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Comparison of some a posteriori error estimators

Ilyas Naji

abstract: The idea of a posteriori error estimates based on the reconstruction of the equilibrated potential
and/or equilibrated flux goes back to the Prager-Synge equality for the Poisson equation −∆p = f . This
identity is valid for all v ∈ H1

0 (Ω) and all u ∈ H(div,Ω) such that divu+ f = 0, and given by

∥u−∇v∥20,Ω = ∥u−∇p∥20,Ω + ∥∇p−∇v∥20,Ω.

It follows that, to obtain such estimate, we need to reconstruct a so-called equilibrated flux; u ∈ H(div; Ω)
satisfying the equilibrium condition divu + f = 0 and such that u − ∇p is as small as possible, and/or
reconstruct a potential v in H1

0 (Ω).
In all cases, to have an estimate, which is said ”by reconstruction”, it is necessary to have at the end an
equilibrated, flux and potential. Now, the question is: is it better to work with a numerical method that
allows us to have an equilibrated quantities and in this case there is no need to reconstruct, or else, do we use
a method where, we do not have an equilibrated solutions such as the Discontinuous Galerkin method, and
in this case it is necessary to reconstruct the two variables? We first compare two types of error estimators:
the classical residual-based estimators, which do not require any reconstruction, and the reconstruction-based
estimators, in the context of a diffusion problem. Then, using various numerical approximation methods, we
proceed to compare the different reconstruction-based estimators.
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1. Introduction

A posteriori error estimates were first introduced in 1978 by Babuška and Rheinboldt [4], and since
then have become an essential component of adaptive finite element methods. Their development is
motivated by the need to control the discretization error while maintaining computational efficiency.
Among the numerous families of a posteriori error estimates, the most commonly used approaches are:
residual-based estimators [26,27,2,8,10,21,7,17], reconstruction-based estimators [12,23,9,28,15,22,24,25,
6], hierarchical estimators [3,1,19,29], and local problem-based estimators [2,5,18], among others.

In this work, we focus on two of the most prominent approaches: classical residual-based estima-
tors and estimators based on flux and potential reconstructions. For mixed finite element methods,
residual-based estimators are typically constructed from residual equations, orthogonality properties,
quasi-interpolation operators, and decompositions of vector fields in H(div); see [13,30,17] for detailed
treatments. In contrast, reconstruction-based estimators rely on the concept of equilibrated quantities:
fluxes and potentials that are reconstructed to satisfy certain compatibility and regularity conditions.

Consider the Poisson problem −∆p = f with homogeneous Dirichlet boundary conditions. Let ph
be a numerical approximation of p, and let uh be an approximation of the flux −∇p. A potential
reconstruction is a function p̄h ∈ H1

0 (Ω), reconstructed from ph, which aims to minimize the norm
∥uh +∇p̄h∥. Similarly, an equilibrated flux reconstruction is a function ūh ∈ H(div; Ω), constructed from
uh, that satisfies divūh = f (typically in a local or global sense).

For instance, using the lowest-order Raviart-Thomas finite elements RT0, one obtains a flux in
H(div; Ω) that is already equilibrated (i.e., satisfying the divergence constraint), but the potential is
discontinuous and belongs only to a piecewise constant space. Consequently, only the potential needs to
be reconstructed. In contrast, if the approximation is obtained using the discontinuous Galerkin (DG)
method, neither the flux nor the potential is conforming, and both require reconstruction to satisfy the
conditions mentioned above.

This observation naturally raises the following question: when aiming for accurate and reliable error
estimates, should we adopt numerical methods that produce equilibrated quantities directly, or instead
use nonconforming methods and reconstruct both variables afterward? Before addressing this issue, we
begin by comparing residual-based error estimates with reconstruction-based error estimates in the con-
text of elliptic problems.

The objective of this work is the comparison between:

• Firstly, the classical residual type estimation for a mixed formulation and estimation by
reconstruction.

• Secondly, a posteriori error estimates by reconstruction using different approximations.

The remainder of this paper is organized as follows. The rest of Section 1 introduces the model
problem along with the main notations used throughout the paper. In Section 2, we recall the classical
residual-based a posteriori error estimators. Section 3 presents general results related to reconstruction-
based error indicators. Section 4 provides a comparative discussion of the two classes of estimators.
Section 5 is devoted to finite element approximations and the construction of associated reconstructions,
namely Raviart-Thomas elements, Crouzeix-Raviart elements, and the Discontinuous Galerkin method.
In Section 6, we present a set of numerical experiments that illustrate and compare the behavior of the
estimators under various configurations. Finally, Section 7 provides a concluding summary of the results.

