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A Note on Sumsets and Difference Sets in Groups of Order 12

Neetu, Anupriya Shetty and B. R. Shankar∗

abstract: A subset A of a group G is referred to as a balanced set when |A+A| = |A−A|, MSTD (more sums
than differences) when |A+A| > |A−A|, and MDTS (more differences than sums) when |A−A| > |A+A|. In
this paper, we present a comparative study of MSTD and MDTS sets in groups of order 12 up to isomorphism.
Additionally, we have completely categorized such sets in these groups and have provided a set A with the
current highest value of ln(|A+A|)/ln(|A−A|).
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1. Introduction

Given a subset A of a group G, we define the sumset and difference set of A as follows:

A+A = {ai + aj : ai, aj ∈ A},

A−A = {ai − aj : ai, aj ∈ A}.

The subgroup generated by the set A is denoted by ⟨A⟩. A set A ⊆ G is said to be abelian if ⟨A⟩ is an
abelian subgroup of G, and A ⊆ G is said to be nonabelian if it is not an abelian set. The cardinality of
the set A is denoted by |A|.
If we consider G to be a group of integers, that is Z then for any two different elements a and b addition
is commutative but subtraction is not. So for any two different elements, we always get one new sum
a + b but two differences a − b and b − a. This usually makes the difference set A − A larger than the
sumset A+A, so we often have |A+A| ≤ |A−A|. However, for a number a ∈ A, the pair (a, a) gives a
new sum a+ a = 2a, but the difference is always zero. So, diagonal pairs contribute more to the sum set
than to the difference set. Because of this, it is possible to find sets A for which the number of sums is
greater than the number of differences. We define these types of sets as follows.

Definition 1.1 If |A + A| > |A − A|, we say A is a More Sums Than Differences (MSTD) set or a
sum-dominated set , while if |A+ A| = |A− A| we say A is balanced, and if |A+ A| < |A− A| then A
is a More Differences Than Sums(MDTS) set or a difference-dominated set.
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Though MSTD sets are rare among all finite subsets of integers, they do exist. Conway in the 1960s
found the first example of MSTD set {0, 2, 3, 4, 7, 11, 12, 14} of cardinality 8. Other examples of this type
can be found [9] and [6]. Almost all previous research on MSTD sets focused exclusively on subsets of
the integers, see [3,4,11]. However, the phenomenon in finite groups has received some attention, notably
in [1,5,7,8,13,16], the majority of them are on finite abelian groups. Miller and Vissuet [10] were the first
to examine the problem for arbitrary finite groups G, also with the size of the group going to infinity, and
proved that as the size of the finite group grows, almost all subsets are balanced. Recently, Ascoli et al.
[2] and Neetu and Shankar [12] have studied the comparison of MSTD and MDTS sets in non-abelian
groups.

Since the conventional notation for the operation of a finite group is multiplication, we match the
notation from prior work (specifically from [10]) and define the sumset and difference set for a subset
A ⊆ G as

A+A = {a1a2 : a1, a2 ∈ A}

and
A−A = {a1a−1

2 : a1, a2 ∈ A}.

As the smallest order of an abelian group containing an MSTD set is 12, in this paper, we have focused
on sumsets and difference sets in groups of order 12. Up to isomorphism, there are 5 groups of order 12,
two of them are abelian, and the remaining are nonabelian. The abelian groups are Z2 × Z2 × Z3 and
Z12. The nonabelian groups are the dihedral group D6, the alternating group A4, and the dicyclic group
Dic3.

The paper is organized as follows: In Section 2, we present some general results related to finite groups
and in particular for Z2 × Z2 × Z3 and Z12. In Section 3, we prove that Dic3 has more MDTS sets than
MSTD sets, and we conjecture that Dicn has more MDTS sets than MSTD sets. Conversely, in Sections
4 and 5, we prove that A4 and D6 have a higher number of MSTD sets as compared to MDTS sets,
respectively. In general, we observe that An and D2n have more MSTD sets than MDTS sets.

2. Some Important Results and Abelian Groups of Order 12

Proposition 2.1 Let G be a group, and let A be a finite subset of G such that for each α ∈ A, α−1 ∈ A.
Then A is balanced.

Proof: Since for each α ∈ A, α−1 ∈ A, and therefore A+A = A−A. Hence A is balanced. 2

Corollary 2.1 Let G be a group, and A be a finite subset of G consisting of elements of order 1 or 2.
Then A is balanced.

Proof: If α is of order 1 or 2 then α−1 = α. Then it follows from the above proposition that A is
balanced. 2

Theorem 2.1 Let G be a finite group, and let A be a finite subset of G such that |A| > |G|/2. Then
A+A = A−A = G.

