
Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) 3 : 1–13.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.78393

Impact of Socio-Economic Drivers on Environmental Complexity Through Chaotic
Synchronization

Ayub Khan, Pardeep Kumar, Tripti Anand∗, Ajeet Singh, Dhanpal Singh

abstract: In the field of environmental research, investigating the complexity of interactions between
environmental systems and socio-economic drivers, such as financial market fluctuations, requires a vari-
ety of sophisticated scientific methodologies. This study aimed to examine the synchronization and anti-
synchronization phenomena between two distinct dissipative systems using an active control method, which
will offer a prospect in modelling complex environmental interactions. The first chaotic system, introduced by
Huang and Li (1993), and the second system, proposed by P. Kumar and S. Jha (2022), are analyzed in depth.
By employing phase portraits and Poincaré sections across a range of parameters and initial conditions, we
confirm the chaotic nature of both systems. Subsequently, a set of active control laws is designed and im-
plemented to control the intended dynamical phenomena. To validate the theoretical results, comprehensive
numerical simulations are conducted, which highlight the effectiveness of the proposed control scheme. This
research highlights the relevance of coordination strategies of dissipative systems and managing the complexity
inherent in environmental systems influenced by socio-economic dynamics.
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1. Introduction

With rapid industrial growth,human civilization faces challenging concerns about the irregularity of the
financial system and environmental issues. The irregularities are induced by the dissipative behaviour of
the financial systems and the herculean task of managing the financial data. Normally, research in the
financial area uses a variety of sophisticated scientific approaches to investigate the complexity of the
financial system and study the dynamics of the financial market [1,2,3,4]. Over the years, researchers
have focused on the relation between dynamics and time data [5,6,7]. Chen et al. [8] used the Hankel
matrix approach and discussed dynamical systems which identified the time series data [9]. Based on
noise observation data, Lu et al. reconstructed the dynamic system in 2003 [10], using the least squares
method. Time parameter identification and dynamic system synchronization were topics covered by Yu
et al. in 2007 [11]. In addition, Liu et al. (2013) rebuilt time series data [12] using a recursive graph of
the power system.
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The existing literature has a significant gap on the internal framework of financial data as a dissipative
dynamical system [13] and the market index has not been examined for chaotic dynamics at various
time scales. In this research work we examine the nonlinear qualities of the model by Huang-Li [13] and
follow it by using an active control synchronization scheme to synchronize this finance model with an
environmental model. Chaos is a very intriguing phenomenon in nature. Chaos was initially discovered
by Lorenz [14] in the context of atmospheric convection, and since then it has found use in a number of
scientific domains, both theoretically and practically. As a result, over the past five decades, intensive
research by researchers has led to the creation of new chaotic models for applications. Some of the
well-known models are the logistic and Henon maps [15], Chua’s circuits [16], the Lorenz-like systems
developed by Chen and Lu et. al. in [17,18] , and more contemporary ones include the 4D chaotic
Duffing system [19].

The long-term repercussions of economic actions cannot be predicted due to the great sensitivity of
chaotic systems to changes in the initial conditions. Therefore, the crucial question is whether there is a
set of parameter values for which the dynamics is regular and the system under consideration is integrable
to enhance accurate economic predictions.

Recently, synchronization of chaotic systems has become a blooming area of research. In most of the
chaos synchronization approaches, the systems considered as master and slave systems, and synchroniza-
tion aims to use the dynamics of the master system for controlling the slave system as the difference
of their outputs decays converges to zero asymptotically. Chaotic systems naturally resist synchroniza-
tion, even two identical systems that begin with slightly dissimilar initial conditions evolve over time
in an unsynchronized fashion, which means that the disparities between the systems’ state’s increase
exponentially. As experimental initial circumstances can be practically challenging, therefore, this is
an application orientation issue. To achieve any sort of collective (synchronized) behaviour is a highly
consequential and intriguing problem. In the 17th century, when Huygen observed that two pendulum
clocks which were very weakly connected (suspended from the same beam) happened to be synchronized
in a phase [20]. Early discoveries also include the synchronized lighting of fireflies and the peculiarity of
those neighbouring organ pipes, that can virtually speak in absolute synchrony or quiet one another, as
in [21].

In the last three decades, we have seen a great deal of research in this direction. Numerous researchers
have worked on this problem with focus on either complete or identical synchronization. Complete syn-
chronization described by [22], appears to be the elementary type of synchronization method. These
revolutionary studies encourage the search for synchronization phenomena in different artificial or natu-
ral systems. Despite decades of research, forecasting climate change continues to pose a significant chal-
lenge, largely owing to the human-induced variability in CO2 emissions. Key indicators of atmospheric
climate change include variations in temperature, barometric pressure, humidity levels, wind speed, and
the concentration of trace gases. Current literature has largely neglected the role of environmental mi-
crobes—key players in carbon and nutrient dynamics—in relation to changing climate conditions. The
cause of variability in climate conditions by some financial aspects was recently explored by [23]. In their
investigation, the financial condition of society is also a factor in the environment’s temperature shift.