We consider the following model problem{
u+K∇p = 0 in Ω
divu = f in Ω

(1.1)

where Ω ⊂ R2 is a bounded open polygonal domain, K is a symmetric, bounded, and uniformly positive
definite tensor and f ∈ L2(Ω).
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Notation

The Sobolev space H1(Ω) consists of functions in L2(Ω) whose weak gradients lie in
(
L2(Ω)

)2
, and

H1
0 (Ω) represents the subspace of such functions with zero trace on the boundary.

For any subdomain ω of Ω, (·, ·)ω denotes the L2(ω) inner product, with ∥ · ∥ω as the corresponding norm
(when ω = Ω, we drop the subscript), and |ω| is the Lebesgue measure of ω. For ω ⊂ R, ⟨·, ·⟩ω represents
either the one-dimensional L2(ω) inner product or the appropriate duality pairing on ω.
In this paper, we will use a triangulation Th, which for all h > 0, consists of closed triangles T such that
Ω =

⋃
T∈Th

T . We assume that the triangulations Th are conforming, i.e., if K,L ∈ Th, with K ̸= L, then
K ∩L is either empty, a common edge, or a common vertex of K and L. Let hK denote the diameter of
K, and let h := maxK∈Th

hK the mesh size.
We denote by Pk(Th) := {v ∈ L2(Ω) | v|T ∈ Pk(T ), ∀T ∈ Th}, where Pk(T ) denotes the polynomials
of total degree ≤ k on T . The diffusion tensor K is assumed to be in P0(Th). We also denote by
H1(Th) := {v ∈ L2(Ω) | v|T ∈ H1(T ), ∀T ∈ Th} the broken Sobolev space of order one on Th, and
by RT0(Th) := {v ∈ H(div,Ω) | v|T ∈ RT0(T ), ∀T ∈ Th}, the lowest-order Raviart–Thomas finite
element space, with RT0(T ) = P0(T )

2 + xP0(T ). The operator Π0 : L2(Ω) → P0(Th) denotes the L2-
orthogonal projection, i.e.

∫
Ω
(v − Π0v)w dx = 0 ∀w ∈ P0(Th), which is equivalently characterized by

(Π0v)|T = 1
|T |

∫
T
v dx ∀T ∈ Th.

We denote by Eh the set of all edges of Th, by E int
h the set of interior edges, by Eext

h the set of boundary
edges, and by EK the set of all edges of an elementK ∈ Th; he denotes the diameter of e ∈ Eh. For e ∈ E int

h ,
there are T−and T+ in Th such that e = T− ∩ T+. Let ne be the unit normal vector to e pointing from
T−towards T+. For a double-valued function v on e, its jump is defined as [v] = v−−v+with v± = v|T± .

A mixed formulation of this problem consists to
find (u, p) ∈ H(div; Ω)× L2(Ω) such that∫
Ω

K−1u · q−
∫
Ω

p divq = 0, ∀q ∈ H(div; Ω)∫
Ω

v divu =

∫
Ω

f v, ∀v ∈ L2(Ω)

(1.2)

The problem (1.2) is well posed thanks to the inf-sup condition cf. [11].

An approximation of the problem (1.2) can be given by the elements of Raviart-Thomas [11]:
find uh ∈ Qh and ph ∈ Vh solutions of∫
Ω

K−1uhqhdx−
∫
Ω

phdivqh = 0 ∀qh ∈ Qh∫
Ω

(divuh − f)vhdx = 0 ∀vh ∈ Vh

(1.3)

where, Qh := RT0(Th), Vh := P0(Th).

We also define the semi-norm on H1(Ω) by

∥|v∥|1 := ∥K1/2∇v∥, ∀v ∈ H1(Ω) (1.4)

which becomes a norm thanks to the inequality of Poincaré-Friedrichs. We define the standard energy
norm for vectors in (L2(Ω))2 by.

∥|q|∥⋆ := ∥K−1/2q∥, ∀q ∈ (L2(Ω))2. (1.5)

The div-energy norm for vectors is defined:

∥|q∥|2⋆,div := ∥|q|∥2⋆ + ∥divq∥2, ∀q ∈ H(div,Ω). (1.6)
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2. The residual based error estimator

The development of a posteriori estimates for mixed formulations is generally more challenging than
estimates for standard formulations. This is mainly due to the peculiarities of the space H(div; Ω).
More specifically, after integration by parts, the upper bound of the interpolation error in the L2 norm
in terms of the H(div) norm is not optimal. Moreover, the traces of functions in H(div; Ω) are in
H−1/2(∂Ω) ̸⊂ L2(∂Ω) as opposed to the traces of H1(Ω) which are in H1/2(∂Ω) ⊂ L2(∂Ω). To overcome
these difficulties, the authors in [13,30] considered the Helmholtz decomposition of the space H(div; Ω).
This allowed to have the following error estimation result, where the error indicators can be easily
calculated thanks to the available finite element approximation (uh, ph).