Proof: Let G be a finite group with |G| = n. Let A ⊂ G with |A| > n
2 . Suppose A+A ̸= G. Then there

exists x ∈ G such that x /∈ A+A. Define a map f : G → G by f(g) = xg−1. Then f is bijective. Therefore,
|f(A)| = |A| > n

2 . If a
′ ∈ A∩f(A), then a′ = f(a) = xa−1, for some a ∈ A. This implies x = a′a ∈ A+A, a

contradiction. Therefore, A and f(A) are disjoint. So that |A∪f(A)| = |A|+ |f(A)| > n, a contradiction.
Hence A+A = G. Similarly, we can show that A−A = G. 2

This theorem implies that in a group of order 12, any set whose cardinality is at least 7 is a balanced set.
Therefore, we look at sets with cardinality at most 6.

It was shown by Penman and Wells [14] that the group Z2 × Z2 × Z3 does not possess any MSTD
set. Since this is an abelian group, it was observed that in finite abelian groups MDTS sets are more as
compared to MSTD sets. Consider the following example.
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Example 2.1 Consider a set A ⊆ Z2 × Z2 × Z3 of 4 elements, say:

A = {(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)}.

Here |A+A| = 8 and |A−A| = 11, so this type of sets are MDTS.

Thus, we have more MDTS sets than MSTD sets in Z2 × Z2 × Z3. Now, consider the cyclic group Z12.
It is the smallest cyclic group in which an MSTD set exists, and there are exactly 24 MSTD sets in Z12

as shown by Rafal [15]. Here is an example of MSTD set in Z12.

Example 2.2 Let

A = {1, 2, 3, 5, 6, 10},

then

A+A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

and

A−A = {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11}.

Here 12 = |A+A| > |A−A| = 11.

On the other hand, MDTS sets are easier to find. For instance, take

A = {0, 2, 4, 6, 8, 10}.

Here, |A + A| = 6 and |A − A| = 6, so A is an balanced set. Now, if we replace just one element of A,
say 0, with an element outside A, such as 1, we get a new set

A′ = {1, 2, 4, 6, 8, 10}

for which |A′ + A′| = 11 and |A′ − A′| = 12. In general, we can generate many MDTS sets by replacing
a single element of A with another element from Z12 \A. Specifically, for

A′ = (A \ {a}) ∪ {b}, where a ∈ A and b ∈ Z12 \A,

each such one element modification produces a new set A′. Since A has 6 elements and Z12 \ A =
{1, 3, 5, 7, 9, 11} also contains 6 elements, there are 6× 6 = 36 such sets and all are MDTS. Therefore, we
see that Z12 contains more MDTS sets than MSTD sets.

3. Dicyclic Group Dic3

The dicyclic group Dic3 is defined as

Dic3 = ⟨a, b : a6 = 1, b2 = a3, bab−1a = 1⟩.

The elements of this group are precisely 1, a, a2, a3, a4, a5, b, ab, a2b, a3b, a4b, a5b. Suppose

U = {1, a, a2, a3, a4, a5}

and

V = {b, ab, a2b, a3b, a4b, a5b},

then Dic3 = U ∪V . We now study subsets of Dic3 with various cardinalities. As singleton sets are always
balanced, we start with sets of cardinality 2.

Theorem 3.1 Let A12,2 denote the collection of subsets of Dic3 of size 2. Then A12,2 has strictly more
MSTD sets than MDTS sets.
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Proof: Let A be a subset of Dic3 with cardinality 2. There are only three possible cases to consider.
Case 1. If A = {ai, aj} ⊆ U , where i ̸= j then A+A = {a2i, ai+j , a2j} and A−A = {1, ai−j , aj−i}.

If all are distinct, then |A+ A| = |A− A| = 3. Suppose a2i = a2j this gives ai−j = aj−i. Thus, when A
contains only ai and aj , A is always balanced.

Case 2. If A = {ai, ajb} where 0 ≤ i, j ≤ 5, then A + A = {a2i, ai+jb, aj−ib, a3} and A − A =
{1, ai+j+3b, ai+jb}. If a2i = a3, then A + A = {a3, ai+jb, aj−ib} and A − A = {1, ai+j+3b, ai+jb} and
if ai+jb = aj−ib, then A + A = {1, ai+jb, a3} and A − A = {1, ai+j+3b, ai+jb}. So A is a balanced set.
When a2i ̸= a3 and ai+jb ̸= aj−ib , A will be an MSTD set. There are 24 of these types of sets. They are

{a, b}, {a, ab}, {a, a2b}, {a, a3b}, {a, a4b}, {a, a5b},

{a2, b}, {a2, ab}, {a2, a2b}, {a2, a3b}, {a2, a4b}, {a2, a5b},

{a4, b}, {a4, ab}, {a4, a2b}, {a4, a3b}, {a4, a4b}, {a4, a5b},

{a5, b}, {a5, ab}, {a5, a2b}, {a5, a3b}, {a5, a4b}, {a5, a5b}.