In this paper, we focus on the variation in climate conditions due to these financial aspects. We have
used a model illustrating the dissipating behavior in the environment [24], and have synchronizing it
with a financial model.Thus we have tried to investigate the intertwining relation between the financial
conditions and the environmental conditions. We employ the active control strategy developed by [25]
to synchronize and anti-synchronize our models, which consist of two dissimilar dissipative systems that
are not identical. Using the synchronization approach and numerical simulations, we have demonstrated
synchronization of environmental aspects with the financial aspects.

2. Mathematical Model

Recent advances in research have focused on the Huang–Li system, which serves as a representative model
for chaotic dynamics in financial systems. It is given by the following system of equations:
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dg1
dt

= i1 + (h1 − a) g1,

dh1

dt
= 1− b h1 − g21 , (2.1)

di1
dt

= −g1 − c i1.

where (g1, h1, i1) are time-dependent variables which were initialize as g1(0) = g10 , h1(0) = h10 , i1(0) =
i10 , and (a, b, c) are real nonnegative parameters. Here, g1 represents the interest rate, h1 is the investment
demand,and z1 is the price index. Parameters (a, b, c) denote the saving amount, the cost per investment
and the elasticity demand of commercial markets, respectively. The complex behavior of system [2.1] was
first noted by Ma and Chen in 2001 [26].

We now consider a dynamical system proposed by Pardeep et al. [24], which captures the complex
interactions between microorganisms and the atmosphere, specifically the interplay between viral and
bacterial populations within a suitable environmental context. This system is mathematically formulated
as a set of three coupled ordinary differential equations:

dg2
dt

= −α g2 + h2,

dh2

dt
= β h2 − g2i2, (2.2)

di2
dt

= α g2h2 − γ i2,

where (g2, h2, i2) are time-dependent variables and (α, β, γ) are real nonnegative parameters. Here, α
represents the rate of variation in temperature, β is the rate of variation in population of bacteria,and
γ is the rate of variation in virus population, respectively. Also, the temperature and the population of
bacteria and viruses are initialized as g2(0) = g20 , h2(0) = h20 , i2(0) = i20 .

3. Chaotic Dynamics

Lyapunov exponents quantify the chaotic behavior of dynamical systems, as it is a measure of sensitivity
to tiny changes in initial circumstances can be used to define chaotic behaviour and estimated by using
separation (d0) initially, as follows:

λ = lim
n→∞

(
1

n∆t

n∑
i=1

ln

∣∣∣∣ did0)

∣∣∣∣
)
. (3.1)

Where di is the distance between neighbouring points at step i [27]. Only the maximal Lyapunov
exponent (MLE) will be explored in this work, as “MLE > 0 implies chaotic behaviour”.

The Lyapunov spectrum (0.0918, 0.0133,−1.1107) corresponding to the parameter values a = 0.1, b = 0.3,
and c = 1.5 unequivocally demonstrates that System (2.1) exhibits chaotic dynamics, as depicted in Fig-
ure 2. In addition Figures (3-5) depicts the projections of financial model in g1i1-plane, h1i1-plane and
g1h1-plane.
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Figure 1: Lyapunov spectrum for system (2.1).

Figure 2: Chaotic Attractor of Financial Model
when g10 = 1, h20 = 11, i10 = 11

Figure 3: Projection of Figure 2 in g1i1-plane

Figure 4: Projection of Figure 2 in h1i1-plane Figure 5: Projection of Figure 2 in g1h1-plane

The positive Lyapunov exponent (0.1453) obtained for System (2.2) with α = 36, β = 13, and γ = 4
indicates chaotic behavior, which is corroborated by the corresponding phase portrait shown in Figure
(7). In addition Figures (8-10) depicts the projections of tumor in g2i2-plane, h2i2-plane and g2h2-plane.
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Figure 6: Lyapunov spectrum for system (2.2).

Figure 7: Chaotic Attractor of Environmental
Model when g20 = 20, h20 = 10, i10 = 10

Figure 8: Projection of Figure 7 in g2i2-plane

,

Figure 9: Projection of Figure 7 in h2–i2 plane. Figure 10: Projection of Figure 7 in g2–h2 plane.
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4. Designing of Controller to achieve Synchronization

Describing drive and the corresponding response systems as follows:


ġ1 = i1 + (h1 − a)g1,

ḣ1 = 1− b h1 − g21 ,

i̇1 = − g1 − c i1,

(4.1)


ġ2 = −α g2 + h2 + v1(t),

ḣ2 = β h2 − g2i2 + v2(t),

i̇2 = α g2h2 − γ i2 + v3(t),

(4.2)

where, v1(t), v2(t) and v3(t) are control functions to be determined. The error dynamical system corre-
sponding to (4.1) and (4.2) is described as  e1 = g2 − g1,

e2 = h2 − h1,
e3 = i2 − i1.