Proposition 2.1 Let (u, p) solution of the problem (1.2) and (uh, ph) solution of the problem (1.3) then
it exists a positif constant CR independent of h such that:

∥p− ph∥20 + ∥|u− uh∥|2⋆,div ≤ CR

(
η̂Res

)2

where

(̂ηRes)
2

:=
∑
T∈Th

(ηRes
div,T )

2 + (ηRes
D,T )

2 + (ηRes
S,T )2 (2.1)

ηRes
div,T = ∥f − divuh∥0,T (2.2)

ηRes
D,T = hT ∥uh∥0,T (2.3)

ηRes
S,T = h1/2

e ∥[K−1uh.tei ]J∥0,∂T (2.4)

Remark 2.1

• The indicator ηRes
Div,T represents the residual of the second equation of (1.1). Using the second

equation of (1.3), this indicator can also be seen as a data oscillation indicator since divuh =
Π0f .

• ηRes
D,T represents the residual of the Darcy equation with ∇ph = 0 since ph is piecewise constant.

• ηRes
S,T is the jump of the tangential trace of uh. The normal trace being continuous, since the
approximation is conforming in H(div) (which is not the case for the tangential trace).

3. General results for reconstruction-based a posteriori error indicators

In this section, we present the general results concerning error estimates by reconstruction (cf. [28]),
in which an upper bound for the error on the flux is provided in the L2 and H(div) norms, while an upper
bound for the potential is also given in the H1 norm. This result is referred to as general in the sense
that it depends neither on the approximation method employed nor on the corresponding reconstruction
procedure. We first start by defining what is meant by an equilibrated flux and potential.

Definition 3.1

• Let ph be the approximation of p ∈ H1
0 (Ω) obtained by a numerical method. We will call the

potential reconstruction any function sh constructed from ph which satisfies

sh ∈ H1
0 (Ω).

• We will call the equilibrated flux reconstruction any function σh constructed from uh the
approximation of the exact flux u, verifying σh ∈ Hf (div,Ω) where

Hf (div,Ω) := {σh ∈ H(div,Ω)/

∫
K

divσh =

∫
K

f, ∀K ∈ Th} (3.1)
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Proposition 3.1 Let (u, p) be the solution of (1.2), (σh, sh) equilibrated in the sense of definition 3.1.
Then

∥|u− σh|∥2⋆ ≤ η̂eq
2

F,L2

∥|u− σh|∥2⋆,div ≤ η̂eq
2

F,div

∥|p− sh∥|21 ≤ η̂eq
2

P,H1 (3.2)

where:

η̂eq
2

F,L2 :=
∑
T∈Th

(
(ηeqP,T )

2 + (ηeqR,T )
2
)

η̂eq
2

F,div :=
∑
T∈Th

(
(ηeqP,T )

2 + (ηeqR,T )
2 + (ηeqDiv,T )

2
)
,

η̂eq
2

P,H1 :=
∑
T∈Th

(
ηeqP,T + ηeqR,T

)2

,

the potential estimator is given by:

ηeqP,T := ∥|σh +K∇(sh)∥|⋆,T , (3.3)

the residual estimator (oscillation) by:

ηeqR,T :=
hT

πc
1/2
K,T

∥|f − div σh∥0,T , (3.4)

and the divergence estimator by:

ηeqDiv,T := ∥f − div σh∥0,T , (3.5)

Remark 3.1 This proposition offers a unified framework for obtaining a posteriori error estimates by
reconstruction using various finite element methods. It is clear that the error indicators defined in
this proposition depend on the numerical method employed, as the reconstructions used to establish
these indicators are based on the solutions obtained by the finite element method. Consequently,
the comparison presented in this section serves both as a comparison of different error estimators
and as a comparison of the underlying numerical methods.

4. Remarks on the comparison of two types of error estimates

• Residual-type error estimators are easy to compute since there is no need to reconstruct. In contrast
to the reconstruction-based a posteriori error estimates, no additional subproblem has to be solved
when dealing with residual-based error estimates.

• The reconstruction estimates given in the proposition (3.1) are obtained with 1 as a multi-
plicative constant unlike the residual type estimate given by the theorem (2.1).

• Concerning the estimation of residual type error, the error on the pressure is measured only in
L2-norm, since p given by (1.2) is only in L2(Ω).