Case 3. If A = {aib, ajb} ⊆ V , then A+A = {a3, a3+i−j , a3+j−i} and A−A = {1, ai−j , aj−i}. This
shows that A is a balanced set.

Therefore, we have a total of 24 MSTD sets and 42 balanced sets in Dic3 of cardinality 2. 2

In fact, with the help of the above theorem, we can prove in general for any dicyclic group of order 4n.
The dicyclic group of order 4n(n ≥ 1) is defined as

Dicn = ⟨a, b : a2n = 1, an = b2, ab = ba−1⟩.

It has exactly 4n distinct elements, which can be written as

{ak | 0 ≤ k < 2n} ∪ {akb | 0 ≤ k < 2n}.

Theorem 3.2 Let n ≥ 2 be an integer, and let A4n,2 denote the family of all 2-element subsets of the
dicyclic group Dicn. Then, there are strictly more MSTD sets than MDTS sets in A4n,2.

Proof: Consider an arbitrary subset A ⊆ Dicn with |A| = 2. Since the elements of Dicn are either
powers of a or of the form akb for some integer k, we analyze three distinct cases:

Case 1: Both elements of A are powers of a, say A = {ai, aj} with 0 ≤ i, j < 2n. The inverse set is
A−1 = {a2n−i, a2n−j}. The sumset is

A+A = {a2i, ai+j , a2j},

and the difference set is
A−A = {1, a2n+i−j , a2n+j−i}.

Except for the special case when a2i = a2j , both A + A and A − A have size 3. The equality a2i = a2j

implies ai−j = aj−i, so these subsets are balanced.
Case 2: The set A contains one power of a and one element of the form ajb, i.e., A = {ai, ajb}. Here,

the inverse set is
A−1 = {a2n−i, an+jb}.

We find
A+A = {a2i, ai+jb, aj−ib, an}

and
A−A = {1, ai+j+nb, ai+jb}.

When a2i ̸= an and ai+jb ̸= aj−ib, the set A is MSTD. In the cases where either a2i = an or ai+jb = aj−ib,
the sumset and difference set sizes coincide, so A is balanced.

Case 3: Both elements are of the form akb, i.e., A = {aib, ajb} for some i, j. The inverse set is

A−1 = {an+ib, an+jb}.
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Then,
A+A = {an, an+i−j , an+j−i}

and
A−A = {1, ai−j , aj−i}.

In this scenario, A is always balanced.
Since only subsets in Case 2 can be MSTD (under mild conditions) and the others are balanced, it

follows that A4n,2 contains strictly more MSTD than MDTS subsets. 2

However, this pattern does not hold for subsets of cardinality 3, 4 and 5. In fact, we have the following
results.

Theorem 3.3 Let A12,3 denote the collection of subsets of Dic3 of size 3. Then A12,3 has strictly more
MDTS sets than MSTD sets.

Proof: Let A be a subset of Dic3 of cardinality 3. Consider the following cases.
Case 1. Let A = {ai, aj , ak} ⊆ U where i ̸= j ̸= k. There are

(
6
3

)
= 20 such sets. In this case,

A+A = {a2i, ai+j , ai+k, a2j , a2k, aj+k}

and
A−A = {1, ai−j , ai−k, aj−i, aj−k, ak−i, ak−j}

which implies that |A − A| ≥ |A + A|. Among these, 8 sets satisfy i + j + k ≡ 0 or 3 (mod 6), making
them balanced sets. The remaining 12 are MDTS. Suppose we take A = {1, a, a4} then |A+A| = 5 and
|A−A| = 6. So here |A−A| > |A+A|. Similarly, we can find other MDTS sets. Therefore, in total, we
have 12 MDTS sets and 8 balanced sets.

Case 2. Let A = {ai, aj , akb} for i ̸= j,. There are
(
6
2

)
× 6 = 90 such sets. Then,

A+A = {a2i, ai+j , ai+kb, a2j , aj+kb, ak−ib, ak−jb, a3}

and
A−A = {1, ai−j , a3+i+kb, aj−i, a3+j+kb, ak+ib, ak+jb}.

We further classify this case into subcases:
Subcase 2.1. If i = 0 or j = 0, then |A−A| ≥ |A+A|. There are 5C1 ×6 C1 = 30 such sets.
Subcase 2.2. If i = 3 or j = 3, then |A − A| ≥ |A + A|. Because in A + A, ai+k is equal to ak−i

whereas the cardinality of A − A is not affected. There are 24 sets of this type, different from Subcase
2.1.

Subcase 2.3. If j = 6−i, then aj+kb = ak−ib and ai+k = ak−jb in A+A which yields |A−A| ≥ |A+A|.
There are 12 sets of this type.

Subase 2.4. If i+ j = 3, then ai+j = a3 which implies |A−A| ≥ |A+A|. There are 12 sets of such
types.
Thus, most such subsets are MDTS. However, MSTD subsets can occur when j − i = 3. If A is of the
form {a, a4, α} where α ∈ V , then |A+ A| = 7 and |A− A| = 4. This implies |A+ A| > |A− A|. There
are 6 sets of this type, each containing a, a4 and α. Similarly, there are 6 sets containing a2, a5 and α.

