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Caputo Derivatives

Mutaz Mohammad∗, Mohyeedden Sweidan, Alexander Trounev, Praveen Agarwal

abstract: This paper presents a wavelet-based numerical method for solving time–space fractional advection
equations involving Caputo derivatives. The governing equation is given by

d1
∂βW

∂zβ
+ d2

∂γW

∂uγ
= h(z, u),

where 0 < β, γ ≤ 1 denote fractional orders in the Caputo sense, and h(z, u) is a known source function. The
proposed scheme uses a collocation approach based on Euler wavelets—compactly supported bases constructed
from shifted and scaled Euler polynomials. This structure enables an exact symbolic evaluation of fractional
derivatives and facilitates accurately enforcing boundary conditions.

The numerical framework builds the solution through coefficient matrices and vector terms derived from
a symbolic system, ensuring consistency with the governing equation at carefully selected collocation points.
A central result shows that, when the exact solution is polynomial and symbolic computation is used, the
method reproduces the solution exactly at all collocation nodes.

Numerical experiments support the theoretical findings, demonstrating high accuracy and computational
efficiency, particularly for smooth solutions where rapid convergence is observed. Compared to existing ap-
proaches, the method offers enhanced precision and broader applicability, especially for problems involving
coupled space–time non-locality. This work expands the use of Euler wavelets in fractional partial differ-
ential equations. It provides a mathematically rigorous framework for future extensions to nonlinear and
multidimensional problems.

Key Words: Fractional advection equation, Euler wavelets, Caputo fractional derivative, Wavelet
collocation method, numerical solution of fractional PDEs, anomalous transport, computational mathe-
matics.
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1. Introduction

Fractional-order models have achieved marked success in the accurate description of transport phe-
nomena that exhibit memory and non-locality—features often mishandled by classical differential ap-
proaches constrained to locality and exponential decay, [1,4,12,28,32,7,26]. In contrast, fractional par-
tial differential equations (FPDEs), particularly those employing Caputo-type derivatives, can capture
anomalous diffusion characterized by power-law scaling and long-range dependencies. This methodologi-
cal shift has been deeply explored since Podlubny’s foundational work [27] and the comprehensive analysis
in [11].
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A prominent FPDE in this context is the time–space fractional advection equation, which generalizes
classical transport models to include both temporal and spatial fractional orders. Such equations have
proven valuable across various applications: anomalous transport in porous and fractured media [16,
8], viscoelastic composite deformation [14,23], and modeling of heterogeneous fluid flow in fractured
geological formations and atmospheric strata [30,15]. Using Caputo derivatives, these models retain the
ability to pose physically interpretable initial and boundary conditions [6].

One of the key challenges remains the efficient numerical approximation of these inherently nonlocal
FPDEs. Wavelet-based methods—utilizing their multiscale, localized properties—have delivered signif-
icant advances. In particular, Euler wavelets stand out for their compact support, recursive structure,
sparse operational matrices, and symbolic tractability for fractional differentiation [3,13,10]. Their util-
ity has been confirmed in optimal-control formulations of fractional integro-differential systems [2], and
time–fractional advection–diffusion problems [31]. Alternative wavelet bases, including Riesz, Daubechies,
pseudo-spline, and tight framelet constructions, have been successfully applied to epidemiological dynam-
ics [25,20], neurodegenerative modeling [21], and seismic analysis [17].

More recent developments have extended fractional modeling in promising directions. Unified frac-
tional derivative formulations have improved the treatment of boundary layer physics - [19]. Hybrid
frameworks combining fractional operators with data-driven methods have begun to emerge in seismic
machine learning applications [17]. Additionally, fractional Riccati systems [18] and neutral delay-
fractional equations [22] illustrate the broadening of the theoretical scope.

New numerical strategies continue to surface: barycentric rational-collocation for 2D time-fractional
advection–diffusion equations [31], Hermitian-interpolation-based finite-difference schemes for space–time
Riesz–Caputo wave equations [9,29], and FFT-accelerated operational-matrix methods using Caputo
derivatives [5]. These methods complement wavelet frameworks like Euler wavelets and further enrich
the field’s computational toolbox.

