigation, the parameters of the drive System (4.1) and response System (4.2) are taken as a=0.1, b=0.3, c=1.5, and $\alpha=36, \beta=14, \gamma=5$. Initially, $g_1(0)=1, h_1(0)=1, i_1(0)=1$ and $g_2(0)=50, h_2(0)=10, i_2(0)=10$. The initial states of the error system (4.3) are $e_1(0)=49, e_2(0)=9$, and $e_3(0)=9$. Figures (11), (12), and (13) depicts the synchronization of the systems (4.1) and (4.2). Figure (14), exhibits the synchronization of error trajectories e_1, e_2 and e_3 converge to zero.

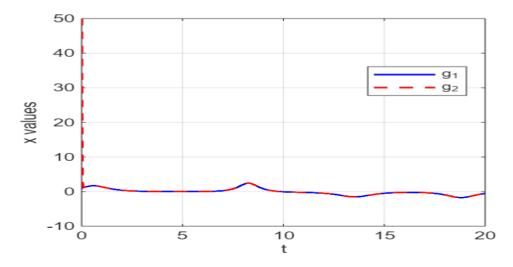


Figure 11: Synchronization of g_1 and g_2

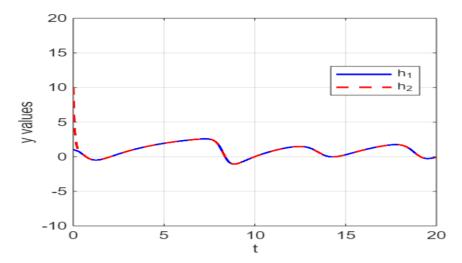


Figure 12: Synchronization of h_1 and h_2

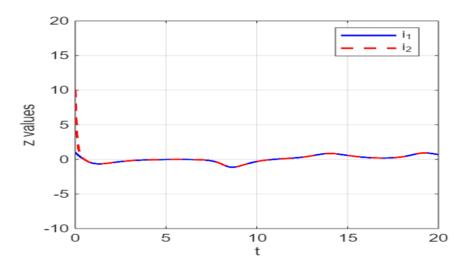


Figure 13: Synchronization of i_1 and i_2

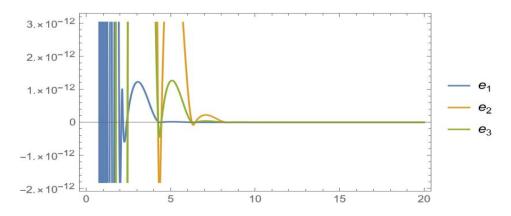


Figure 14: Dynamics of Synchronization of error states (e_1, e_2, e_3) for Systems (2.1) and (2.2)

6. Anti-synchronization between the Systems (2.1) and (2.2)

Let the drive and the corresponding response system be as follows:

$$\begin{cases}
\dot{g_1} = i_1 + (h_1 - a)g_1, \\
\dot{h_1} = 1 - b h_1 - g_1^2, \\
\dot{i_1} = -g_1 - c i_1,
\end{cases}$$
(6.1)

$$\begin{cases}
\dot{g}_2 = -\alpha \ g_2 + h_2 + p_1(t), \\
\dot{h}_2 = \beta \ h_2 - g_2 i_2 + p_2(t), \\
\dot{i}_2 = \alpha \ g_2 h_2 - \gamma \ i_2 + p_3(t),
\end{cases}$$
(6.2)

where, $p_1(t)$, $p_2(t)$ and $p_3(t)$ are control functions to be determined. The state error variables between the Systems (6.1) and (6.2) are described as

$$\begin{cases}
E_1 = g_2 + g_1, \\
E_2 = h_2 + h_1, \\
E_3 = i_2 + i_1.
\end{cases}$$
(6.3)

Now we will develop active nonlinear control functions $p_i(t)$, (i = 1, 2, 3) such that the state error variable set out in (6.3) assure that

$$\lim_{t \to \infty} E_i(t) = 0 \quad \text{for} \quad (i = 1, 2, 3)$$

Adding System (6.1) and System (6.2), the emerging error dynamical System corresponding to systems (6.1) and (6.2) is

$$\begin{cases}
\dot{E}_1 = -\alpha g_2 + h_2 + i_1 + (h_1 - a)g_1 + p_1(t), \\
\dot{E}_2 = \beta h_2 - g_2 i_2 + 1 - b h_1 - g_1^2 + p_2(t), \\
\dot{E}_3 = \alpha g_2 h_2 - \gamma i_2 - g_1 - c i_1 + p_3(t).
\end{cases} (6.4)$$