Therefore, we have a total of 12 MSTD sets of this type.
Case 3. Let A = {ai, ajb, akb} for j ̸= k. Then we have

A+A = {a2i, ai+jb, ai+kb, aj−ib, a3, a3+j−k, ak−ib, a3+k−j}

and
A−A = {1, ai+jb, a3+i+kb, aj−k, a3+j+ib, ak−j , ak+i}.

Similar to Case 2, we can show that A is MSTD precisely when i ̸= 0, 3 and k = 3+ j. There are 12 sets
of this type.

{a, b, a3b}, {a, ab, a4b}, {a, a2b, a3b}, {a2, b, a3b}
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{a2, ab, a4b}, {a2, a2b, a3b}, {a4, b, a3b}, {a4, ab, a4b}

{a4, a2b, a3b}, {a5, b, a3b}, {a5, ab, a4b}, {a5, a2b, a3b}.

Case 4. Let A = {aib, ajb, akb} for i ̸= j ̸= k. Then we have

A+A = {a3, a3+i−j , a3+i−k, a3+j−i, a3+j−k, a3+k−i, a3+k−j}

and

A−A = {1, ai−j , ai−k, aj−i, aj−k, ak−i, ak−j}.

Here both A+A and A−A are subsets of U so their cardinalities do not exceed 6. Further, A+A is a
dilation of A−A by a3. Therefore, A is balanced. Therefore, we have 24 MSTD sets and 48 MDTS sets
in Dic3 of cardinality 4. 2

Conjecture 3.1 Let n ≥ 3 be an integer. Let A4n,3 denote the collection of subsets of Dicn of size 3.
Then A4n,3 has strictly more MDTS sets than MSTD sets.

Lemma 3.1 Let A12,4 denote the collection of subsets of Dic3 of size 4. There are 126 sets which are
MSTD in A12,4.

Proof: Let A be a subset of Dic3 of cardinality 4. There are
(
12
4

)
= 495 such sets. There are

five possible cases for A, namely, {ai, aj , ak, al}, {ai, aj , ak, alb}, {ai, aj , akb, alb}, {ai, ajb, akb, alb} and
{aib, ajb, akb, alb}, where 0 ≤ i, j, k, l ≤ 5. When A ⊆ U or A ⊆ V then we can proceed similar to Theo-
rem 3.3, Case 1, and Case 4. Thus, we do not get any MSTD sets in these two cases. Now we consider
the remaining three cases.

Case 1. Suppose A = {ai, aj , ak, alb} where i ̸= j ̸= k. There are 6C3 × 6C1 = 120 such sets. We
start with cases when i = 0 and j = 1 or i = 0 and j = 2 with k = 3 + j. We observed that sets of this
type i.e. {1, a, a4, α} and {1, a2, a5, α} where α ∈ V are MSTD. If we take i + j = 6, or i + k = 6, or
j+k = 6. There are 36 sets of these types and all are either balanced or MDTS. If i+ j+k = 0 (mod 6),
then A is either balanced or MDTS. There are 12 such sets. Now, from the remaining cases, we can find
12 MSTD sets. Suppose A = {a, a3, a4, α}, where α ∈ V , then |A+A| = 11 > 10 = |A−A|. There are 6
sets of this type, each containing a, a3, a4 and α. Similarly, there are 6 sets containing a2, a3, a5 and α.
Therefore, we have 24 MSTD sets in this case.

Case 2. Let A = {ai, aj , akb, alb}. There are 6C2 × 6C2 = 225 sets of this type.
Subcase 2.1. Suppose i = 0. There are 5C1× 6C2 = 75 such sets out of which 12 are MSTD sets and

all others are either balanced or MDTS. They are {1, a, b, a3b}, {1, a, ab, a4b}, {1, a, a2b, a5b}, {1, a2, b, a3b},
{1, a2, ab, a4b}, {1, a2, a2b, a5b}, {1, a4, b, a3b}, {1, a4, ab, a4b}, {1, a4, a2, a5b}, {1, a5, b, a3b}, {1, a5, ab, a4b},
{1, a5, a2b, a5b}.

Subcase 2.2. If i = 3 and l = 3 + k, then there are 12 MSTD sets of this type. They are
{a3, a, b, a3b}, {a3, a, ab, a4b}, {a3, a, a2b, a5b}, {a3, a2, b, a3b}, {a3, a2, ab, a4b}, {a3, a2, a2b, a5b},
{a3, a4, b, a3b}, {a3, a4, ab, a4b}, {a3, a4, a2b, a5b}, {a3, a5, b, a3b}, {a3, a5, ab, a4b}, {a3, a5, a2b, a5b}.