Consequently, the fractional advection equation of time-space emerges as a versatile modeling plat-
form that synthesizes the memory, nonlocality, and anomalous scaling features central to disordered
media, viscoelastic composites, and heterogeneous fluid domains. This study advances this paradigm by
developing an Euler-wavelet-based collocation method tailored to time–space FPDEs involving Caputo
fractional derivatives. Our approach supports symbolic differentiation, enforces boundary conditions di-
rectly, and demonstrates exact recovery of polynomial solutions under collocation, promising a significant
step forward in theory and implementation.

2. The Model and its Approximation

In this study, we consider the generalized time–space fractional advection equation given by

d1
∂βW

∂zβ
+ d2

∂γW

∂uγ
= h(z, u), (2.1)

where d1 and d2 are transport coefficients, and 0 < β, γ ≤ 1 denote the orders of the Caputo fractional
derivatives with respect to the spatial variables z and u, respectively. The function h(z, u) represents a
known source term. For β = γ = 1, Equation (2.1) reduces to the classical advection equation.

The Caputo fractional derivative of order α ∈ (0, 1] with respect to a variable x ∈ {z, u}, for a
sufficiently smooth function f , is defined as

CDα
xf(x) =

1

Γ(1− α)

∫ x

0

f ′(s)

(x− s)α
ds, (2.2)

where Γ(·) denotes the Gamma function. This definition assumes the existence of the first derivative of
f , and it is particularly suitable for problems with classical initial or boundary conditions.

The model is subject to the following boundary conditions:

W (0, u) = k1(u), W (z, 0) = k2(z), (2.3)

where k1 and k2 are prescribed boundary functions. The existence and uniqueness of the solution to
Equation (2.1) under these conditions are well established in the literature [30].
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To approximate the solution within the unit square domain 0 ≤ z, u ≤ 1, we employ an Euler wavelet-
based collocation method, as proposed in [23]. The solution is discretized into matrix form using basis-
dependent dimensions: M1 andM2 are coefficient matrices of size nkm×nkm, while V1 and V2 are vectors
of length nkm, where nkm = 2k−1m, with k and m denoting the wavelet level and polynomial degree,
respectively. Our implementation demonstrates superior numerical accuracy, achieving zero absolute error
in benchmark problems previously addressed in [8,30]. Additionally, our formulation extends prior models
by incorporating fractional derivatives in both spatial dimensions, in contrast to earlier studies—such as
[24], which treated time-fractional terms only, and [23], which addressed non-fractional Navier–Stokes
systems.

The basis vector of Euler wavelets, Ψ⃗(x), is defined as

Em(x) =
√
2m+ 1

m∑
k=0

(−1)m−kxk
(
m

k

)(
k +m

k

)
, (2.4)

and

ψknm(x) =

{
2

k−1
2 Em

(
2k−1x− n+ 1

)
, n−1

2k−1 ≤ x < n
2k−1 ,

0, otherwise.
(2.5)

The vector function Ψ⃗(x) is constructed by flattening the matrix ψkij(x), where i = 1, 2, . . . , 2k−1 and

j = 0, 1, . . . ,m− 1. For example, when k = 2 and m = 4, the vector Ψ⃗(x) is given by

Ψ⃗(x) = (ψ210(x), ψ211(x), ψ212(x), ψ213(x), ψ220(x), ψ221(x), ψ222(x), ψ223(x)) .

The step size for the collocation points, ∆z = ∆u, depends on the length of the vector Ψ⃗ and is given
by

∆z =
1

nkm
=

21−k

m
.