• Both types of estimates are efficient, i.e. there is a lower error bound by the indicators

• The indicator ηP,T defined in (3.3) looks somehow like ηD,T given by (2.3), except that the latter
only measures the standard of uh is constant by elements so its gradient vanish, so he does not give
a good sense as estimators.
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5. Finite Element Approximations and Associated Reconstructions

5.1. Raviart-Thomas Finite Elements

We consider problem (1.3), which consists in finding an approximation (uh, ph) such that uh ∈ H(div,Ω)
and

∫
T
(divuh + f) vh = 0, meaning that no flux reconstruction is required. However, ph /∈ H1

0 (Ω), and
moreover, uh ̸= −K∇ph, since ph is piecewise constant and thus has a zero gradient. In this context,
reconstruction of the potential is necessary.
Following [22,28], we consider a post-processing step to construct p̃h in order to locally recover the
relation between uh and −K∇p̃h. Subsequently, we reconstruct an equilibrated potential sh according
to the definition given in (3.1).
Let (ph,uh) ∈ Qh × Vh solution of the problem (1.2), we define the post-processing p̃h by: −KT∇p̃h|T = uh|T ∀T ∈ Th

(p̃h, 1)T
|T |

= ph|T ∀T ∈ Th
(5.1)

Remark 5.1

It is worth mentioning that p̃h is locally defined on each element T ∈ Th, which ensures that its
construction remains computationally inexpensive.

The function p̃h, as previously constructed, is not continuous across inter-element boundaries. To
obtain a continuous approximation, we apply the Oswald interpolation operator to p̃h. The resulting
function, denoted by Ios(p̃h), belongs to the space P1(Th) ∩H1(Ω) and is defined at each interior mesh
node a by

Ios(p̃h)(a) =
1

|Ta|
∑
T∈Ta

p̃h|T (a), (5.2)

where Ta denotes the set of elements sharing the vertex a.
We impose that at boundary nodes, the value of Ios(p̃h) is set to zero, which implies that Ios(p̃h) ∈ H1

0 (Ω).
This membership allows us to define the conforming reconstructed function as

sh := Ios(p̃h). (5.3)

In the case of the Raviart–Thomas approximation, two reconstructions of the potential are available,
denoted by p̃h and sh. An alternative way to estimate the error on the potential is to evaluate ∥p− p̃h∥1
instead of ∥p− sh∥1. It should be noted that, in the case of ∥p− p̃h∥1, the norm considered is the broken
H1 norm. Moreover, in this approximation setting, there is no need to reconstruct the flux, hence we set
σh := uh. Consequently, a variant of Proposition 3.1 (cf. [28]) can be stated as follows:

Proposition 5.1
Let p given by (1.2) and p̃h given by (5.1) and sh given by (5.3 ).
Then

∥|p− p̃h∥|21 ≤
∑
T∈Th

(η2NC,T + (ηDF,T + ηR,T )
2) (5.4)

Where the nonconformity estimator given by:

ηNC,T := ∥|p̃h − sh∥|1,T (5.5)

and the diffusive flux estimator:

ηDF,T := ∥|σh +K∇p̃h∥|⋆,T (5.6)
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5.2. Elements of Crouzeix-Raviart

Before presenting a reconstruction for the Crouzeix-Raviart elements, the approximation ph can be given
as cf [14]

(K∇ph,∇vh) = (f, vh), ∀vh ∈ V CR
h , (5.7)

where
V CR
h = {v ∈ P1(Th) | ⟨[v], 1⟩e = 0, ∀e ∈ Eh}. (5.8)

The potential ph, as defined, is not equilibrated, since it does not belong to H1
0 (Ω). Likewise, the

flux −K∇ph is not equilibrated either, since it does not satisfy the axioms of Definition 3.1. We must
therefore specify both the potential and flux reconstructions sh and σh.

We can reconstruct the potential, using just the Oswald operator (5.2):

sh = Ios(ph) (5.9)

The reconstruction of the flux can be given by cf. [20])

σh|T = −K∇uh|T + κf |T (5.10)

where κf is the piecewise affine vector function given on each element T ∈ Th by

f|T

2
(x− xT )

and xT is the barycenter of T .
Assuming that f ∈ P0(Th) andK is a scalar in P0(Th), then the flux σh defined by (5.10) is equilibrated

cf. [20].

5.3. Discontinuous Galerkin method

Before introducing the discontinuous Galerkin (DG) method, we first define some notation. Let e ∈ Eh,
consider nonnegative weights ωT−,e and ωT+,e such that

ωT−,e + ωT+,e = 1.

The corresponding weighted average is given by

{v}ω = ωT−,e v
− + ωT+,e v

+.

A common choice is to set equal weights, ωT−,e = ωT+,e = 1
2 . In problems involving strongly heteroge-

neous diffusion tensors, it is often preferable to use diffusion-dependent weights, defined as

ωT+,e =
δK,e−

δK,e+ + δK,e−
, ωT−,e =

δK,e+

δK,e+ + δK,e−
,

where
δK,e± = nT

e (K|T±)ne.