Active control functions $p_1(t)$, $p_2(t)$ and $p_3(t)$ are defined as follows:

$$\begin{cases}
 p_1(t) = q_1(t) - h_2 - i_1 - g_1 h_1 + a g_1 - \alpha g_1 \\
 p_2(t) = q_2(t) + g_2 i_2 - 1 + \beta h_1 + g_1^2 + b h_1 \\
 p_3(t) = q_3(t) - \alpha g_2 h_2 - \gamma i_1 + g_1 + c i_1.
\end{cases}$$
(6.5)

where $q_1(t), q_2(t)$ and $q_3(t)$ are control inputs that are the function of error state variables E_1, E_2 and E_3 to be determined.

Using System (6.4), and (6.5), we have

$$\begin{cases}
\dot{E}_1 = -\alpha E_1 + q_1(t), \\
\dot{E}_2 = \beta E_2 + q_2(t), \\
\dot{E}_3 = -\gamma E_3 + q_3(t).
\end{cases}$$
(6.6)

When the system (6.6) is stabilised by control inputs $q_1(t), q_2(t)$ and $q_3(t)$ then, E_1, E_2 and E_3 will converge to zero as time $t \to \infty$, which implies that the Systems (6.1) and (6.2) are Anti-synchronized. To achieve this goal, we choose the control inputs as

$$\begin{bmatrix} q_1(t) \\ q_2(t) \\ q_3(t) \end{bmatrix} = B \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}. \tag{6.7}$$

where B is 3×3 constant matrix. For System (6.7) to be asymptotically stable, its system characteristic matrix must have all its eigenvalues with negative real parts. To achieve this, we need to determine the matrix B. For this, let us consider the Lyapunov function W as:

$$W(t) = \frac{1}{2} \left[E_1^2 + E_2^2 + E_3^2 \right],$$

which implies that W is positive definite. On differentiating the Lyapunov function W, we can get

$$\dot{W}(t) = E_1 \dot{E}_1 + E_2 \dot{E}_2 + E_3 \dot{E}_3. \tag{6.8}$$

Using (6.6) and (6.7) in (6.8), we can get

$$\dot{W}(t) = -2\alpha E_1^2 - \beta E_2^2 - 2\gamma E_3^2 < 0$$
(6.9)

Using (6.9), we can have B as:

$$B = \begin{bmatrix} -\alpha & 0 & 0 \\ 0 & -2\beta & 0 \\ 0 & 0 & -\gamma \end{bmatrix}. \tag{6.10}$$

Using (6.10), we observe that all the three eigenvalues of closed loop system (6.7) have a negative real part. Therefore, the error dynamical system (6.4) converges to origin asymptotically that is $\lim_{t\to\infty} ||E(t)|| = 0$, which implies that the anti-synchronization between systems (6.1) and (6.2) is achieved.

7. Numerical Simulations for Anti-synchronization

To perform the numerical investigation, the parameters of the drive System (6.1) and response System (6.2) are taken as a=0.1, b=0.3, c=1.5, and $\alpha=36, \beta=14, \gamma=5$ with initial conditions as $g_1(0)=1, h_1(0)=1, i_1(0)=1$ and $g_2(0)=50, h_2(0)=10, i_2(0)=10$. The initial states of the error system (6.3) are $E_1(0)=49, E_2(0)=9$, and $E_3(0)=9$. Figures (15), (16), and (17) illustrate antisynchronization between the systems (6.1) and (6.2). Figure 18, exhibits the anti-synchronization of error trajectories E_1, E_2 and E_3 converge to zero .