(4.3)

This research work’s decisive purpose is to develop active nonlinear control functions vi(t), (i = 1, 2, 3)
such that the state error variable set out in (4.3) assure that

lim
t→∞

ei(t) = 0 for (i = 1, 2, 3)

Using (4.2) and (4.1),the emerging error dynamical System is ė1 = −α g2 + h2 − i1 − (h1 − a)g1 + v1(t),
ė2 = β h2 − g2i2 − 1 + b h1 + g21 + v2(t),
ė3 = α g2h2 − γ i2 + g1 + c i1 + v3(t).

(4.4)

Active control functions v1(t), v2(t) and v3(t) are defined as follows: v1(t) = w1(t)− h2 + i1 + g1h1 − a g1 + α g1
v2(t) = w2(t) + g2i2 + 1− β h1 − g21 − bh1

v3(t) = w3(t)− α g2h2 + γ i1 − g1 − c i1.
(4.5)

where w1(t), w2(t) and w3(t) are control inputs ,which are a function of error state variables e1, e2 and
e3, to be determined.

Using System (4.5), and (4.4), we have  ė1 = −α e1 + w1(t),
ė2 = β e2 + w2(t),
ė3 = −γ e3 + w3(t).

(4.6)

Stabilization of the system (4.6) through the appropriately designed control inputs w1(t), w2(t), and
w3(t) ensures that the error states e1, e2, and e3 asymptotically converge to zero as t → ∞. This
asymptotic convergence directly implies that Systems (2.1) and (2.2) achieve complete synchronization.
To realize this objective, we define the control inputs as follows: w1(t)

w2(t)
w3(t)

 = A

 e1
e2
e3

 . (4.7)
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where A is 3× 3 constant matrix. For System (10) to exhibit asymptotic stability, it is required that all
eigenvalues of its system matrix possess strictly negative real parts. To achieve this, let us consider the
Lyapunov function V as:

V (t) =
1

2

[
e21 + e22 + e23

]
,

which implies that V is positive definite. On differentiating the Lyapunov function V , we can get

V̇ (t) = e1ė1 + e2ė2 + e3ė3. (4.8)

Using (4.6) and (4.7) in (4.8), we can get

V̇ (t) = −2α e21 − β e22 − 2 γ e23 < 0 (4.9)

Using (4.9), matrix A can be determined as:

A =

 −2 α 0 0
0 β 0
0 0 −2 γ

 . (4.10)

Then, by using (4.10) the error dynamical System (4.4) can converge to origin asymptotically that is
limt→∞ ||e(t)|| = 0, which implies that the synchronization between Systems (2.1) and (2.2) is achieved.

5. Numerical Simulations for Synchronization

The numerical simulations were performed using the software Mathematica. To perform the investigation,
the parameters of the drive System (4.1) and response System (4.2) are taken as a = 0.1, b = 0.3, c = 1.5,
and α = 36, β = 14, γ = 5. Initially, g1(0) = 1, h1(0) = 1, i1(0) = 1 and g2(0) = 50, h2(0) = 10, i2(0) = 10.
The initial states of the error system (4.3) are e1(0) = 49, e2(0) = 9, and e3(0) = 9 . Figures (11), (12),
and (13) depicts the synchronization of the systems (4.1) and (4.2). Figure (14), exhibits the synchro-
nization of error trajectories e1, e2 and e3 converge to zero.

Figure 11: Synchronization of g1 and g2
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Figure 12: Synchronization of h1 and h2

Figure 13: Synchronization of i1 and i2

Figure 14: Dynamics of Synchronization of error states (e1, e2, e3) for Systems (2.1) and (2.2)
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6. Anti-synchronization between the Systems (2.1) and (2.2)

Let the drive and the corresponding response system be as follows:


ġ1 = i1 + (h1 − a)g1,

ḣ1 = 1− b h1 − g21 ,

i̇1 = − g1 − c i1,

(6.1)


ġ2 = −α g2 + h2 + p1(t),

ḣ2 = β h2 − g2i2 + p2(t),

i̇2 = α g2h2 − γ i2 + p3(t),

(6.2)

where, p1(t), p2(t) and p3(t) are control functions to be determined. The state error variables between
the Systems (6.1) and (6.2) are described as E1 = g2 + g1,

E2 = h2 + h1,
E3 = i2 + i1.