The collocation points are defined as

z1 =
∆z

2
, zi = zi−1 +∆z, u1 =

∆u

2
, ui = ui−1 +∆u, i = 2, 3, . . . , nkm. (2.6)

To approximate the fractional derivatives (in the Caputo sense) of orders β and γ, we use wavelet-
based approximations:

∂γW

∂uγ
≈ 1

Γ[1− γ]
Ψ⃗(z) ·M1 ·

∫ u

0

Ψ⃗(u′) du′

(u− u′)γ
, (2.7)

and
∂βW

∂zβ
≈ 1

Γ[1− β]

∫ z

0

Ψ⃗(z′) dz′

(z − z′)β
·M2 · Ψ⃗(u). (2.8)

The numerical solution can then be expressed as

W1(z, u) = Ψ⃗(z) ·M1 ·
∫ u

0

Ψ⃗(u′) du′ + V1 · Ψ⃗(z), (2.9)

and

W2(z, u) =

∫ z

0

Ψ⃗(z′) dz′ ·M2 · Ψ⃗(u) + V2 · Ψ⃗(u). (2.10)

All integrals in the above approximations are computed exactly due to the linear dependence of the
wavelets on the Euler polynomials Em.

Using the definitions in Equations (5) and (6), we formulate the system of algebraic equations to be
solved: 

d1
∂βW (zi,uj)

∂zβ + d2
∂γW (zi,uj)

∂uγ = h(zi, uj),

W1(zi, uj) =W2(zi, uj),

W1(zi, 0) = k1(zi),

W2(0, uj) = k2(uj),

(2.11)
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for i = 1, 2, . . . , nkm and j = 1, 2, . . . , nkm. This system of linear equations can be solved using standard
solvers, such as those implemented in Mathematica version 14.2.

3. Proposition and Theoretical Justification

Drawing on the numerical results discussed in Section 4, we state a proposition that captures the
observed behavior of zero absolute error for a particular class of polynomial solutions. Specifically, this
result holds when the exact solution can be expressed as a linear combination of monomials in z and u
with rational coefficients, and both the fractional differentiation and wavelet projections are performed
symbolically.

Theorem 3.1 Let

W (z, u) =

6∑
i=0

aiz
i +

6∑
j=0

bju
j , with ai, bj ∈ Q, (3.1)

and let β, γ ∈ (0, 1) ∩Q. Consider the fractional advection equation:

d1
∂βW

∂zβ
+ d2

∂γW

∂uγ
= h(z, u), (3.2)

where

h(z, u) = d1

6∑
i=1

ai ·
i!

Γ(i+ 1− β)
zi−β + d2

6∑
j=1

bj ·
j!

Γ(j + 1− γ)
uj−γ . (3.3)

Assume the following:

• The Euler wavelet basis is used with parameters k = 2, m = 6, and nkm = 12.

• The collocation points are rational, given by zi =
(
i− 1

2

)
∆z, uj =

(
j − 1

2

)
∆u, with ∆z = ∆u = 1

12 .

• All computations are carried out using symbolic or rational arithmetic.

Then, the Euler wavelet collocation method produces a numerical solution W̃ (zi, uj) that exactly matches
the analytic solution:

W̃ (zi, uj) =W (zi, uj), ∀ i, j = 1, . . . , 12. (3.4)

Proof: From fractional calculus, the Caputo derivative of xn for n ∈ N, α ∈ (0, 1) is:

CDα
xx

n =

0, n = 0,
Γ(n+ 1)

Γ(n+ 1− α)
xn−α, n ≥ 1.

(3.5)

Using this, we compute:

CDβ
zW =

6∑
i=1

ai ·
Γ(i+ 1)

Γ(i+ 1− β)
zi−β , CDγ

uW =

6∑
j=1

bj ·
Γ(j + 1)

Γ(j + 1− γ)
uj−γ . (3.6)

Since W (z, u) is a polynomial of degree ≤ 6 in each variable, it is exactly representable in the Euler
wavelet basis with k = 2, m = 6:

W (z, u) =

12∑
i=1

12∑
j=1

cijψi(z)ϕj(u). (3.7)

Fractional differentiation matrices built symbolically (via rational Caputo integrals) yield exact deriva-
tives at collocation points:

d1
CDβ

z W̃ (zi, uj) + d2
CDγ

uW̃ (zi, uj) = h(zi, uj). (3.8)
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Because W and W̃ belong to the same function space and satisfy the same linear system, it follows
that:

W̃ (zi, uj) =W (zi, uj), ∀ i, j. (3.9)

2

Remark 3.1 Although this theorem focuses on polynomial solutions of degree ≤ 6 with rational coeffi-
cients, numerical results from Section 4 (Code Validation) indicate the Euler wavelet method maintains
nearly exact accuracy for a much broader class of smooth solutions. This behavior encourages future
theoretical work to establish broader exactness and convergence guarantees.

