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A study on the temperature Sombor energy and entropy of a graph

Sharathkumar H. T.∗, Narahari N., Shrikanth C. K., Vignesh Ravi

abstract: The temperature Sombor index is one of the variations of the recently introduced Sombor index,
a degree based topological index, found to have nice mathematical properties and very useful applications.
In our current study, we introduce the temperature Sombor matrix T (G), an associated matrix of the tem-
perature Sombor index of a graph G and present certain bounds on its eigenvalues. Additionally, we define
the temperature Sombor energy ET (G) of G and determine some bounds on it. We also discuss the chemical
applicability of this parameter by comparing it with the π-electron energy of certain chemical compounds.
Additionally, we perform the regression analysis of the temperature Sombor energy with the graph energy of
trees with fixed orders n = 8, 9, · · · , 18. Further, we compute the temperature Sombor entropy of the silicon
carbide compound and analyze it in conjunction with its temperature Sombor index.

Key Words:Graph energy, Sombor index, temperature Sombor index, temperature forgotten index,
temperature Sombor energy, entropy, temperature Sombor entropy.
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1. Introduction

One of the significant ideas employed in chemical graph theory is that of the chemical indices that
depend on the structure of the associated graph, commonly known as topological indices. Topological
indices are numerical values that a graph inherits and can be correlated with the physical properties,
biological activities and chemical reactivity of individual chemical molecules. Many characteristics of
the chemical structures, including toughness, entropy, rigidity, boiling point, strain energy, enthalpy
of formation and enthalpy of vaporization are known to be closely related to their underlying graphical
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structures. These topological indices are therefore generally considered descriptors of chemical structures.
Generally, a vertex-degree-based (V DB) topological index can be expressed in the form

TI(G) =
∑

vw∈E(G)

f(d(v),d(w))

where d(v) represents the number of vertices adjacent with the vertex v, called the degree of v in the
graph G. Zagreb index [11], Randić index [25], Sombor index [32] and harmonic index [24] are some of
the commonly known vertex-degree-based topological indices. Sombor index [22], a recently introduced
vertex-degree-based topological index, has drawn a lot of interest in the literature. It is being thoroughly
investigated because of its broad range of applicability [31,32,19,35,12,42,16,41]. Since then, numerous
studies on various versions of the Sombor index have been proposed and investigated [8,43,14,5,27].

In 1988, Fajtolowicz defines a new parameter called the temperature of a vertex [36]. Motivated
by the definition of Sombor index and Fajtolowicz’s research, Kulli introduces a new Sombor index
variant called the temperature Sombor index of G [44], denoted as T SO(G) and studies some of its
mathematical properties. It is being extensively studied in the field of graph theory because of its
interesting characteristics. For related work, we cite [13,37,38,45].

On the other hand, spectral graph theory involves linear algebra in general and matrix theory in
particular, to explore and interpret the topological and physico-chemical properties of a graph and related
chemical structures. With its rapid development, spectral graph theory has gained a lot of attention even
from mathematicians and researchers whose interests are quite different from this domain. Study of graph
energies is one of the main concepts that comes under spectral graph theory.

As defined by Gutman [10], the sum of the absolute values of eigenvalues of the adjacency matrix
A(G) of a graph G is the energy E(G) of G. Notably, eigenvalues connect with all extreme properties and
are strongly related to nearly all critical graph invariants, offering a key to the fundamental understanding
of graphs and therefore, graph energy has generated interest in both pure and applied mathematics. Over
the years, a lot of work has been made on the energy of graphs and chemical structures. Many kind of
graph energies and matrices are introduced and studied [20,22,18,30,28].

In addition to graph energy, the concept of graph entropy plays a vital role in the analysis of the struc-
tural properties of molecular structures. Shannon introduces the concept of entropy in 1948 [3], defining
it as “a measure of the unpredictability of information content or the uncertainty of a system” within a
probability distribution. This foundational work has increased the importance of entropy across various
fields, including graph and chemical network analysis, particularly in measuring structural information.
In 1955, Rashevsky contributes significantly to the field by introducing the idea of graph entropy, which
focuses on classifying vertex orbits. The concept of an edge-weighted graph characterized by entropy is
first introduced by Chen et al. [46] in 2014. Recently, the application of graph entropy has expanded to
multiple disciplines, including chemistry, biology, ecology, sociology, discrete mathematics and statistics.
Its primary purpose is to analyze entropies in relational structures. In mathematical chemistry, graph
entropy is used to effectively characterize the structure of graphical representations. It can also be em-
ployed to evaluate chemical databases or groups of molecules based on their structural diversity. A higher
entropy value indicates greater structural diversity, which may result in a more varied range of chemical
substances. For related work, we cite [17,26,33,39].

Semiconductors are both cost-effective and environmentally friendly, serving a vital role in the elec-
tronics sector. They are essential for the functionality of nearly all electronic devices, highlighting their
significance in contemporary technology. Silicon carbide (SiC) is composed of lightweight components
and is recognized for its low coefficient of thermal expansion. This material is characterized by robust
covalent bonds, excellent thermal conductivity and remarkable hardness. Until 1929, it was considered
the hardest substance on Earth. Its appearance varies, displaying colors such as green or black, depend-
ing on the presence of impurities such as aluminum (Al), iron (Fe) or oxygen (O). Silicon carbide is
extensively used in various furnace components, including heating elements, core tubes and refractory
bricks, because of its exceptional heat resistance. Furthermore, it serves as a foundational material for
advances in electronics, transportation technologies and applications in quantum physics.

Motivated by the definition of the temperature Sombor index of G, in this article, we define the
temperature Sombor energy ET (G) of a graph G by introducing its temperature Sombor matrix and



A study on the temperature Sombor energy and entropy of a graph 3

determining its eigenvalues. Besides that, we establish some bounds on ET (G) in terms of other graph
invariants. Additionally, we study the correlation of the temperature Sombor energy of some molecules
having hetero atoms, alkanes and cubic compounds with their respective π-electron energies, compute
regression analysis of temperature Sombor energy with the graph energies of trees with fixed orders
n = 8, 9, · · · , 18. Further, we derive the formulae for the temperature Sombor index and temperature
Sombor entropy related to the Silicon Carbide (SiC4 − I[a, b]) semiconductor compound [29] and perform
regression analysis of the temperature Sombor index with temperature Sombor entropy of SiC4 − I[a, b]
as well.