On boundary faces, the jump reduces to [v] = v, the average becomes {v}ω = v, and the weight is set to
ωT,e = 1, where T is the single adjacent element. In this case, the normal diffusion term is

δK,e = nT
e (K|T )ne,

with ne being the outward unit normal to the domain Ω.
Let α be a positive parameter, and θ ∈ {−1, 0, 1}. Set

V DG
h = {v ∈ L2(Ω), ∀T ∈ Th, v|T ∈ P1(T )}
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Note that this space has no continuity requirements. The discontinuous Galerkin (DG) method consists
in seeking ph ∈ V DG

h

∑
T∈Th

(K∇ph,∇vh)T −
∑
e∈Eh

(< {K∇ph}ω · ne, [vh] >e +θ < {K∇vh}ω · ne, [ph]e >)

+
∑
e∈Eh

< αh−1
e γK,e[ph], [vh] >e= (f, vh), ∀vh ∈ V DG

h (5.11)

Where the penalty parameter γK,e is defined as

γK,e =


δK,e+δK,e−

δK,e+ + δK,e−
, if e is an interior face,

δK,e, if e is a boundary face.

We can reconstruct the potential, using just the Oswald operator (5.2):

sh = Ios(uh) (5.12)

The flux K∇ph obtained is not equilibrated, an equilibrated one cf. [20,16] can be given by:

< σh · ne, qh >e=< −{K∇uh}ω · ne + αγK,e h
−1
e [uh], qh >e ∀qh ∈ P0(e) (5.13)

6. Numerical results

In this section, we present a series of three numerical experiments aimed at evaluating the performance
of various numerical methods and the corresponding error estimators.

In the first test, we consider a sufficiently regular analytical solution. A uniform mesh refinement
is performed in order to study the convergence behavior of various error indicators as well as the exact
errors, for all numerical methods considered in this paper.
The second test is conducted in two stages. First, using Raviart-Thomas finite elements, we compare
two types of a posteriori error estimators: residual-based and flux reconstruction-based estimators, in-
corporating mesh adaptation strategies. In the second stage, focusing solely on reconstruction-based
error estimators, we assess the performance of these indicators by applying them to different numerical
approximation schemes.
This last analysis also constitutes the main objective of the third numerical test, which is devoted to a
comparative study of reconstruction-based indicators across various numerical methods.

Notations:

The exact errors are defined as follows:

Ep,L2 = ∥p− ph∥0,Ω Ec
r,L2 = ∥p− sh∥0,Ω

Ec
r,H1 = ∥|p− sh∥|1,Ω Ed

r,H1 = ∥|p− p̃h∥|1,Ω
Ev,div = ∥u− uh∥⋆,div Ev,L2 = ∥u− uh∥⋆

The residual-type a posteriori error indicators, summed over all elements T ∈ Th, are defined as
follows:

ηRes
Div =

∑
T∈Th

∥f − div(uh)∥0,T , ηRes
D =

∑
T∈Th

hT ∥uh∥0,T , ηRes
S =

∑
T∈Th

h1/2
e

∥∥[K−1uh · tei
]∥∥

0,∂T
.

The reconstruction-based a posteriori error indicators, summed over all elements T ∈ Th, are defined
as follows:
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η
(k)
P =

∑
T∈Th

∥σh +K∇sh∥⋆,T , η
(k)
DF =

∑
T∈Th

∥σh +K∇p̃h∥⋆,T ,

η
(k)
R =

∑
T∈Th

hT

πc
1/2
K,T

∥f − divσh∥0,T , η
(k)
NC =

∑
T∈Th

∥p̃h − sh∥0,T .

η
(k)
D =

∑
T∈Th

∥f − divσh∥0,T ,

In light of Remark 3.1, the error indicators depend on the chosen approximation method. To avoid any
ambiguity,We introduce the superscript k in the context of reconstruction-based estimators to specify the
numerical method employed, with k = RT, CR, or DG corresponding respectively to the Raviart-Thomas,

Crouzeix-Raviart, and Discontinuous Galerkin finite element methods. Accordingly, we denote by η
(k)
t

the sum of the local reconstruction-based error indicators associated with method k. In the context of
the Raviart-Thomas finite element approximation, note that there is no need to reconstruct the flux, so
that σh = uh. For the other proposed approximations, it can be readily shown that only the indicators

η
(k)
P , η

(k)
R , and η

(k)
D provide an upper bound for the error, where k = CR or DG.

We further introduce the following notations: NT denotes the total number of mesh elements, and
h is the mesh size. The quantity ηt refers to the total error indicator, defined as the sum of all local
indicators over the mesh. The efficiency index I is defined as the ratio between the upper bound provided
by the a posteriori error estimates-specifically those established in Propositions 2.1 and 3.1 and the sum
of the corresponding exact errors.