4. The Symbolic Accuracy

In a preceding result (see Theorem 3.1), we established that the Euler wavelet collocation method
yields zero absolute error when the exact solution is a polynomial of degree less than or equal to six.
This section provides a more general theoretical justification that applies to any polynomial solution of
degree at most m, where m is the order of the Euler wavelet basis. The following theorem explains why
the proposed numerical method produces exact values at all collocation points in such cases.

Theorem 4.1 Let m, k ∈ N, and define nkm = 2k−1m. Consider the Euler wavelet basis of order m and
level k defined on the interval [0, 1], with collocation points given by

zi =
(
i− 1

2

)
∆z, uj =

(
j − 1

2

)
∆u, where ∆z = ∆u =

1

nkm
, 1 ≤ i, j ≤ nkm. (4.1)

Let β, γ ∈ (0, 1) ∩ Q denote the fractional orders of differentiation in the Caputo sense, and let
d1, d2 ∈ Q be fixed transport coefficients.

Suppose the exact solution is given by a polynomial of the form

W (z, u) =

n1∑
i=0

aiz
i +

n2∑
j=0

bju
j , with ai, bj ∈ Q, n1, n2 ≤ m, (4.2)

and that it satisfies the generalized fractional advection equation

d1
∂βW

∂zβ
(z, u) + d2

∂γW

∂uγ
(z, u) = h(z, u), (4.3)

where the right-hand side is explicitly given by

h(z, u) = d1

n1∑
i=1

ai ·
i!

Γ(i+ 1− β)
zi−β + d2

n2∑
j=1

bj ·
j!

Γ(j + 1− γ)
uj−γ . (4.4)

Assume that all symbolic computations—including the construction of the wavelet representation,
evaluation of fractional derivatives, matrix assembly, and evaluation at collocation points—are carried
out exactly using rational arithmetic. Then, the Euler wavelet collocation method yields a numerical
solution W̃ (zi, uj) that exactly matches the analytic solution at each collocation point:

W̃ (zi, uj) =W (zi, uj), ∀ i, j = 1, . . . , nkm. (4.5)

Proof: Let

W (z, u) =

n1∑
i=0

aiz
i +

n2∑
j=0

bju
j , with ai, bj ∈ Q, n1, n2 ≤ m,

be the exact solution to the fractional advection equation described above. This function is separable as
W (z, u) = P (z) +Q(u), where P (z) and Q(u) are univariate polynomials of degree at most m. Because
the Euler wavelet basis of order m includes all polynomials up to degree m, it follows that:

W (z, u) ∈ V := span(Ψ⃗(z))⊕ span(Ψ⃗(u)).
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Hence, W lies in the space spanned precisely by the wavelet basis used in the numerical scheme.
The Caputo derivative of a monomial xn is given symbolically by:

CDα
xx

n =
Γ(n+ 1)

Γ(n+ 1− α)
xn−α, n ∈ N, α ∈ (0, 1),

so that the fractional derivatives of W can be computed exactly. Since all coefficients ai, bj are rational
and all powers and constants are symbolic, the resulting h(z, u) is exactly computable symbolically.

The numerical solution constructed by the Euler wavelet method takes the symbolic form:

W̃ (z, u) = Ψ⃗(z)⊤MΨ⃗(u) + v⃗⊤1 Ψ⃗(z) + v⃗⊤2 Ψ⃗(u), (4.6)

where M ∈ Qnkm×nkm and v⃗1, v⃗2 ∈ Qnkm arise from solving the symbolic collocation system.
This structure reflects the formulation of W1 and W2, defined in equations (2.9) and (2.10), which

construct the solution via fractional integration in one direction:

W1(z, u) = Ψ⃗(z) ·M1 ·
∫ u

0

Ψ⃗(u′) du′ + V1 · Ψ⃗(z), (4.7)

W2(z, u) =

∫ z

0

Ψ⃗(z′) dz′ ·M2 · Ψ⃗(u) + V2 · Ψ⃗(u). (4.8)

To match both approximations and satisfy the boundary conditions (equation (2.11)), the symbolic
solver produces a unified form for W̃ (z, u) that includes both bilinear and univariate wavelet terms.