2. Preliminaries

Throughout this article, we consider only graphs that are simple, finite, undirected and connected.
Given a graph G = (V,E) with V (G) being the vertex set and E(G) being the edge set, two vertices
v, w ∈ V (G) are said to be adjacent if they share a common edge. Vertices with degree zero and one are
respectively called isolated and pendant vertices.

The adjacency matrix of a graph G with V (G) = {u1, u2, · · · , un} is defined as A(G) = (aij)n×n

where

aij =


1 if uiuj ∈ E(G)

0 if uiuj ̸∈ E(G)

0 otherwise.

The Sombor index [32] of a graph G is defined as

SO(G) =
∑

vw∈E(G)

√
d(v)2 + d(w)2.

Correspondingly, the Sombor matrix [22] of G, having its vertex set V (G) = {u1, u2, · · · , un}, is
defined as ASO(G) = ((aSO)ij) where

(aSO)ij =


√

d(ui)2 + d(uj)2 if uiuj ∈ E(G)

0 if uiuj ̸∈ E(G)

0 otherwise.

Further, the sum of the absolute values of the eigenvalues of ASO(G) is defined as the Sombor energy
of G.

The temperature Sombor index [44] of a graph G is defined as

T SO(G) =
∑

vw∈E(G)

√
T (v)2 + T (w)2

where T (v) =
d(v)

n− d(v)
is called the temperature of a vertex v in G [36].

The forgotten index F(G) [1] of G is defined as

F(G) =
∑

vw∈E(G)

(
d(v)2 + d(w)2

)
.

Further, its corresponding temperature version, named as the temperature forgotten index [44], is defined
as

FT (G) =
∑

vw∈E(G)

(
T (v)2 + T (w)2

)
.
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3. Temperature Sombor matrix and temperature Sombor energy of a graph

Definition 3.1 For a graph G with V (G) = {u1, u2, · · · , un}, the temperature Sombor matrix of G,
denoted by T (G), is defined as T (G) = (tij)n×n where

tij =


√
T (ui)2 + T (uj)2 if uiuj ∈ E(G)

−1 if uiuj ̸∈ E(G)

0 otherwise,

where T (ui) denotes the temperature of ui ∈ V (G).

Further, given the identity matrix In×n, the temperature Sombor polynomial PG(β) of G is defined as

PG(β) = |βI − T (G)|.

T (G) is a real symmetric matrix so that all its n eigenvalues, being real, can be ordered as β1 ≥ β2 ≥
· · · ≥ βn. Accordingly, the temperature Sombor energy ET (G) of G is defined as

ET (G) =

n∑
i=1

|βi|.

Remark 3.1 By the definition of the temperature Sombor matrix T (G), it is observed that tr(T (G)) = 0.

Therefore, the eigenvalues of T (G) must satisfy the relation that
n∑

i=1

βi = 0 from which it follows that

n∑
i=2

βi = −β1.

Lemma 3.1 [4]  n∑
j=1

XjYj

2

≤
n∑

j=1

X 2
j

n∑
j=1

Y2
j

where X1,X2, · · · ,Xn and Y1,Y2, · · · ,Yn are two sequences of real numbers. Further, equality holds if
and only if there exists a real number α with Xj = αYj, for each j = 1, 2, · · · , n.

Remark 3.2 For a graph G with order n and size m, if P(G)(β) = C0β
n + C1β

n−1 + C2β
n−2 +

C3β
n−3 · · ·+ Cn is the temperature Sombor polynomial of G, then

(i) C0 = 1,

(ii) C1 = 0,

(iii) C2 = −
(
FT (G) +

n2 − n− 2m

2

)
.

Theorem 3.1 Let T (G) be the temparature Sombor matrix of G with eigenvalues β1 ≥ β2 ≥ · · · ≥ βn.
Then, the following results hold good.

(i)
∑

βi = 0,

(ii)

n∑
i=1

β2
i = 2FT (G) + n(n− 1)− 2m.

Proof:



A study on the temperature Sombor energy and entropy of a graph 5

(i) Since tr(T (G)) = 0, the eigenvalues of T (G) satisfy the relation
n∑

i=1

βi = 0.

(ii) We have

n∑
i=1

β2
i = tr

(
T (G)2

)
=

n∑
i=1

n∑
j=1

tijtji

=

n∑
i=1

t2ii +
∑
i̸=j

tijtji

Now, since tii = 0 for each i = 1, 2, 3, · · · , n in T (G),

n∑
i=1

β2
i = 2

∑
i<j

t2ij

= 2
∑

vw∈E(G)

(
T (v)2 + T (w)2

)
+ 2

∑
vw/∈E(G)

(−1)2 so that

n∑
i=1

β2
i = 2FT (G) + n(n− 1)− 2m.

2

4. Bounds for the temperature Sombor energy

The following classical inequalities are used to establish some bounds on the temperature Sombor
energy ET (G) of graph G.

Lemma 4.1 [15] [Diaz-Metcalf Inequality] Let a1, a2, · · · , an and b1, b2, · · · , bn be two sequences, with
ai, bi ∈ R+, r,R ∈ R, such that rai ≤ bi ≤ Rai, for each i = 1, 2, · · · , n. Then,

n∑
i=1

b2i + rR

n∑
i=1

a2i ≤ (r +R)

n∑
i=1

aibi.

In the above expression, equality holds if and only if bi = Rai or bi = rai , for 1 ≤ i ≤ n.

Lemma 4.2 [6] Let a1, a2, a3, · · · , an be a sequence of non-negative real numbers. Then,

n

 1

n

n∑
i=1

ai −

(
n∏

i=1

ai

) 1
n

 ≤ n

n∑
i=1

ai −

(
n∑

i=1

√
ai

)2

≤ n(n− 1)

 1

n

n∑
i=1

ai −

(
n∏

i=1

ai

) 1
n

 .

Lemma 4.3 [4] [Radon’s Inequality] Let a1, a2, · · · , an and b1, b2, · · · , bn be two sequences with ai, bi ∈
R+. Then, for any r ≥ 0,

n∑
i=1

(
br+1
i

ari

)
≥

(
n∑

i=1

bi

)r+1

(
n∑

i=1

ai

)r

with equality if and only if r = 0 or
b1
a1

=
b2
a2

= · · · = bn
an

.
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Lemma 4.4 [28] [Holder’s Inequality] Let a1, a2, a3, · · · , an and b1, b2, b3, · · · , bn be two sequences, with
ai, bi ∈ R+ and p and q be strictly greater than 1 such that 1

p + 1
q = 1. Then,

n∑
i=1

aibi ≤

(
n∑

i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

with equality if and only if

ap1
bq1

=
ap2
bq2

=
ap3
bq3

= · · · = apn
bqn

.