Subcase 2.3. If i+ j = 3 (mod 6), then A is either balanced or MDTS. There are 30 such sets.
Subcase 2.4. Now, we can find 30 MSTD sets from the remaining cases. There are 15 sets of the

form {a, a4, α, β}, where α, β ∈ V and |A+A| = 7 > 4 = |A−A|. Similarly, there are 15 sets of the form
{a2, a5, α, β} which are MSTD.
Therefore, in this case, we have 54 MSTD sets.

Case 3. Let A = {ai, ajb, akb, alb}. There are 6C1 ×6 C3 = 120 such sets. Suppose i = 1 and j = 0.
There are 6 MSTD sets of this type. They are {a, b, ab, a3b}, {a, b, ab, a4b}, {a, b, a2b, a3b}, {a, b, a2b, a5b},
{a, b, a3b, a4b}, {a, b, a3b, a5b}. Similarly, if we take i = 1 and j = 1, there are 4 MSTD sets: {a, ab, a2b, a4b}
, {a, ab, a2b, a5b}, {a, ab, a3b, a4b}, {a, ab, a4b, a5b}. Finally, if we consider i = 1 and j = 2, we get these 2
MSTD sets {a, a2b, a3b, a5b}, {a, a2b, a4b, a5b}. As a result, we obtain 12 MSTD sets when i = 1. We can
similarly find 36 MSTD sets when i = 2, 4, and 5. In total, there are 48 MSTD sets in this case.
Therefore, we obtained 24+54+48=126 MSTD sets of cardinality 4 from the above cases. 2
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We also found that there are 228 MDTS sets of cardinality 4. Hence, A12,4 contains more MDTS sets
than MSTD sets. Identifying these MDTS sets involves a case-by-case analysis similar to the approach
used in the above lemma for MSTD sets. However, since the number of MDTS sets is larger, the number
of cases increases significantly. To avoid unnecessary complications, we omit the detailed proof for the
MDTS sets here.

Lemma 3.2 Let A12,5 denote the collection of subsets of Dic3 of size 5. There are 120 sets which are
MSTD in A12,5.

Proof: Let A be a subset of Dic3 of cardinality 5. There are 6 possible cases to consider for A.

1. {ai, aj , ak, al, am},

2. {ai, aj , ak, al, amb},

3. {ai, aj , ak, alb, amb},

4. {ai, aj , akb, alb, amb},

5. {ai, ajb, akb, alb, amb},

6. {aib, ajb, akb, alb, amb},

where 0 ≤ i, j, k, l,m ≤ 5. In Cases 1 and 6, we get either MDTS or balanced sets. Now we consider the
cases where we find MSTD sets. They are following.

Case 1. Consider the sets of the type A = {ai, aj , ak, al, amb}. There are 6 MSTD sets of the form
{1, a, a3, a4, α}, and 6 MSTD sets of the form {1, a2, a3, a5, α}, where α ∈ V .

Case 2. Let A = {ai, aj , ak, alb, amb}. There are 48 sets of this form, and all are MSTD.
Case 3. Let A = {ai, aj , akb, alb, amb}. In this case we find 48 MSTD sets.
Case 4. Let A = {ai, ajb, akb, alb, amb}. In this case, we identify 12 MSTD sets.

Therefore, with cardinality 5, we have 12+48+48+12=120 MSTD sets. 2

Similarly, we found that A12,5 contains 264 MDTS sets, indicating that A12,5 has strictly more MDTS
sets than MSTD sets. However, for |A| = 6, we obtain the following lemma.

Lemma 3.3 Let A12,6 denote the collection of subsets of Dic3 of size 6. Then A12,6 has strictly more
MSTD sets than MDTS sets.

Proof: Let A be a subset of Dic3 with |A| = 6. There are seven possible cases to consider for A. Using a
similar approach as in Theorem 3.3 and Lemma 3.1, we can identify MSTD and MDTS sets in this case
as well. Below, we provide the number of MSTD and MDTS sets for each case based on this process.

1. Suppose A = U . In this case, we determine there are 12 MDTS sets and no MSTD set.

2. For the next case, let A = {ai, aj , ak, al, am, anb}. In this scenario, we find that |A+A| = |A−A|.

3. Next, consider A = {ai, aj , ak, al, amb, anb}. Here, we find 6 MSTD sets and 12 MDTS sets.

4. Now, let A = {ai, aj , ak, alb, amb, anb}. In this case, we find 48 MSTD sets and no MDTS sets.

5. For A = {ai, aj , akb, alb, amb, anb}, we find 6 MSTD sets and 12 MDTS sets.

6. Let A = {ai, ajb, akb, alb, amb, anb}. In this case, we identify 12 MDTS sets and no MSTD sets.

7. Finally, for A = V , we find that |A+A| = |A−A|, indicating that A is balanced.

In total, we have 60 MSTD sets (6 + 48 + 6) and 48 MDTS sets (12+12+12+12) in Dic3 with |A| = 6.
2

Based on above Lemma 3.3, we can ask the following question.
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Question 3.1 Let n ≥ 3 be an integer. Let A4n,2n denote the collection of subsets of Dicn of size 2n.
Can we say that A4n,2n has strictly more MSTD sets than MDTS sets?