At each rational collocation point (zi, uj), the symbolic system enforces:

d1
CDβ

z W̃ (zi, uj) + d2
CDγ

uW̃ (zi, uj) = h(zi, uj),

along with:
W1(zi, uj) =W2(zi, uj), W1(zi, 0) = k1(zi), W2(0, uj) = k2(uj).

Since all basis functions, fractional derivatives, and collocation values are rational or symbolic, the
system becomes a linear symbolic system over Q, with a unique solution for the coefficients M , v⃗1, and
v⃗2. Moreover, the original function W , which is on the same basis and satisfies the same conditions,
must also satisfy the same symbolic system. By the uniqueness of solutions to symbolic linear systems,
it follows that:

W̃ (zi, uj) =W (zi, uj), ∀ i, j.
2

5. Existence and Uniqueness Justification

We now justify the existence and uniqueness of the exact and numerical solutions considered in
Theorem 4.1.

Existence and Uniqueness of the Exact Solution. Consider the generalized fractional advection equation:

d1
CDβ

zW (z, u) + d2
CDγ

uW (z, u) = h(z, u), (5.1)

with boundary conditions:
W (0, u) = k1(u), W (z, 0) = k2(z), (5.2)

where β, γ ∈ (0, 1), and d1, d2 ∈ Q. Assume that the source term h(z, u) and the boundary data
k1(u), k2(z) are continuous in the domain [0, 1]2.

Under these conditions, the existence and uniqueness of a classical solution are supported by fractional
analogues of the Picard-Lindelöf theorem and related results in the theory of Caputo fractional differential
equations. Specifically, if the right-hand side h(z, u) is continuous and the fractional derivatives exist and
are well defined in the classical or Caputo sense for the class of trial solutions, then a unique solution
exists within a suitable function space. In our setting, whereW is a polynomial and h is explicitly defined
from it, the required smoothness and compatibility conditions are satisfied, and the solution is uniquely
determined.
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Existence and Uniqueness of the Numerical Solution. The numerical solution W̃ (z, u) is computed by
projecting the problem onto the Euler wavelet basis and solving a symbolic collocation system. This
system has the form:

Ax⃗ = b⃗,

where the matrix A ∈ QN×N is constructed from evaluations of the Euler wavelet basis functions and
their symbolic integrals at rational collocation points (zi, uj). The unknown vector x⃗ contains the entries

of the coefficient matrix M and the correction vectors v⃗1, v⃗2, while b⃗ contains evaluations of h(z, u) and
boundary conditions at collocation points.

Because:

• The Euler wavelet basis functions Ψ⃗ are linearly independent,

• The collocation grid has size nkm × nkm, equal to the number of basis functions,

• All entries of A and b⃗ are computed symbolically in rational arithmetic,

the matrix A is non-singular, and the system has a unique symbolic solution over Q. This guarantees
that the numerical approximation W̃ (z, u) exists and is uniquely defined in the Euler wavelet space.

6. Algorithm Validation

To evaluate the efficiency of the numerical method described above, we used an exact solution to the
problem (1-2) in the special case where

k1 = z2, k2 = u2, h = d1
z2−β

Γ(3− β)
+ d2

u2−γ

Γ(3− γ)
. (6.1)

The exact solution is given by W = z2 + u2. We computed the numerical solution using a wavelet basis
with k = 2, m = 4, and nkm = 8 in the range 1

10 ≤ β ≤ 9
10 and 1

10 ≤ γ ≤ 9
10 , with a step size of 1

10 .
The parameters d1 and d2 were set to 1

2 and 2, respectively. The maximal absolute error for this test
was approximately 10−15 for runs with machine precision and less than 10−40 for all runs with double
precision (see Figure 1).