Lemma 4.5 [22] Let a1, a2, a3, · · · , an be a sequence of non-negative real numbers such that a1 ≤ a2 ≤
· · · ≤ an. Then,

n∑
i=1

ai + n(n− 1)

(
n∏

i=1

ai

) 1

n
≤ n

(
n∑

i=1

√
ai

)2

≤ (n− 1)

n∑
i=1

ai + n

(
n∏

i=1

ai

) 1

n
.

Lemma 4.6 [6] If a1, a2, a3, · · · , an and b1, b2, b3, · · · , bn are two sequences of non-negative real num-
bers, then (

n∑
i=1

a2i

)(
n∑

i=1

b2i

)
−

(
n∑

i=1

aibi

)2

≤ n2

4
(AB − ab)

2

where A = max
1≤i≤n

ai, B = max
1≤i≤n

bi, a = min
1≤i≤n

ai and b = min
1≤i≤n

bi.

Lemma 4.7 [7][Abel’s inequality] Let η1, η2, · · · , ηn and X1,X2, · · · ,Xn be two sequences, with ηi,Xi ∈
R, such that Xn ≥ Xn+1 ≥ 0 for all n. Then,

|η1X1 + η2X2 + · · ·+ ηnXn| ≤ AX1 where

A = max {|η1| , |η1|+ |η2| , · · · , |η1|+ |η2|+ · · ·+ |ηn|} .

Lemma 4.8 [28][Polya-Szego inequality] Let a1, a2, · · · , an and b1, b2, · · · , bn be two sequences, with
ai, bi ∈ R+, such that a ≤ ai ≤ A and b ≤ bi ≤ B for each i = 1, 2, 3, · · · , n. Then,

n∑
i=1

b2i

n∑
i=1

a2i ≤ 1

4

(√
AB

ab
+

√
ab

AB

)2( n∑
i=1

aibi

)2

4.1. Lower bounds for the temperature Sombor energy

Theorem 4.1 For any graph G of order n and size m, let P be the absolute value of det(T (G)). Then,

ET (G) ≥
√

2FT (G) + n(n− 1)(P 2
n + 1)− 2m.

Proof: From the definition of temperature Sombor energy and Theorem 3.1, we have

ET (G) =

(
n∑

i=1

|βi|

)

=⇒ (ET (G))
2
=

(
n∑

i=1

|βi|

)2

= 2FT (G) + n2 − n− 2m+
∑
i̸=j

|βi||βj |. (4.1)
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Since, for non-negative numbers, the arithmetic mean A.M. ≥ G.M., its geometric mean, we have

∑
i̸=j

|βi||βj | ≥ n(n− 1)

∏
i̸=j

|βi||βj |


1

n(n− 1)

=

(
n∏

i=1

|βi|2(n− 1)

) 1

n(n− 1)

=

n∏
i=1

|βi|
2
n = P 2

n

so that
∑
i̸=j

|βi||βj | ≥ n(n− 1)P 2
n . (4.2)

Thus, we get

(ET (G))
2 ≥ 2FT (G)− n2 − n− 2m+ n(n− 1)P 2

n

≥ 2FT (G)− 2m+ n(n− 1)(P 2
n + 1)

or ET (G) ≥
√
2FT (G)− 2m+ n(n− 1)(P 2

n + 1).

. 2

Theorem 4.2 Let G be any graph of order n and size m. Then,

2FT (G) + n(|β1||βn|+ n− 1)− 2m

|β1|+ |βn|
≤ ET (G).

Further, equality holds if and only if for each 1 ≤ i ≤ n, either |βi| = |β1| or |βi| = |βn|.

Proof: Choosing bi = |βi|, ai = 1, r = |βn| and R = |β1| in Lemma 4.1, we get

n∑
i=1

|βi|2 + |βn||β1|
n∑

i=1

1 ≤ (|β1|+ |βn|) ET (G)

=⇒
n∑

i=1

|βi|2 + |βn||β1|n ≤ (|β1|+ |βn|) ET (G)

=⇒ 2FT (G) + n(|β1||βn|+ n− 1)− 2m

|β1|+ |βn|
≤ ET (G).

2

Theorem 4.3 Let G be any non-trivial graph. Then, ET (G) ≥ 4

√
tr(T (G)2)5

tr(T (G)6)
.
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Proof: Taking ai = |βi|
4
5 , bi = |βi|

6
5 , p = 5

4 and q = 5 in Lemma 4.4, we get

n∑
i=1

|βi|
4
5 |βi|

6
5 ≤

(
n∑

i=1

|βi|

) 4
5
(

n∑
i=1

|βi|6
) 1

5

=⇒
n∑

i=1

|βi|2 ≤

(
n∑

i=1

|βi|

) 4
5
(

n∑
i=1

|βi|6
) 1

5

=⇒

(
n∑

i=1

|βi|

)
≥



(
n∑

i=1

|βi|2
)5

n∑
i=1

|βi|6



1
4

.

The result then follows from the definition of ET (G) and the property of tr(T (G)). 2

Theorem 4.4 Let G be any graph of order n and size m. Then,

ET (G) ≥ 2FT (G) + n(n− 1)− 2m

|β1|
where |β1| ≥ |β2| · · · ≥ |βn| are the absolute values of eigenvalues of T (G). Further, equality holds when
|β1| = |β2| = · · · = |βn| or |β1| = |βr| , 2 ≤ r ≤ n and |βs| = 0 where, s ̸= r, 2 ≤ s ≤ n.

Proof: Taking ηi = Xi = |βi| for all 1 ≤ i ≤ n in Lemma 4.7 and observing that

A = max {|β1| , |β1|+ |β2| , · · · , |β1|+ |β2|+ |β3|+ · · ·+ |βn|} = ET (G),

we get ∣∣∣|β1|2 + |β2|2 + · · ·+ |βn|2
∣∣∣ ≤ ET (G) |β1|

=⇒
tr
(
T (G)2

)
|β1|

≤ ET (G).

Thus, by Theorem 3.1, we get

ET (G) ≥ 2FT (G) + n(n− 1)− 2m

|β1|
.