(6.3)

Now we will develop active nonlinear control functions pi(t), (i = 1, 2, 3) such that the state error variable
set out in (6.3) assure that

lim
t→∞

Ei(t) = 0 for (i = 1, 2, 3)

Adding System (6.1) and System (6.2),the emerging error dynamical System corresponding to sys-
tems(6.1) and (6.2) is 

Ė1 = −α g2 + h2 + i1 + (h1 − a)g1 + p1(t),

Ė2 = β h2 − g2i2 + 1− b h1 − g21 + p2(t),

Ė3 = α g2h2 − γ i2 − g1 − c i1 + p3(t).

(6.4)

Active control functions p1(t), p2(t) and p3(t) are defined as follows: p1(t) = q1(t)− h2 − i1 − g1h1 + a g1 − α g1
p2(t) = q2(t) + g2i2 − 1 + β h1 + g21 + bh1

p3(t) = q3(t)− α g2h2 − γ i1 + g1 + c i1.
(6.5)

where q1(t), q2(t) and q3(t) are control inputs that are the function of error state variables E1, E2 and
E3 to be determined.

Using System (6.4), and (6.5), we have
Ė1 = −α E1 + q1(t),

Ė2 = β E2 + q2(t),

Ė3 = −γ E3 + q3(t).

(6.6)

When the system (6.6) is stabilised by control inputs q1(t), q2(t) and q3(t) then, E1, E2 and E3 will
converge to zero as time t → ∞, which implies that the Systems (6.1) and (6.2) are Anti-synchronized.
To achieve this goal, we choose the control inputs as q1(t)

q2(t)
q3(t)

 = B

 E1

E2

E3

 . (6.7)
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where B is 3× 3 constant matrix. For System (6.7) to be asymptotically stable, its system characteristic
matrix must have all its eigenvalues with negative real parts. To achieve this, we need to determine the
matrix B. For this, let us consider the Lyapunov function W as:

W (t) =
1

2

[
E2

1 + E2
2 + E2

3

]
,

which implies that W is positive definite. On differentiating the Lyapunov function W , we can get

Ẇ (t) = E1Ė1 + E2Ė2 + E3Ė3. (6.8)

Using (6.6) and (6.7) in (6.8), we can get

Ẇ (t) = −2α E2
1 − β E2

2 − 2 γ E2
3 < 0 (6.9)

Using (6.9), we can have B as:

B =

 −α 0 0
0 −2 β 0
0 0 −γ

 . (6.10)

Using (6.10), we observe that all the three eigenvalues of closed loop system (6.7) have a negative real part.
Therefore, the error dynamical system (6.4) converges to origin asymptotically that is limt→∞ ||E(t)|| = 0,
which implies that the anti-synchronization between systems (6.1) and (6.2) is achieved.

7. Numerical Simulations for Anti-synchronization

To perform the numerical investigation, the parameters of the drive System (6.1) and response System
(6.2) are taken as a = 0.1, b = 0.3, c = 1.5, and α = 36, β = 14, γ = 5 with initial conditions as
g1(0) = 1, h1(0) = 1, i1(0) = 1 and g2(0) = 50, h2(0) = 10, i2(0) = 10. The initial states of the error
system (6.3) are E1(0) = 49, E2(0) = 9, and E3(0) = 9 . Figures (15), (16), and (17) illustrate anti-
synchronization between the systems (6.1) and (6.2). Figure 18, exhibits the anti-synchronization of error
trajectories E1, E2 and E3 converge to zero .

Figure 15: Anti-synchronization of g1 and g2



Impact of Socio-Economic Drivers... 11

Figure 16: Anti-synchronization of h1 and h2

Figure 17: Anti-synchronization of i1 and i2

Figure 18: Dynamics of Anti-synchronization of error states (E1, E2, E3) for Systems (2.1) and (2.2)

8. Conclusion

Synchronizing chaotic financial systems with chaotic environmental dynamics offers insights for holistic
risk management and sustainable development. By studying how environmental factors impact financial
markets and vice versa, we can develop more resilient investment strategies, mitigate systemic risks,
and ensure long-term economic stability. Additionally, it promotes cross-sector collaboration, enhanc-
ing adaptive capacity to address emerging challenges such as carbon emissions, resource depletion, and
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ecosystem degradation. Our investigation demonstrates that some variation in financial conditions may
control the temperature in the environment by synchronizing them. Also, it has been observed that fi-
nancial constraints may regulate the population of microorganisms. The solution of anti-synchronization
problem encourages the adoption of environmentally sustainable practices, incentivizes green innovation,
and facilitates the transition to a low-carbon economy, and our analytical results are in excellent agree-
ment with the numerical results.
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