The second test was performed using the exact solution proposed in [30] for the special case β = γ = 1
2

and for

d1 = d2 =
√
π, k1 = z2, k2 = u2, h =

8z3/2

3
+

8u3/2

3
. (6.2)

As in the previous case, the exact solution is given by W = z2 + u2. Numerical solutions were
calculated with double precision using two wavelet bases: one with k = 2, m = 4, nkm = 8 and another
with k = 3, m = 4, nkm = 16 (see Figure 1). In both grids, the absolute error was less than 10−40 (Figure
1, bottom line).

We performed several additional tests to estimate the absolute error using exact solutions given by

W = zn1 + un2 , h = d1
n1!z

n1−β

Γ(n1 + 1− β)
+ d2

n2!u
n2−γ

Γ(n2 + 1− γ)
, (6.3)

for different combinations of n1 = 1, 2, 3, 4, 5, 6, 7, 8, 9 and n2 = 1, 2, 3, 4, 5, 6, 7, 8, 9, with fixed d1 = d2 = 1
and β = γ = 1

4 ,
1
2 ,

2
3 ,

3
4 (see Figure 2). For these solutions, we observed a zero maximal absolute error for

all combinations of n1 = 1, 2, 3, 4 with n2 = 1, 2, 3, 4 and for β = γ = 1
4 ,

1
2 ,

2
3 ,

3
4 . However, for n1 ≥ 5 or

n2 ≥ 5, the precision of the numerical solution suddenly drops, resulting in a maximal absolute error of
up to 10−3 (see Figure 3). Increasing the calculation accuracy to 60 digits did not significantly improve
the results, as the maximal absolute error only decreased to 10−4.

It can be assumed that this deterioration in the accuracy of the numerical solution is related to the
use of the proposed algorithm with a wavelet base limited to k = 2, m = 4, and nkm = 8. To investigate
this, we performed a numerical error analysis for n1 = n2 = 5 using numerical fractional differentiation
matrices and several wavelet bases with nkm = 6, 8, 10, 12, 14, 16, 20, 24 (see Figure 4). We calculated the
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Figure 1: The maximal absolute error vs β, γ computed for exact solutions (8) with machine precision
(top, left) and with double precision (top, right); absolute error vs z, u calculated for exact solution (9)
at nkm = 8 (bottom, left) and nkm = 16 (bottom, right).

convergence rate using these data, which was approximately 7.88. It is worth noting that a convergence
rate of about 8 is common in numerical computations using Euler wavelets. The absolute error distribution
shown in Figure 4 shows flat regions corresponding to a very low absolute error. Therefore, this case
can also be addressed using a different wavelet base, such as k = 2, m = 6, nkm = 12. By generating
an exact fractional differentiation matrix, we achieved zero absolute error for different combinations of
n1 = 1, 2, 3, 4, 5, 6 with n2 = 1, 2, 3, 4, 5, 6 and fixed d1 = d2 = 1, β = γ = 1

4 ,
1
2 ,

2
3 ,

3
4 (see Figure 5).

However, for n1 ≥ 7 or n2 ≥ 7, the absolute error was approximately 10−5. To address this, an exact
fractional differentiation matrix should be generated in the Euler wavelet base with m ≥ 7.

The next examples show that we can combine series with 0 ≤ n1 ≤ 6, 0 ≤ n2 ≤ 6 and with arbitrary
rational coefficient ai, bi, i = 0, 1, ..., 6 so that exact solution and function h are given by

W =

n1∑
i=0

aiz
i +

n2∑
i=0

biu
i, h = d1

n1∑
n=1

ann!z
n−β

Γ(n+ 1− β)
+ d2

n2∑
n=1

bnn!u
n−γ

Γ(n+ 1− γ)
(6.4)

Using exact fractional differentiation matrix at k = 2,m = 6, nk,m = 12, we have been able to compute
numerical solution with zero absolute error, for example (14) with coefficient

a =
(
0, 0, 17 ,

6
7 , 0, 0,

2
7

)
, b =

(
0, 0, 0, 45 , 1, 1,

2
5

)
. (6.5)

The exact solution and the corresponding error over the range 1
10 ≤ β ≤ 9

10 and 1
10 ≤ γ ≤ 9

10 , with a
step size of 1

10 , are shown in Figure 6 (left). Notably, the point computed at β = 7
10 , γ = 4

5 exhibits the
largest absolute error of 8.94× 10−30, while all other computations result in errors smaller than 10−40.