6.1. Numerical experiments 1

In order to test the exact convergence of errors, we consider the problem (1.1) with K = Id with a
manufactured solution,

pex = x(x− 1)y(y − 1) in Ω =]0, 1[2 (6.1)

whence the exact flux is given by

uex =

(
(2x− 1)y(y − 1)
(2y − 1)x(x− 1)

)
. (6.2)

and the second member f = −2y(y − 1)− 2x(x− 1)

6.1.1. Raviart Thomas finite elements.
Figure 1a shows the initial mesh. The exact potential is depicted in Figure 1c and defined by equa-
tion (6.1), while the exact flux is shown in Figure 1b. Subsequently, Figure 1c allows for a comparison
between the exact potential, the potential obtained using the Raviart–Thomas finite element method
(Figure 1d), the post-processed solution (Figure 1e), and the reconstructed solution given in (Figure 1f).
Tables 1 and 2 report the results of a uniform mesh refinement using Raviart-Thomas finite elements

as defined by equations (1.3). The first table corresponds to the results related to the a posteriori error
estimates based on reconstructions, while the second one presents the results associated with the classical
residual-based estimators.
As shown in Table 1, we numerically observe that Ed

r,H1 = Ev,L2 . This result can be rigorously justified

by noting that −K∇p = u and −K∇p̃h = uh, together with the definitions of the norms || · ||1 and ∥| · ∥|⋆
provided in (1.4) and (1.5).
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(a) initial mesh (b) exact flux

(c) exact potentiel (d) ph

(e) p̃h post processing (f) sh reconstruction of potentiel

Figure 1: Mesh, exact solution, and corresponding approximations
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Table 1: Uniform refinement RT0

Ep,L2 Ec
r,L2 Ec

r,H1 Ed
r,H1 Ev,L2 Ev,div NT h

0.00349943 0.000551791 0.0235952 0.0147757 0.0147757 0.0147757 200 0.141421

0.00175508 0.000136242 0.0120659 0.00743696 0.00743696 0.00743696 800 0.0707107

0.0011707 6.02751e-005 0.00808181 0.00496411 0.00496411 0.00496411 1800 0.0471405

0.000878192 3.40794e-005 0.00607177 0.0037247 0.0037247 0.0037247 3200 0.0353553

0.000702616 2.18481e-005 0.00486138 0.00298036 0.00298036 0.00298036 5000 0.0282843

η
(RT )
P η

(RT )
DF η

(RT )
R η

(RT )
NC η

(RT )
D η

(RT )
t I

0.0271402 1.82979e-016 0.00172658 0.0271402 0.0383551 0.0542888 0.998703

0.0140835 4.60221e-016 0.000432786 0.0140835 0.0192282 0.0276875 0.978976

0.00945766 7.24975e-016 0.000192443 0.00945766 0.012825 0.0185314 0.975284

0.00711178 9.79837e-016 0.000108268 0.00711178 0.0096204 0.0139183 0.973983

0.00569639 1.31225e-015 6.92967e-005 0.00569639 0.00769693 0.011142 0.973378

Table 2: Refinement uniform residu type estimation
Ep,L2 Ev,div Ep,L2 + Ev,div ηRes

Div

0.00349943 0.0147757 0.0182752 0.0383551

0.00175508 0.00743696 0.00919204 0.0192282

0.0011707 0.00496411 0.00613481 0.012825

0.000878192 0.0037247 0.00460289 0.0096204

0.000702616 0.00298036 0.00368298 0.00769693

ηRes
S ηRes

D η̂Res NT , h I

0.0648169 0.0210692 0.0782065 200 0.141421 4.27939

0.0353874 0.0105394 0.0416301 800 0.0707107 4.52893

0.0242029 0.00702685 0.0282778 1800 0.0471405 4.60941

0.0183735 0.00527028 0.0213989 3200 0.0353553 4.64901

0.0148028 0.00421628 0.0172088 5000 0.0282843 4.67251

6.1.2. Crouzeix-Raviart finite elements.
Figures 2a, 2b, 2c, and 2d respectively illustrate: the potential approximated using Crouzeix-Raviart
finite elements as defined in (5.7); the reconstructed potential given by (5.9); the exact flux defined in
(6.2); and the reconstructed flux according to (5.10).
Table 3 presents the numerical results obtained from a uniform mesh refinement applied to the reconstruction-
based error estimators using Crouzeix-Raviart finite elements.

6.1.3. Discontinuous Galerkin finite elements.
Figures 3a, 3b, 3c, and 3d respectively display: the potential approximated by the discontinuous Galerkin
(DG) finite element method as defined in (5.11); the reconstructed potential described in (5.12); the exact
flux defined in (6.2); and the reconstructed flux obtained via the formula outlined in (5.13).
Table 4 reports the numerical results derived from a uniform mesh refinement applied to the reconstruction-
based a posteriori error estimators using the DG finite element method.