Further,

tr
(
T (G)2

)
|β1|

= ET (G)

⇐⇒ |β1| (|β1|+ |β2|+ |β3|+ · · ·+ |βn|) =
n∑

i=1

|βi|2

⇐⇒ |β1| (|β2|+ |β3|+ · · ·+ |βn|) =
n∑

i=2

|βi|2

This is possible if and only if
|β1| = |β2| = · · · = |βn| or |β1| = |βr| , 2 ≤ r ≤ n and |βs| = 0 where s ̸= r and 2 ≤ s ≤ n. 2
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Theorem 4.5 For a graph G of order n and size m,

2nFT (G) ≤ 1

4

(√
β1

βn
+

√
βn

β1

)
ET (G)2 − n2(n− 1) + 2mn.

Proof: Substituting ai = |βi| and bi = 1 in Lemma 4.8, we get

n∑
i=1

1

n∑
i=1

|βi|2 ≤ 1

4

(√
AB

ab
+

√
ab

AB

)2( n∑
i=1

|βi|

)2

.

Clearly, βn ≤ βi ≤ β1. Choosing A = β1, a = βn, B = b = 1 and using Theorem 3.1, we obtain

2nFT (G) ≤ 1

4

(√
β1

βn
+

√
βn

β1

)
ET (G)2 − n2(n− 1) + 2mn.

2

Theorem 4.6 For a graph G of order n and size m,√
2nFT (G) + n2(n− 1)− 2mn− n2

4
(β1 − βn)

2 ≤ ET (G).

Proof: Setting ai = |βi| , bi = 1, A = β1, B = 1, a = βn and b = 1 in Lemma 4.6, we obtain(
n∑

i=1

|βi|2
)(

n∑
i=1

1

)
−

(
n∑

i=1

|βi|

)2

≤ n2

4
(β1 − βn)

2
.

Using Theorem 3.1, we get

2nFT (G) + n2(n− 1)− 2mn− ET (G)2 ≤ n2

4
(β1 − βn)

2
.

Regrouping and simplifying the above expression gives the required result. 2

Theorem 4.7 For a graph G of order n and size m,√
(2FT (G) + n(n− 1)− 2m) ≤ ET (G).

Proof: We have

ET (G) =

n∑
i=1

|βi|

=⇒ (ET (G))2 =

(
n∑

i=1

|βi|

)2

≥
n∑

i=1

|βi|2

=⇒ (ET (G))2 ≥
n∑

i=1

|βi|2 ,

Using Theorem 3.1 in this equation, followed by simplification, gives the required result. 2
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4.2. Upper bounds for the temperature Sombor energy

Theorem 4.8 If G be a graph of order n and size m, then

ET (G) ≤
√

n(2FT (G) + n2 − n− 2m).

.

Proof: Taking Yj = 1 and Xj = |βi| in Lemma 3.1, we get

[ET (G)]2 ≤ n

n∑
i=1

|βi|2 = n(2FT (G) + n2 − n− 2m)

=⇒ ET (G) ≤
√
n(2FT (G) + n(n− 1)− 2m).

2

Theorem 4.9 If G is a graph of order n and size m, then

ET (G) ≤
√
(n− 1)(2FT (G) + n2 − n− 2m) + n [det(T (G))2]

1
n

where, det(T (G)) is the determinant of the temperature Sombor matrix T (G).

Proof: Choosing ai = β2
i in Lemma 4.2, we get

n

 1

n

n∑
i=1

β2
i −

(
n∏

i=1

β2
i

) 1
n

 ≤ n

n∑
i=2

β2
i −

(
n∑

i=1

|βi|

)2

.

Using Theorem 3.1, we have

n

(
1

n
(2FT (G) + n2 − n− 2m)−

[
det(T (G))2

] 1
n

)
≤ n(2FT (G) + n2 − n− 2m)− (ET (G))

2

=⇒ (ET (G))2 − n
[
det(T (G))2

] 1
n ≤ (n− 1)(2FT (G) + n2 − n− 2m)

=⇒ ET (G) ≤
√
(n− 1)(2FT (G) + n2 − n− 2m) + n [det(T (G))2]

1
n .

2

Theorem 4.10 Let G be a simple connected graph of order n. Then,

ET (G) ≤ tr(T (G)4)tr(T (G)−2).

.

Proof: Taking r = 1, bi = |βi| and ai = |βi|4 in Lemma 4.3, we get

n∑
i=1

|βi|2

|βi|4
≥

(
n∑

i=1

|βi|

)2

(
n∑

i=1

|βi|4
)

=⇒
n∑

i=1

1

β2
i

≥ ET (G)2

n∑
i=1

β4
i

.

Simplifying the above expression gives the required result. 2
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Theorem 4.11 Let G be a graph of order n ≥ 2, size m and |βn| be the absolute value of the eigenvalue
βn. Then,

ET (G) ≤ |βn|+
√
(n− 1)(2FT (G) + n2 − n− 2m− β2

n).

Proof: Taking ai = β2
i for each i = 1, 2, 3, · · · , n− 1 in Lemma 4.2, we get

(n− 1)

 1

n− 1

n−1∑
i=1

β2
i −

(
n−1∏
i=1

β2
i

) 1

n− 1

 ≤ (n− 1)

n−1∑
i=1

β2
i −

(
n−1∑
i=1

√
β2
i

)2

≤ (n− 2)(n− 1)

 1

n− 1

n−1∑
i=1

β2
i −

(
n−1∏
i=1

β2
i

) 1

n− 1

 . (4.3)

Suppose

S = (n− 1)

 1

n− 1

n−1∑
i=1

β2
i −

(
n−1∏
i=1

β2
i

) 1

n− 1

 .

Then, Equation 4.3 becomes

S ≤ (n− 1)(2FT (G) + n2 − n− 2m− β2
n)− (ET (G)− |βn|)2 ≤ (n− 2)S.

From this equation, it is clear that

(ET (G)− |βn|)2 ≤ (n− 1)(2FT (G) + n2 − n− 2m− β2
n)− S

and (ET (G)− |βn|)2 ≥ (n− 1)(2FT (G) + n2 − n− 2m− β2
n)− (n− 2)S.

(4.4)

But we have

S = (n− 1)

 1

n− 1

n−1∑
i=1

β2
i −

(
n−1∏
i=1

β2
i

) 1

n− 1



=

n−1∑
i=1

β2
i − (n− 1)

(
n−1∏
i=1

β2
i

) 1

n− 1

= (2FT (G) + n2 − n− 2m− β2
n)− (n− 1)

(
P
|βn|

) 2

n− 1

S = (2FT (G) + n2 − n− 2m− β2
n)− (n− 1)

(
P
|βn|

) 2

n− 1
(4.5)

where P is the absolute value of the determinant of the temperature Sombor matrix T (G).
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Also, we know that A.M. ≥ G.M. Therefore,

1

n− 1

n−1∑
i=1

β2
i ≥

(
n−1∏
i=1

β2
i

) 1

n− 1

=⇒ (2FT (G) + n2 − n− 2m− β2
n)

n− 1
≥
(

P
|βn|

) 2

n− 1

=⇒
(
2FT (G) + n2 − n− 2m− β2

n

n− 1

)n−1

≥
(

P
|βn|

)2

. (4.6)

Bearing in mind the upper bound, using Equations 4.5 and 4.6 in Equation 4.4, we get

(ET (G)− |βn|)2 ≤ (n− 1)(2FT (G) + n2 − n− 2m− β2
n).