In the final example, the same parameter range was considered— 1
10 ≤ β ≤ 9

10 ,
1
10 ≤ γ ≤ 9

10—but
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Figure 2: The maximal absolute error computed with double precision for exact solution (10).

Figure 3: The maximal absolute error for exact solution (8) with n1 ≥ 5 and 1 ≤ n2 ≤ 5.
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Figure 4: Maximal absolute error computed for 8 wavelet bases (top, left), the convergence rate (top,
right), and the distribution of the maximal absolute error at nkm = 24 for the numerical solutions W1

(bottom, left) and W2 (bottom, right).

Figure 5: The maximal absolute error computed with double precision for exact solution (10) at k = 2,
m = 6, nkm = 12.
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Figure 6: The exact solution and the maximal absolute error computed with double precision at k = 2,
m = 6, nkm = 12 for (14),(15) - left, and for (14),(16) - right.

with a step size of 1
5 . The coefficients used were:

a =

(
0,

32708048

186874227
,− 11283656

136484857
,−110035602

108025985
,
28226629

27151850
,
74410621

38356544
,−177109294

156481923

)
,

b =

(
0,

57240248

75994367
,
14872377

338558723
,−23556129

28464793
,−118460031

485145784
,−74401801

76175872
,
81062132

94861399

)
.

(6.6)

The corresponding exact solution and the maximum absolute error are shown in Figure 6 (right).
Once again, the largest error—approximately 3.45 × 10−30—occurs at β = 9

10 , γ = 7
10 , while all other

results remain below 10−40.

These examples demonstrate the great potential of the proposed method. A numerical solution with
very low error can be obtained for functions that can be expressed as a series. This statement can be
formulated as a theorem.

7. Conclusion

This work presented an Euler wavelet collocation method for numerically solving time–space fractional
advection equations involving Caputo derivatives. The approach combines the compact support and
polynomial precision of Euler polynomials with the multiresolution structure of wavelets, resulting in a
numerical framework well-suited to non-local PDEs.

A key contribution of this study is the theoretical demonstration-under exact rational arithmetic-that
the proposed method yields pointwise-exact solutions at collocation nodes when the exact solution is
polynomial. This was established through a rigorous symbolic framework, ensuring that all operations,
including fractional derivatives and matrix construction, are carried out with full precision. The main
theorem confirms that, for a class of analytic inputs, the Euler wavelet method exactly reproduces the
true solution, underscoring its suitability for problems where symbolic integrity is critical.

Beyond this theoretical guarantee, the method also addresses a broader class of problems than many
existing works, which are often limited to either time-fractional formulations or integer-order systems.
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In contrast, the present model incorporates fractional orders in both spatial variables, enabling a more
complete description of anomalous transport behavior.

From a computational perspective, the method exhibits high accuracy and efficiency, particularly
for problems with smooth solutions, where the collocation strategy combined with the Euler basis yields
rapid convergence. The successful handling of both boundary conditions and fractional derivatives within
a unified framework further strengthens the method’s applicability.

Future directions include extending the method to nonlinear or multi-dimensional systems, as well as
exploring adaptive grid strategies and symbolic-numeric hybrid solvers. Given its precision and theoret-
ical soundness, the Euler wavelet framework provides a strong foundation for advancing the numerical
treatment of space–time fractional PDEs in both applied and theoretical settings.
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9. J. F. Gómez Aguilar and M. M. Hernández, Space-time fractional diffusion-advection equation with caputo deriva-
tive, Abstract Appl. Anal., 2014 (2014), p. 283019.

10. M. M. Khader, M. Adel, and T. A. Abassy, A new operational wavelet method for solving fractional differential
equations with variable coefficients, Mathematics, 8 (2020), p. 406.

11. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,
Elsevier, 2006.
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