6.1.4. Remarks on the Results of the First Numerical Test.
The following conclusions can be drawn from Tables 1, 2, 3, and 4 related to the first numerical test:

• All exact errors converge with an order close to 1, except for Ec
r,L2 , which exhibits second-order

convergence. This is consistent with the theoretical results (see [28]).

• The quantity η̄DF in Table 1 is practically zero, which can be explained by the first equation in 5.1.

• The sum of the local error indicators ηt in each case converges with a rate close to 1. This confirms
that the indicators are reliable approximations of the actual error, in agreement with a priori error
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(a) ph using Crouzeix–Raviart (b) sh potential reconstruction

(c) Exact flux (d) σh reconstruction of flux

Figure 2: Meshes

(a) Potential with DG (b) reconstruction of potential sh

(c) exact flux (d) reconstruction of flux DG

Figure 3: xact solution and approximations for DG
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Table 3: Refinement uniform - Crouzeix Raviart
Ep,L2 Ec

r,H1 Ev,div Ec
r,H1 + Ev,div

0.00039412 0.000347519 0.0259866 0.0263807

9.93916e-005 8.2599e-005 0.0139601 0.0140595

4.42468e-005 3.62609e-005 0.00951917 0.00956341

2.49032e-005 2.03009e-005 0.00721854 0.00724344

1.59423e-005 1.2963e-005 0.00581269 0.00582863

η
(CR)
P η

(CR)
R η

(CR)
D η

(CR)
t h I

0.03377 0.00384828 0.0384194 0.0512959 0.141421 1.03454

0.0182562 0.00120161 0.0192362 0.0265474 0.0707107 1.02002

0.0124227 0.000612629 0.0128274 0.0178673 0.0471405 1.01513

0.0094029 0.000382385 0.0096214 0.0134585 0.0353553 1.01265

0.00756118 0.000266395 0.00769744 0.0107932 0.0282843 1.01116

Table 4: Refinement uniform-DG method
Ep,L2 Ec

r,H1 Ev,div Ec
r,H1 + Ev,div

0.000787911 0.000743522 0.0150062 0.0157941

0.0001991 0.000180226 0.00749932 0.00769842

8.89473e-005 7.89152e-005 0.00499329 0.00508224

5.02875e-005 4.40016e-005 0.00374166 0.00379194

3.23476e-005 2.79957e-005 0.00299146 0.00302381

η
(DG)
P η

(DG)
R η

(DG)
D η

(DG)
t h I

0.0271594 0.00218056 0.0384194 0.0471003 0.141421 1.2222

0.0141243 0.000624732 0.0192362 0.0238729 0.0707107 1.22107

0.00948431 0.000315605 0.0128274 0.015956 0.0471405 1.22058

0.0071302 0.000198693 0.0096214 0.0119771 0.0353553 1.2204

0.00570997 0.000140249 0.00769744 0.00958509 0.0282843 1.22033

estimates which predict a convergence order of 1 for the exact error.

• For the tables corresponding to estimators based on reconstruction (Tables 1, 3, and 4), the effec-
tivity index I is close to 1. This is not the case in Table 2, which presents classical residual-based
estimators. The difference can be attributed to the fact that reconstruction-based estimators are de-
rived with a multiplicative constant equal to 1, unlike classical residual-based estimators, where this
constant is not controlled. This represents a fundamental distinction between the two approaches.

6.2. Numerical experiments 2

In order to assess the performance of the two types of estimators under mesh adaptation, we consider an
exact solution given by:

pex = exp

(
−1− x√

ε

)
+ exp

(
−1− y√

ε

)
, ε = 10−3.

In this numerical test, non-homogeneous Dirichlet boundary conditions are imposed. Accordingly, we
introduce a data oscillation indicator defined as:

ηos = ∥g − P 0
h,∂Ωg∥0,T∩∂Ω,

where P 0
h,∂Ωg denotes the piecewise constant L2-projection of g on the boundary mesh.

For the two numerical tests presented in the following sections, we employ an adaptive mesh refinement
procedure based on local error indicators. The goal is to iteratively improve the accuracy of the numerical
solution by refining the mesh where the estimated error is significant. The adaptive process is governed
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(a) Exact potentiel

by the algorithm RemeshIndicator, described below.

...
Algorithm: RemeshIndicator

1. Choose the maximum number of iterations kmax and a tolerance threshold tol.

2. Generate an initial mesh T 0
h .

3. Set the iteration counter k = 0.

4. Solve the discretized problem on the current mesh T k
h .

5. For each element T ∈ T k
h , compute the local error indicator η

(k)
T .

6. If
∑

T∈T k
h
η
(k)
T ≤ tol or if k = kmax, then stop the algorithm.