By Theorem 2.1 if |A| > 2n, then A is a balanced set.

Question 3.2 Let n ≥ 3 be an integer. Let A4n,m denote the collection of subsets of Dicn of size 2n.
What are the lower and upper bounds for m such that A4n,m has strictly more MDTS sets than MSTD
sets?

4. Alternating Group A4

Consider the Symmetric group S4 of all permutations on four symbols 1, 2, 3, 4. The order of S4 is 24
of which 12 are even permutations. The set of all even permutations in S4 forms a subgroup of S4 called
the Alternating Group and is denoted by A4. It consists of the identity permutation, eight 3−cycles, and
three double transpositions. Precisely,

A4 = {(1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}.

We may partition A4 into 3 sets as follows:

X = {(123), (142), (134), (243)}

Y = {(132), (124), (143), (234)}
Z = {(1), (12)(34), (13)(24), (14)(23)}

Notation. For a subset X ⊂ G, we denote −X = {x−1 : x ∈ G}.
Here, Z is a subgroup of A4 in which every element is self-invertible. The product of any two elements

of X is in Y and vice versa. For any α ∈ X and β ∈ Y, the products αβ, βα ∈ Z. Further −X = Y and
−Y = X. So we have

X +X = Y, X −X = X + Y = Z

Y + Y = X, Y − Y = Y +X = Z

Z + Z = Z − Z = Z

Therefore, each of the sets X,Y and Z is balanced in A4.
A4 has 10 subgroups listed below:

⟨(1)⟩ , ⟨(12)(34)⟩ , ⟨(13)(24)⟩ , ⟨(14)(23)⟩ , ⟨(123)⟩ , ⟨(142)⟩ , ⟨(134)⟩ , ⟨(243)⟩ , Z and A4.

For each subgroup H of a group G, H +H = H −H = H. So all of the above subgroups are balanced.

Lemma 4.1 A set of the form {α, β, γ, δ}, where α ∈ X ∪ Y, β, γ, δ ∈ Z is MDTS.

Proof: Let S = {α, β, γ, δ}, where α ∈ X,β, γ, δ ∈ Z.
Let Z ′ = {β, γ, δ}. Now S = Z ′ ∪ {α}. We note that Z ′ + Z ′ = Z ′ − Z ′ = Z. So Z ′ is balanced.

With α → Z ′ the new sums obtained are

{αβ, αγ, αδ, βα, γα, δα} ∪ {α2} ⊆ X ∪ {α2}

and the newly generated differences are

{αβ, αγ, αδ} ⊂ X and {βα−1, γα−1, δα−1} ⊂ Y.

So we get
|S + S| ≤ |Z ′ + Z ′|+ 5 = 9 and |S − S| = |Z ′ − Z ′|+ 6 = 10.

This implies
|S − S| − |S + S| ≥ 1.

Hence, S is MDTS.
The case when α ∈ Y can be discussed similarly. 2
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Lemma 4.2 A set of the form {α, β, γ, δ}, where α, β, γ ∈ X, δ ∈ Z is MDTS.

Proof: Let S = {α, β, γ, δ}, where α, β, γ ∈ X, δ ∈ Z.
Let S′ = {α, β, γ}. Then S = S′ ∪ {δ}. For S′ we get S′ + S′ = Y and S′ − S′ = Z. So S′ is balanced. If
δ = (1) then with δ → S′ the 4 new sums obtained are

(1), α, β, γ

and we get 6 new differences

α, β, γ ∈ X and α−1, β−1, γ−1 ∈ Y.

Let δ ̸= (1). With δ → S′ the new sums obtained are

δ2, αδ, βδ, γδ, δα, δβ, δγ which constitute X ∪ {(1)}

and we get exactly 6 new differences

αδ, βδ, γδ ∈ X and δα−1, δβ−1, δγ−1 ∈ Y.

Therefore |S + S| ≤ |S′ + S′|+ 5 = 9 and |S − S| = |S′ − S′|+ 6 = 10. Hence, S is MDTS. 2

Similarly, the set {α, β, γ, δ}, where α, β, γ ∈ Y, δ ∈ Z is MDTS.

Lemma 4.3 Let S = {α, β, γ, δ, ρ} be a subset of A4 where α, β ∈ X, γ, δ ∈ Y, with γ, δ /∈ {α−1, β−1},
ρ ∈ Z, then S is an MSTD set.

Proof: Given S = {α, β, γ, δ, ρ} where α, β ∈ X, γ, δ ∈ Y, with γ, δ /∈ {α−1, β−1}, ρ ∈ Z. We claim that

S + S = A4 and S − S ̸= A4.