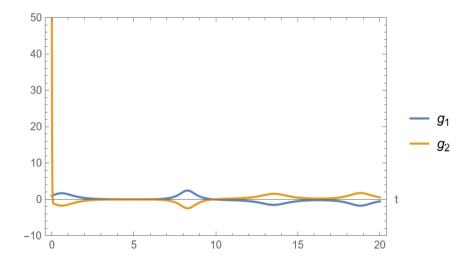


Figure 15: Anti-synchronization of g_1 and g_2

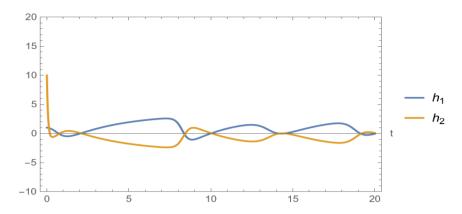


Figure 16: Anti-synchronization of h_1 and h_2

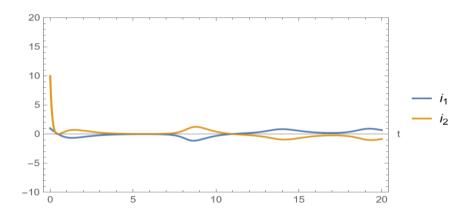


Figure 17: Anti-synchronization of i_1 and i_2

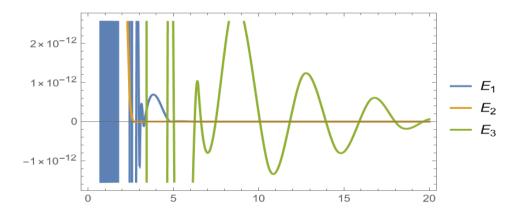


Figure 18: Dynamics of Anti-synchronization of error states (E_1, E_2, E_3) for Systems (2.1) and (2.2)

8. Conclusion

Synchronizing chaotic financial systems with chaotic environmental dynamics offers insights for holistic risk management and sustainable development. By studying how environmental factors impact financial markets and vice versa, we can develop more resilient investment strategies, mitigate systemic risks, and ensure long-term economic stability. Additionally, it promotes cross-sector collaboration, enhancing adaptive capacity to address emerging challenges such as carbon emissions, resource depletion, and

ecosystem degradation. Our investigation demonstrates that some variation in financial conditions may control the temperature in the environment by synchronizing them. Also, it has been observed that financial constraints may regulate the population of microorganisms. The solution of anti-synchronization problem encourages the adoption of environmentally sustainable practices, incentivizes green innovation, and facilitates the transition to a low-carbon economy, and our analytical results are in excellent agreement with the numerical results.