On further simplification, we get the required result. 2

Theorem 4.12 Let G be any non-trivial graph of order n and size m. Then,

ET (G) ≥

√
tr(T (G)2)3

tr(T (G)4)
.

Proof: Taking ai = |βi|
2
3 , bi = |βi|

4
3 , p =

3

2
and q = 3 in Lemma 4.4, we get

n∑
i=1

|βi|2 =

n∑
i=1

|βi|
2
3 |βi|

4
3 ≤

(
n∑

i=1

|βi|

)2

3
(

n∑
i=1

|βi|4
)1

3

=⇒ ET (G) ≥



n∑
i=1

|βi|2

(
n∑

i=1

|βi|4
)1

3



3

2

=

√
tr(T (G)2)3

tr(T (G)4)
.

2

Theorem 4.13 Let G be a graph of order n ≥ 2 and size m. Then,√
2FT (G) + n(n− 1)[Φ

2
n + 1]− 2m

n
≤ ET (G) ≤

√
2(n− 1)FT (G) + n[Φ

2
n + (n− 1)2]− 2m(n− 1)

n
.

where Φ is the absolute value of det(T (G)).

Proof: Taking ai = β2
i in Lemma 4.5, we get

n∑
i=1

β2
i + n(n− 1)

(
n∏

i=1

β2
i

) 1

n
≤ n

(
n∑

i=1

√
β2
i

)2

≤ (n− 1)

n∑
i=1

β2
i + n

(
n∏

i=1

β2
i

) 1

n
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Using Theorem 3.1 and the properties of eigenvalues, we obtain

2FT (G) + n(n− 1)− 2m+ n(n− 1)[Φ2]
1
n ≤ nET (G)2 ≤ (n− 1) (2FT (G) + n(n− 1)− 2m) + n[Φ2]

1
n

=⇒ 2FT (G) + n(n− 1)[Φ
2
n + 1]− 2m

n
≤ ET (G)2 ≤ 2(n− 1)FT (G) + n[Φ

2
n + (n− 1)2]− 2m(n− 1)

n
.

2

5. Chemical applicability of ET (G)

In this section, we have discussed the chemical applicability of temperature Sombor energy by perform-
ing a correlation analysis between ET (G) and the π-electron energy of molecules having hetero atoms,
alkanes and cubic compounds.

5.1. Statistical computation

Polynomial regression analysis involves analysing the relationship between the independent variable
X and the dependent variable Y by modelling it as an nth degree polynomial in X, thus fitting a
non-linear relationship between the value of X and the corresponding condition Y . Even though this
type of regression fits a non-linear model to the data, it is linear as a statistical estimation problem, as
the regression function E(Y |X) is linear in the unknown parameters that are estimated from the data.
Therefore, polynomial regression is considered to be a special case of multiple linear regression.
The main aim of regression analysis is to model the expected value of a dependent variable Y in terms
of the value of an independent variable X. The model

Y (Property) = a+ bX

is used in simple linear regression where the conditional expectation of Y rises by b units for every unit
increase in the value of X. Further, we employ the polynomial regression model in situations where linear
relationships may not hold true and represent the expected value of Y as a nth degree polynomial in this
model in the form

Y (Property) = a0 + a1X + a2X
2 + a3X

3 + · · ·+ anX
n.

Here, we use polynomial regression model where we model the expected value of Y as a sixth degree
polynomial of the form

Y (Property) = a0 + a1X + a2X
2 + a3X

3 + a4X
4 + a5X

5 + a6X
6.

where X stands for computed temperature Sombor energy ET (G) and Y stands for the π-electron energy
property of that compound.
In QSPR studies, the correlation coefficient (r) is a real number ranges from −1 to +1 that shows the
strength and direction of a link between two variables X and Y . It is important to note that the absolute
value of correlation coefficient above 0.7 is considered strong, while the absolute value of correlation
coefficient above 0.5 is moderate. Similarly, the F -value helps to determine whether the relationship
between the independent and dependent variables is statistically significant. In any test, value of F is
greater than or equal to 2.5 indicates that all estimated values are significant.

5.2. Correlation analysis of π-electron energy with ET (G)

The main focus of the Hückel molecular orbital (HOM) theory is on conjugated, all-carbon com-
pounds. The range of those compounds can be discussed by comparing the energy values for hetero
atoms. This is achieved by modifying the resonance integral (β) and Coulomb (α) values for hetero
atoms as seen in [21,2,23,9,22]. Here, we have performed the regression analysis by comparing ET (G)
with the total π-electron energy values of molecules containing hetero atoms, cubic compounds and alka-
nes which are found in [34,40,6,22] and have found the corresponding values of r, r2 and F value as given
below.
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Compound Molecules containing hetero compounds

Y π-electron energy

Polynomial −5.449× 10−7X6 + 7.245× 10−5X5 − 0.003859X4 + 0.1052X3

−1.542X2 + 12.07X − 32.1

r2 0.9649

r 0.9822

Number of compounds 28

F 102.7052

Compound Cubic compounds

Y π-electron energy

Polynomial −0.004607X6 + 0.7035X5 − 44.41X4 + 1485X3

−2.776× 104X2 + 2.753× 105X − 1.132× 106

r2 0.8250
r 0.9083

Number of compounds 21

F 14.0732

5.3. Regression analysis of graph energy with temperature Sombor energy of trees

In this section, we perform a regression analysis relating temperature Sombor energy with the graph
energy of all trees with fixed orders n = 8, 9, · · · , 18. Using the MATLAB Software, we compute the
graph energy and temperature Sombor energy and present the 6th degree polynomial regression models
between these two parameters in Table 4 and their graphical representation in Fig. 4 and 5.