While computing the sums due to the elements from X and Y we observe that {α2, β2, αβ, βα} = Y and
{γ2, δ2, γδ, δγ} = X. So we get all the eight 3−cycles in S + S. Sum of a 3−cycle in X and a 3−cycle in
Y gives the elements of Z \ {(1)} and ρ2 = (1). Hence S + S = A4.
In S − S, elements of order 2 are obtained by taking the difference of a 3− cycle in X and a 3− cycle
in Y , which are precisely: αγ−1, βσ−1, γα−1, σβ−1. Here αγ−1 = γα−1 and βσ−1 = σβ−1. Therefore
{αγ−1, βσ−1} ⊂ {(12)(34), (13)(24), (14)(23)}. This shows that there are only two elements of order 2 in
S − S. So S − S ̸= A4. Hence S is an MSTD set. 2

Lemma 4.4 Sets of the form X ∪ {α} or Y ∪ {α}, where α ∈ Z is always MDTS.

Proof: Let S = X ∪ {α}, where α ∈ Z. Now

S + S = (X +X) ∪ (X + α) ∪ (α+X) ∪ {(1)} = Y ∪X ∪ {(1)}

and

S − S = (X −X) ∪ (X − α) ∪ (α−X) = Z ∪X ∪ Y = A4.

So |S + S| = 9 and |S − S| = 12. Similarly, for T = Y ∪ {α}, where α ∈ Z, we get |T + T | = 9 and
|T − T | = 12. Therefore S is MDTS. 2

We now study subsets of A4 with various cardinalities. As singleton sets are always balanced, we start
with sets of cardinality 2.

Theorem 4.1 Let A12,2 denote the collection of subsets of A4 of size 2. Then A12,2 has strictly more
MSTD sets than MDTS sets.
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Proof: Let A be a subset of A4 with |A| = 2. If A contains the sets of type {α, β}, where α, β ∈ Z then
A is balanced by Corollary 2.1 and there are

(
4
2

)
= 6 sets of this type. Similarly, by using Corollary 2.1,

we can observe that sets of the form {α, α−1}, where α ∈ X with 4 sets and {1, α}, where α ∈ X ∪ Y
with 8 sets are balanced. Therefore, we have total 6 + 4 + 8 = 18 balanced sets. Next, we count MSTD
sets.

1. If A contains sets of the form α, β, where α, β ∈ X ∪ Y and β ̸= α−1, then we get

A+A = {α2, β2, αβ, βα},
A−A = {1, αβ−1, βα−1}.

This gives |A+ A| = 4 > 3 = |A− A|. Since sets of the form {α, α−1} are balanced so we are left
with

(
8
2

)
− 4 = 24 MSTD sets.

2. If A contains sets of the form {α, β}, where α ∈ X∪Y and β ∈ Z, then |A+A| = 4 qnd |A−A| = 3.
Thus, these are also MSTD sets, contributing another 24 sets.

Therefore, we have 48 MSTD sets and 18 balanced sets of size 2. This implies there are no MDTS subsets
of size 2. 2

Using the above theorem, we can conjecture the following.

Conjecture 4.1 Let An!/2,2 denote the collection of subsets of An of size 2. Then for all n ≥ 4, the
number of MSTD subsets in An!/2,2 are strictly greater than the number of MDTS subsets.

Theorem 4.2 Let A12,3 denote the collection of subsets of A4 of size 3. Then A12,3 has strictly more
MSTD sets than MDTS sets.

Proof: Let A be a subset of A4 with cardinality 3. By the corollary 2.1, if A contains each of the
following sets, then A is balanced.

1. {α, β, γ} ⊆ Z. There are 4C3 = 4 such sets.

2. {α, β, β−1}, where α ∈ Z, β ∈ X. There are 16 such sets.

If A contains sets of the form {α, β, γ}, where α ∈ X ∪Y, β and γ ∈ Z then |A+A| = |A−A| and hence
A is always balanced. We have 48 such sets. If A contains {α, β, γ} ⊆ X or {α, β, γ} ⊆ Y then also we
get balanced sets and there are 8 sets of this type. The set {α, β, γ}, where α ∈ X,β ∈ Y with β ̸= α−1

and γ ∈ Z, is balanced. There are 36 sets of this form. Next, we count MSTD sets of size 3.