References

- 1. Li, J. C., Leng, N., Zhong, G. Y., Wei, Y., & Peng, J. S. Safe marginal time of crude oil price via escape problem of econophysics. Chaos, Solitons & Fractals, 133, 109660. (2020)
- 2. Ding, W., Wang, B., Xing, Y., & Li, J. C. Correlation noise and delay time enhanced stability of electricity futures market. Modern Physics Letters B, 33(30), 1950375. (2019)
- 3. Zhong, G. Y., Li, J. C., Jiang, G. J., Li, H. F., & Tao, H. M. The time delay restraining the herd behavior with Bayesian approach. Physica A: Statistical Mechanics and its Applications, 507, 335–346. (2018)
- 4. Zhou, W., Zhong, G. Y., Leng, N., Li, J. C., & Xiong, D. P. Dynamic behaviors and measurements of financial market crash rate. Physica A: Statistical Mechanics and its Applications, **527**, 121427. (2019)
- 5. Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N. J., Chung, S., & Gerstein, M. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science, 302(5644), 449–453. (2003)
- 6. Muskulus, M., & Verduyn-Lunel, S. Wasserstein distances in the analysis of time series and dynamical systems. Physica D: Nonlinear Phenomena, 240(1), 45–58. (2011)
- 7. Miranian, A., & Abdollahzade, M. Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction. IEEE Transactions on Neural Networks and Learning Systems, 24(2), 207–218. (2012)
- 8. Shen, M., Chen, W. N., Zhang, J., Chung, H. S. H., & Kaynak, O. Optimal selection of parameters for nonuniform embedding of chaotic time series using ant colony optimization. IEEE Transactions on Cybernetics, 43(2), 790–802. (2013)
- 9. Lai, D., & Chen, G. Dynamical systems identification from time-series data: a Hankel matrix approach. Mathematical and Computer Modelling, 24(3), 1–10. (1996)
- 10. Lu, J., Lü, J., Xie, J., & Chen, G. Reconstruction of the Lorenz and Chen systems with noisy observations. Computers & Mathematics with Applications, 46(8–9), 1427–1434. (2003)
- Yu, W., Chen, G., Cao, J., Lü, J., & Parlitz, U. Parameter identification of dynamical systems from time series. Physical Review E, 75(6), 067201. (2007)
- 12. Liu, J., Shi, S. T., & Zhao, J. C. Comparison study of typical algorithms for reconstructing time series from the recurrence plot of dynamical systems. Chinese Physics B, 22(1), 010505. (2013)
- 13. Huang, D., & Li, H. Theory and Method of the Nonlinear Economics. Sichuan University Press, Chengdu. (1993)
- 14. Lorenz, E. N. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2), 130-141. (1963)
- 15. Gonchenko, S. V., Meiss, J. D., & Ovsyannikov, I. I. I. Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation. Regular and Chaotic Dynamics, 11(2), 191–212. (2006)
- Matsumoto, T. A chaotic attractor from Chua's circuit. IEEE Transactions on Circuits and Systems, 31(12), 1055–1058.
 (1984)
- 17. Chen, G., & Ueta, T. Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9(07), 1465–1466. (1999)
- 18. Lü, J., Chen, G., Cheng, D., & Celikovsky, S. Bridge the gap between the Lorenz system and the Chen system. International Journal of Bifurcation and Chaos, 12(12), 2917–2926. (2002)
- 19. Tahir, F. R., Ali, R. S., Pham, V. T., Buscarino, A., Frasca, M., & Fortuna, L. A novel 4D autonomous 2n n-butterfly wing chaotic attractor. Nonlinear Dynamics, 85, 2665–2671. (2016)
- 20. Hugenii, C. Horololoquium Oscilatorium sive De motu pendulorum ad horologia aptato demonstratione geomectricae (Hadriani Valli Daphnis, ecloga). Apud F. Muguet, Parisiis. (1673)
- 21. Blekman, I. I. Synchronization in Science and Technology. ASME Press, New York. (1988)
- 22. Fujisaka, H., & Yamada, T. Stability theory of synchronized motion. Prog. Theor. Phys., 69, 32–47. (1983)
- 23. Cavicchioli, R., Ripple, W. J., Timmis, K., Azam, F., Bakken, L. R., Baylis, M., Behrenfeid, M. J., Boetis, A., Boyd, P. W., Classen, A. T., Crowther, T. W., Danovaro, R., Foreman, C. M., Huisman, J., Hutchins, D. A., Jansson, J. K., Karl, D. M., Koskella, B., Welch, D. B. M., Martiny, J. B. H., Moran, M. A., Orphan, V. J., Reay, D. S., Remais, J. V., Rich, V. I., Singh, B. K., Stein, L. Y., Stewart, F. J., Sullivan, M. B., Oppen, M. J. H., Weaver, S. C., Webb, E. A., & Webster, N. S. Scientists' warning to humanity: Microorganisms and climate change. Nature Reviews Microbiology, 17, 569-586. (2019)
- 24. Kumar, P., Jha, S., Aggarwal, R., & Jha, G. K. Effect of climate change on brain tumor. Applications and Applied Mathematics: An International Journal (AAM), 17(2), 17. (2022)

- Bai, E. W., & Lonngren, K. E. Sychronization of two Lorenz systems using active control. Chaos, Solitons and Fractals, 8, 51–58. (1997)
- 26. Ma, J. H., & Chen, Y. S. Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Applied Mathematics and Mechanics, 22, 1240–1251. (2001)
- 27. Otto, S. P., & Day, T. A biologist's guide to mathematical modeling in ecology and evolution. Princeton University Press, Princeton, New Jersey. (2007)

Ayub Khan,
Basic Sciences Research Centre,
Imam Mohammad Bin Saud Islamic University,
Kingdom of Saudi Arabia.
E-mail address: akhan12@jmi.ac.in

and

Pardeep Kumar
Department of Mathematics
Indraprastha College for Women
University of Delhi, Delhi, India.
ORCHID iD: https://orcid.org/0000-0002-9416-1723
E-mail address: pardeep@ip.du.ac.in

and

Tripti Anand,
Department of Mathematics,
Shyama Prasad Mukherji College for women, University of Delhi, Delhi, India.
ORCHID iD: https://orcid.org/0009-0007-6778-8874
E-mail address: triptimath@spm.du.ac.in

and

Aject Singh,
Department of Mathematics,
Hansraj College,
University of Delhi, Delhi, India
ORCHID iD: https://orcid.org/0000-0004-3319-1648
E-mail address: ajectsingh@hrc.du.ac.in

and

Dhanpal Singh,
Department of Mathematics,
Keshav Mahavidyalaya,
University of Delhi, Delhi, India
ORCHID iD: https://orcid.org/0000-0003-4793-8250
E-mail address: drdhanpalsingh@keshav.du.ac.in