6. Temperature Sombor Entropy

The concept of an edge-weighted graph, characterized by entropy, is first introduced by Chen et al. in
2014 [46]. An edge-weighted graph is expressed by the equation G = (V (G), E(G),Φ(vw)), where Φ(vw)

Compound Alkanes

Y π-electron energy

Polynomial −5.202× 10−5X6 + 0.003988X5 − 0.1268X4 + 2.148119X3

−20.52X2 + 105.2X − 222.2

r2 0.6246

r 0.7903

Number of compounds 68

F 16.9161
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Table 1: Molecules containing hetero atoms with π-electron energy and the temperature Sombor energy

Sl. No. Molecule π-electron energy ET (G)

1 H1 2.23 6.92

2 H2 5.66 7.18

3 H3 5.76 7.18

4 H4 6.96 12.65

5 H5 6.82 7.18

6 H6 5.23 8.80

7 H7 6.69 10.83

8 H8 9.06 10.83

9 H9 9.10 10.83

10 H10 9.07 10.83

11 H11 9.65 10.83

12 H12 8.19 13.80

13 H13 12.21 16.75

14 H14 12.22 16.69

15 H15 12.21 16.19

16 H16 11 16.08

17 H17 14.23 21.50

18 H18 14.23 21.50

19 H19 16.15 24.10

20 H20 16.12 24.10

21 H21 13.46 21.50

22 H22 13.59 21.50

23 H23 20.10 31.96

24 H24 21.02 31.96

25 H25 20.56 31.96

26 H26 21.62 31.96

27 H27 24.23 36.77

28 H28 19.39 29.54
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Table 2: Cubic compounds of order 10 with π-electron energy and the temperature Sombor energy

Sl. No. Molecule π-electron energy ET (G)

1 G1 15.1231 22.653

2 G2 14.8596 23.046

3 G3 14.8212 22.261

4 G4 13.5143 21.038

5 G5 14.2925 21.988

6 G6 14.9443 22.395

7 G7 15.0777 23.367

8 G8 15.1231 24.653

9 G9 15.3164 23.847

10 G10 14.4721 21.183

11 G11 14.702 21.948

12 G12 16 24.061

13 G13 14.378 22.305

14 G14 15.0895 23.055

15 G15 14.7943 22.642

16 G16 14 22.849

17 G17 16 26.061

18 G18 13.5569 21.523

19 G19 15.5791 23.4

20 G20 14 21.67

21 G21 12 20.819
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Table 3: Alkanes with π-electron energy and the temperature Sombor energy

Sl. No. Alkanes π-electron energy ET (G)

1 Butane 2.828 7.1817

2 2-methylpropane 2.828 12.646

3 Pentane 4.472 8.6636

4 2-methylbutane 5.226 10.466

5 2, 2 dimethylpropane 4 19.31

6 Hexane 6.988 10.671

7 2-methylpentane 6.064 11.512

8 3-methyalpentane 6.9 11.849

9 2, 2-methylbutane 5.818 14.317

10 2, 3-dimethylbutane 6.004 12.617

11 Heptanes 8.054 12.975

12 2-methylhexane 7.728 13.263

13 3-methylhexane 7.88 13.588

14 3-ethylpentane 6.9 13.859

15 2, 2-dimethylpentane 6.72 14.517

16 2, 3-dimethylpentane 7.664 14.426

17 2, 4-dimethylpentane 6.156 14.163

18 3, 3-dimethylpentane 6.5969 15.043

19 Octane 9.516 15.74

20 2-methylheptane 8.764 15.618

21 3-methylheptane 9.408 15.654

22 4-methylheptane 8.828 16.151

23 3-ethylhexane 7.88 16.016

24 2, 2-dimethylhexane 8.312 16.026

25 2, 3-dimethylhexane 8.646 16.013

26 2, 4-dimethylhexane 8.564 16.109

27 2, 5-dimethylhexane 8.472 15.63

28 3, 3-dimethylhexane 8.523 16.527

29 3, 4-dimethylhexane 9.332 16.266
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Sl. No. Alkanes π-electron energy ET (G)

30 3-ethyl-2-methylpentane 7.664 16.543

31 3-ethyl-3-methylpentane 7.596 16.814

32 2, 2, 3-trimethylpentane 7.3 17.168

33 2, 2, 4-trimethylpentane 7.384 16.909

34 2, 3, 3-trimethylpentane 8.054 17.286

35 2, 3, 4-trimethylpentane 8.424 17.056

36 2, 2, 3, 3-tetramethylbutane 7.212 17.784

37 Nonane 10.628 18.089

38 2-methyloctane 10.252 18.427

39 3-methyloctane 10.472 18.326

40 4-methyloctane 10.384 18.397

41 3-ethylheptane 10.564 18.178

42 4-ethylheptane 10.492 18.35

43 2, 2-dimethylheptane 9.336 18.302

44 2, 3-dimethylheptane 10.176 18.182

45 2, 4-dimethylheptane 9.508 18.811

46 2, 5-dimethylheptane 10.152 18.087

47 2, 6-dimethylheptane 10.096 18.248

48 3, 3-dimethylheptane 9.464 18.41

49 3, 4-dimethylheptane 10.312 18.682

50 3, 5-dimethylheptane 10.29 18.204

51 4, 4-dimethylheptane 9.43 19.027

52 3-ethyl-2-methylhexane 10.198 18.702

53 4-ethyl-2-methylhexane 10.176 18.508

54 3-ethyl-3-methylhexane 10.262 18.841

55 2, 2, 4-trimethylhexane 9.13 18.779

56 2, 2, 5-trimethylhexane 9.06 18.212

57 2, 3, 3-trimethylhexane 9.3 18.776

58 2, 3, 4-trimethylhexane 10.096 18.94

59 2, 3, 5-trimethylhexane 9.336 18.58
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Sl. No. Alkanes π-electron energy ET (G)

60 3, 3, 4-trimethylhexane 10.036 19.058

61 3, 3-diethylpentane 10.472 18.806

62 2, 2-dimethyl-3-ethylpentane 9.3 19.224

63 2, 3-dimethyl-3-ethylpentane 10.062 19.341

64 2, 4-dimethyl-3-ethylpentane 8.884 19.249

65 2, 2, 3, 3-tetramethylpentane 8.98 19.761

66 2, 2, 3, 4-tetramethylpentane 9.02 19.72

67 2, 2, 4, 4-tetramethylpentane 7.936 19.451

68 2, 3, 3, 4-tetramethylpentane 9.152 19.797

Figure 1: Correlation graph for molecules containing hetero atoms

indicates the weight of the edge (vw). The entropy of an edge-weighted graph is defined as

ENTTI(G) = −
∑

vw∈E(G)

Φ(vw)∑
vw∈E(G)

Φ(vw)
log

 Φ(vw)∑
vw∈E(G)

Φ(vw)

 .