Consider the sets of the form A = {(1), α, β}, where α, β ∈ X or α, β ∈ Y. If α, β ∈ X then
α−1, β−1 ∈ Y. So αβ−1, βα−1 ∈ Z, which implies αβ−1 = βα−1. This reduces the cardinality of the
difference set over that of the sumset. Therefore, the set is MSTD. Similarly, when α, β ∈ Y , we
get S to be an MSTD set. There are 12 such sets. If A contains sets of the form {α, β, γ}, where
α, β ∈ X ∪ Y, γ ∈ Z \ {(1)}, with β ̸= α−1, then A is MSTD and there are 48 sets of this form. Similarly,
if A = {α, β, γ} ⊆ X ∪ Y with at least one element each from X and Y is MSTD and we have 48 such
sets. Thus, with cardinality 3, we have 112 balanced sets and 108 MSTD sets. So there are no MDTS
sets of cardinality 3. 2

A similar type of analysis we have done for sizes 4, 5 and 6 also and we found that A4 has More MSTD
sets than MDTS sets. Therefore, in general, we can ask the following question.

Question 4.1 Let An!/2,m denote the collection of subsets of An of size n. Can we say An!/2,m has
strictly more MSTD sets than MDTS sets?
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5. Dihedral Group D6

This group, usually denoted D6, is the dihedral group of order 12. In other words, it is the dihedral
group of degree six, i.e., the group of symmetries of a regular hexagon. It is the direct product of
the symmetric group of degree three and the cyclic group of order two. The usual presentation is:
D6 = ⟨r, s | r6 = s2 = (sr)2 = 1⟩.
Given a set A ⊆ D6, define R(resp.F ) as the set of elements of A of the form ri (resp. ris), called rotation
elements (resp. flip elements). Hence, A = R ∪ F . Then, we can write

A+A = (R+R) ∪ (F + F ) ∪ (R+ F ) ∪ (−R+ F ),

A−A = (R−R) ∪ (F + F ) ∪ (R+ F ).

Here elements in F + F are same as in F − F because of flips ordered 2. It is shown by Ascoli et al. [2]
that D6 has no MDTS sets of size 2, 24 MSTD sets and 42 Balanced sets. They also proved that if A
is a subset of D6 with 3 elements, then A has more MSTD sets than MDTS sets. Miller and Vissuet,
who studied first the dihedral groups in [10], conjectured that for n ≥ 3, D2n has more MSTD subsets
than MDTS subsets. Recently, Ascoli et al. in [2] made progress towards this conjecture by partitioning
subsets of D2n by their size. They conjectured the following.

Conjecture 5.1 ( [2]) Let G be an abelian group with at least one element of order 3 or greater, and let
D = Z2 ⋉G be the corresponding generalized dihedral group. Then, there are more MSTD subsets of D
than MDTS subsets of D.

They also proved the following:

Lemma 5.1 ( [2]) Let n ≥ 3 be an integer and let S2n,2 denote the collection of subsets of D2n of size
2. Then S2n,2 has strictly more MSTD sets than MDTS sets.

Lemma 5.2 ( [2]) Let n ≥ 3 be an integer and let S2n,3 denote the collection of subsets of D2n of size
3. Then, S2n,3 has strictly more MSTD sets than MDTS sets.

Theorem 5.1 ( [2]) Let D = Z2 ⋉ G be a generalized dihedral group of size 2n. Let SD,m denote the
collection of all subsets of D of size m, and let j denote the number of elements in G with the order at
most 2. If 6 ≤ m ≤ cj

√
n, where cj = 1.3229

√
111 + 5j, then there are more MSTD sets than MDTS

sets in SD,m.

6. Concluding Remarks and Future Problems

In this paper, we explored and compared MSTD (More Sums Than Differences) and MDTS (More
Differences Than Sums) sets within groups of order 12. We have provided various explicit constructions of
sum-dominant, difference-dominant, and balanced sets in groups of order 12. We found that non-abelian
groups A4 and D6 have more MSTD sets and fewer MDTS sets. In contrast, the abelian groups and the
dicyclic group Dic3 contain more MDTS sets and fewer MSTD sets. One can generalize these results to
non-abelian groups of higher order. In fact one can prove that An has for MSTD sets than MDTS sets
for n ≥ 3, similarly for Dn and Dicn. Some first steps in considering analogous questions have recently
been taken by Neetu and Shankar [12] and Ascoli et al. [2] for generalized quaternion group Q4n and
dihedral group D2n, respectively. It can also be tried in alternating groups.

There has been a lot of interest in finding sets A with large values of the ratio ln|A+A|/ln|A−A|. In
[1,7,13] authors addressed the issue of finding finite sets A ⊆ Z for which f(A) = ln(|A+A|)/ln(|A−A|)
is large, obtaining a new record high value of this function. The current highest is about 1.03059 found
by Penman and Wells in [13]. It was not immediately obvious whether it would be easier or harder to find
large values of the functions analogous to f when A is taken from a finite group rather than the integers:
Penman and Wells in [14] obtained a new high value for a subset of the finite abelian group and the value
is about 1.041334216. We tried to look at the function f in the case of finite non-abelian groups. For the
set A = {(123), (124), (12)(34)} in A4, |A + A| = 9, and |A − A| = 3 then f(A) = ln(9)/ln(3) = 2. This
is higher than the previous results.
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