On replacing
∑

vw∈E(G)

Φ(vw) with TI(G), we get the required edge-weighted entropy of G, w. r. t. the

topological index TI(G) as

ENTTI(G) =log (TI(G))− 1

TI(G)

∑
vw∈E(G)

Φ(vw)log (Φ(vw)) .

In this article, we introduce a new edge-weighted entropy of G, called the temperature Sombor entropy
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Figure 2: Correlation graph for cubic compounds

Figure 3: Correlation graph for alkanes

(ENTT SO(G)), defined as

ENTT SO(G) = log (T SO(G))− 1

T SO(G)

∑
vw∈E(G)

[√
T (v)2 + T (w)2 · log

(√
T (v)2 + T (w)2

)]
.

where Φ(vw) =
√

T (v)2 + T (w)2 and E(G) is the edge set of graph G.

6.1. Results and Discussion

It is commonly known that the unit cell is the primary building block of all chemical substances. A
molecular structure is composed of several unit cells arranged in a specific way. The compound that
we have taken into consideration for our discussion is silicon carbide (SiC4 − I[a, b]), commonly known
as Carborundum, is a compound made of silicon and carbon atom. It is an emerging semiconductor
material for various applications in semiconductor devices. While a is the total number of rows in this
arrangement b denotes the number of unit cells in each row. The two-dimensional molecular structure of
SiC4 − I[a, b] are illustrated in Figure 6.
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Trees of order 8 Trees of order 9

Trees of order 10 Trees of order 11

Trees of order 12 Trees of order 13

Figure 4: Graphical representation of energy vs. temperature Sombor energy of trees of order between 8
and 13
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Trees of order 14 Trees of order 15

Trees of order 16 Trees of order 17

Trees of order 18

Figure 5: Graphical representation of energy vs. temperature Sombor energy of trees of order between
14 and 18
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Table 4: The 6th degree polynomial regression models for temperature Sombor energy of graph for all
trees of order n = 8, 9, · · · , 18

Order Number of trees Polynomial r2 r

8 23
−0.9918X6 − 2.555X5 + 3.049X4 + 4.598X3

−2.178X2 − 2.684X + 17.15
0.9936 0.9968

9 47
−0.2604X6 + 13.4X5 − 285X4 + 3207X3

−2.01× 104X2 + 6.646× 104X − 9.043× 104
0.9885 0.9942

10 106
−0.05009X6 + 2.853X5 − 67.02X4 + 829.7X3

−5700X2 + 2.055× 104X − 3.027× 104
0.9788 0.9893

11 235
−0.03714X6 − 0.2882X5 − 0.333X4 + 0.6685X3

+0.6717X2 − 0.947X + 23.75
0.9713 0.9852

12 551
−0.01017X6 − 0.1061X5 − 0.1778X4 + 0.2709X3

+0.4962X2 − 0.6394X + 26.12
0.9601 0.9798

13 1301
−0.00204X6 − 0.03833X5 − 0.1101X4 + 0.01441X3

+0.2472X2 − 0.3794X + 28.59
0.9501 0.9747

14 3159
0.001125X6 − 0.001162X5 − 0.01826X4 − 0.01234X3

+0.04287X2 − 0.3696X + 31.05
0.9375 0.9682

15 7741
0.000426X6 − 0.03921X5 + 1.499X4 − 30.44X3

+346.6X2 − 2098X + 5315
0.9226 0.9605

16 19320
0.0003736X6 − 0.03581X5 + 1.424X4 − 30.08X3

+356X2 − 2239X + 5888
0.90 0.9487

17 48629
0.00128X60.01001X5 + 0.01694X4 − 0.03194X3

−0.07153X2 − 0.3013X + 38.36
0.8684 0.9319

18 123867
0.0002101X6 − 0.02232X5 + 0.9828X4 − 22.96X3

+300X2 − 2081X + 6026
0.8256 0.9086

In Figure 6, carbon atoms are represented by the color yellow, while silicon atoms are represented by
the color blue.

Based on their degree, the vertices in SiC4− I[a, b] can be categorized into three groups. Table 5 uses
the letters V1, V2 and V3 to represent first, second and third degree vertices respectively.

In the same way, the edges in SiC4 − I[a, b] can be separated into five different edge sections, which
are shown in Table 6.

Theorem 6.1 For silicon carbide compound G = SiC4 − I[a, b], the temperature Sombor index (T SO(G))
and the temperature Sombor entropy (ENTT SO(G)) are given below.

1.

T SO(G) = 2

(√
500(ab)2 − 120(ab) + 8

(10ab− 2)(10ab− 1)

)
+ (3a− b)

(√
1000(ab)2 − 240(ab) + 18

(10ab− 3)(10ab− 1)

)

+ (a+ 2b− 2)

(
2
√
2

(10ab− 2)

)
+ (15ab− 10a− 8b+ 5)

(
3
√
2

(10ab− 3)

)

+ (2a+ 4b− 2)

(√
1300(ab)2 − 600(ab) + 72

(10ab− 3)(10ab− 2)

)
.
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(a) Unit structure of SiC4 − I[a, b] (b) Structure of SiC4 − I[3, 1]

(c) Structure of SiC4 − I[a, b]

Figure 6: Two-dimensional molecular structure of SiC4 − I[a, b]

Table 5: Vertex partition of SiC4 − I[a, b]

d(v) Cardinality

V1 3a

V2 2a+ 4b− 2

V3 10ab− 5a− 4b+ 2

|V (G)| 10ab

2.

ENTT SO(G) = log (T SO(G))−
1

T SO(G)

[
2

(√
500(ab)2 − 120(ab) + 8

(10ab− 2)(10ab− 1)

)
· log

(√
500(ab)2 − 120(ab) + 8

(10ab− 2)(10ab− 1)

)

+ (3a− b)

(√
1000(ab)2 − 240(ab) + 18

(10ab− 3)(10ab− 1)

)
· log

(√
1000(ab)2 − 240(ab) + 18

(10ab− 3)(10ab− 1)

)

+ (a+ 2b− 2)

(
2
√
2

(10ab− 2)

)
· log

(
2
√
2

(10ab− 2)

)

+ (15ab− 10a− 8b+ 5)

(
3
√
2

(10ab− 3)

)
· log

(
3
√
2

(10ab− 3)

)

+ (2a+ 4b− 2)

(√
1300(ab)2 − 600(ab) + 72

(10ab− 3)(10ab− 2)

)
· log

(√
1300(ab)2 − 600(ab) + 72

(10ab− 3)(10ab− 2)

)]
.

Proof:
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Table 6: Edge partition of SiC4 − I[a, b]

(d(u),d(v)) Cardinality

(2, 1) 2

(3, 1) 3a− 2

(2, 2) a+ 2b− 2

(3, 2) 2a+ 4b− 2

(3, 3) 15ab− 10a− 8b+ 5

|E(G)| 12ab− a

1. From the definition of temperature Sombor index and using Table 5 and Table 6, we have

T SO(G) = 2 ·

√
4

(10ab− 2)2
+

1

10ab− 1)2
+ (3a− b) ·

√
9

(10ab− 3)2
+

1

(10ab− 1)2

+ (a+ 2b− 2) ·

√
4

(10ab− 2)2
+

4

(10ab− 2)2
+ (15ab− 10a− 8b+ 5) ·

√
9

(10ab− 3)2
+

9

(10ab− 3)2

+ (2a+ 4b− 2) ·

√
9

(10ab− 3)2
+

4

(10ab− 4)2

On further simplification, we get the required result.

2. From the definition and Table 6, we have

ENTT SO(G) = log (T SO(G))

−
1

T SO(G)

∑
vw∈E(G)

[
2 ·

√
4

(10ab− 2)2
+

1

(10ab− 1)2
· log

(√
4

(10ab− 2)2
+

1

(10ab− 1)2

)

+ (3a− b) ·

√
9

(10ab− 3)2
+

1

(10ab− 1)2
· log

(√
9

(10ab− 3)2
+

1

(10ab− 1)2

)

+ (a+ 2b− 2) ·

√
4

(10ab− 2)2
+

4

(10ab− 2)2
· log

(√
4

(10ab− 2)2
+

4

(10ab− 2)2

)

+ (15ab− 10a− 8b+ 5) ·

√
9

(10ab− 3)2
+

9

(10ab− 3)2
· log

(√
9

(10ab− 3)2
+

9

(10ab− 3)2

)

+ (2a+ 4b− 2) ·

√
9

(10ab− 3)2
+

4

(10ab− 4)2
· log

(√
9

(10ab− 3)2
+

4

(10ab− 4)2

)]

On further simplification, we get the required result. 2

6.2. Regression analysis of T SO(G) with ENTT SO(G)

In this section, we have established a regression analysis relating T SO(G) with ENTT SO(G) of
SiC4−I[a, b] and have presented the regression model of degree 6 between these two parameters in Table
8.

7. Conclusion

In this study, we have introduced new variants called the temperature Sombor matrix T (G) and
the temperature Sombor energy ET (G), which are based on the Sombor index and the temperature
Sombor index of a graph G. Here, we have discussed some mathematical properties of T (G) and some



26 Sharathkumar H. T., Narahari N., Shrikanth C. K., Vignesh Ravi

Table 7: Temperature Sombor index (T SO(G)) and its entropy (ENTT SO(G)) of SiC4 − I[a, b]

(a, b) T SO(G) ENTT SO(G) (a, b) T SO(G) ENTT SO(G)

(1, 1) 4.54027 2.26965 (21, 21) 6.19457 8.77685

(2, 2) 5.04694 3.87846 (22, 22) 6.20203 8.87081

(3, 3) 5.38422 4.76213 (23, 23) 6.20886 8.96055

(4, 4) 5.58772 5.37359 (24, 24) 6.21514 9.04645

(5, 5) 5.72204 5.84143 (25, 25) 6.22093 9.1288

(6, 6) 5.81701 6.22041 (26, 26) 6.22628 9.2079

(7, 7) 5.8876 6.53893 (27, 27) 6.23125 9.28398

(8, 8) 5.94211 6.81364 (28, 28) 6.23587 9.35728

(9, 9) 5.98545 7.05515 (29, 29) 6.24019 9.42799

(10, 10) 6.02073 7.27062 (30, 30) 6.24422 9.49628

(11, 11) 6.05 7.46513 (31, 31) 6.24799 9.56232

(12, 12) 6.07468 7.64239 (32, 32) 6.25154 9.62624

(13, 13) 6.09576 7.80521 (33, 33) 6.25488 9.68919

(14, 14) 6.11398 7.95577 (34, 34) 6.25802 9.74827

(15, 15) 6.12989 8.09579 (35, 35) 6.26099 9.80661

(16, 16) 6.14389 8.22664 (36, 36) 6.26379 9.86329

(17, 17) 6.15632 8.34946 (37, 37) 6.26645 9.9184

(18, 18) 6.16741 8.46517 (38, 38) 6.26897 9.97204

(19, 19) 6.17738 8.57455 (39, 39) 6.27136 10.0243

(20, 20) 6.18639 8.67825 (40, 40) 6.27364 10.0752

bounds on ET (G) as well. Followed by this, we have also discussed chemical applicability of the invariant
ET (G) by comparing it with the π-electron energy of some molecules containing hetero compounds, cubic
compounds and alkanes. From this study, it has been found that there is a good correlation between
ET (G) and the π-electron energy of above mentioned compounds, which is found to be r = 0.9822, 0.9083
and 0.7903 respectively. Additionally, we conducted a regression analysis on trees of a fixed order, ranging
from 8 to 18, to explore the relationship between graph energy and temperature Sombor energy. The
results revealed that the correlation coefficient values tend to decrease with an increase in the order of the
trees, with a minimum observed value of r = 0.9086. Furthermore, we performed a regression analysis of
Silicon carbide (SiC4−I[a, b]), a semiconductor, assessing its temperature Sombor index and temperature
Sombor entropy values. From this analysis, we found that there is a strong correlation between T SO(G)
and the ENTT SO(G) with r = 0.9999. The results of the correlation analysis are highly significant, as
they satisfy the criteria that the absolute value of the correlation coefficient r is at least 0.7 and F -value
is at least 2.5. These observations are purely experimental and further theoretical investigations might
throw more light on this behavior.
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Table 8: Regression analysis table for SiC4 − I[a, b] semiconductor compound

Compound SiC4 − I[a, b]

Y Temperature Sombor entropy

X Temperature Sombor index

Polynomial 12.25X6 − 400.9X5 + 5456X4 − 3.952× 104X3

+1.607× 105X2 − 3.479× 105X + 3.13× 105

r2 0.9999

r 0.9999

F 23737.7018

Figure 7: Correlation graph for SiC4 − I[a, b]
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