7. Otherwise, increment the iteration counter: k ← k + 1.

8. Determine the new local mesh sizes h
(k)
T from the local error indicators using the formula:

h
(k)
T =

1

find
, where find = max

(
min

(
ηT

η⋆
, 3

)
,
1

3

)
,

and η⋆ = cc · 1
|T k

h
|
∑

T∈T k
h
η
(k)
T with 0 < cc ≤ 1.

9. Generate a new mesh T k
h based on the updated element sizes.

10. Return to step 4.

Figures 4a, 4b, 4c, and 4d display the sum of the residual-based and reconstruction-based error
indicators, computed using the Raviart-Thomas, Discontinuous Galerkin, and Crouzeix-Raviart approx-
imations, respectively. It is clearly observed that all these indicators capture the boundary layer.

To further assess the effectiveness of these indicators, we perform mesh adaptation using the RemeshIndi-
cator algorithm, and compute the exact error at each refinement step. Figure 5a illustrates, for the same
RT0 approximation, a comparison between the two types of indicators. The exact error Ec

r,H1 +Ev,div is
plotted against the number of elements on a logarithmic scale. Note that, in the case of the residual-type
estimator, the term Ec

r,H1 corresponds to the H1-norm error given by ∥p − ph∥1 =
∑

T∈Th
∥p − ph∥1,T .

This figure shows that mesh adaptation driven by reconstruction-based indicators leads to a significantly
lower error compared to that obtained using classical residual-type indicators. This observation can be
explained by the fact that the error is evaluated in the H1 norm on the potential, while ph is a piecewise
constant function, implying that its gradient is zero. Moreover, the estimate provided by Proposition 2.1
is only valid in the L2 norm. To clarify this point, we have plotted in Figure 5b the two errors in the L2
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(a) η̂Res (RT0) (b) η
(RT )
t

(c) η
(DG)
t Sum of Indicators (DG) (d) η

(CR)
t Sum of Indicators (Crouzeix-Raviart)

Figure 4: The total indicator values in each case

(a) Ec
r,H1 + Ev,div using both types of estimators (b) ∥p− sh∥0 and ∥p− ph∥0

Figure 5: Comparison: reconstruction-based and residual-based estimators

Figure 6: Comparison Among Different Reconstruction Estimators
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norm. This figure clearly shows that the reconstruction-based estimators are consistently more effective,
even when the errors are assessed solely in the L2 norm.
The final figure of this numerical experiment, namely Figure 6, presents a comparison of the efficiency of
reconstruction-based estimators under mesh adaptation. The RemeshIndicator algorithm is consistently
applied for each numerical approximation method considered: Raviart-Thomas, Crouzeix-Raviart, and
discontinuous Galerkin. It can be observed that the estimator based on the discontinuous Galerkin
method is slightly more efficient than the other two. This comparison of reconstruction-based estimators
is also the focus of the final numerical test.

6.3. Numerical experiments 3

We consider the problem (1.1) with K = 100 × χ(x>0.5) + 1 × χ(x<0.5) with a manufactured solution,
pex = sin(πx) sin(πy) in Ω =]0, 1[2 whence the exact flux is given by uex = K∇pex and the second
member f = (Kπ2 +Kπ2)pex
Figures 7a, 7b, and 7c depict the coefficient K, the exact potential, and the exact flux, respectively. A

(a) K

(b) Exact potentiel (pex) (c) Exact flux uex

Figure 7: Exact solution

strong discontinuity in the flux is observed at the center, which originates from the expression of K.

Figure 8 displays the exact errors obtained with various reconstruction-based estimators. Once again,
the estimator employing the discontinuous Galerkin method demonstrates superior efficiency compared
to the other approaches.

7. Conclusion

In this work, we presented two types of error estimators: residual-based and reconstruction-based
estimators. A theoretical comparison of the results was also provided. Numerical tests demonstrated
the superior efficiency of the reconstruction-based estimators. Furthermore, by considering various finite
element methods, Raviart-Thomas, Crouzeix-Raviart, and discontinuous Galerkin, we compared the per-
formance of the reconstruction-based estimators associated with each method. It was concluded that the
most effective approach is to employ reconstruction-based estimators with the discontinuous Galerkin
approximation.
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Figure 8: Comparison among different reconstruction estimators
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26100, Morocco.

https://orcid.org/0000-0002-1020-263X

E-mail address: i.naji.univ@gmail.com


	Introduction
	The residual based error estimator
	General results for reconstruction-based a posteriori error indicators
	Remarks on the comparison of two types of error estimates 
	Finite Element Approximations and Associated Reconstructions
	Raviart-Thomas Finite Elements
	Elements of Crouzeix-Raviart
	Discontinuous Galerkin method

	Numerical results
	Numerical experiments 1
	Raviart Thomas finite elements
	Crouzeix-Raviart finite elements
	Discontinuous Galerkin finite elements
	Remarks on the Results of the First Numerical Test

	Numerical experiments 2
	Numerical experiments 3

	Conclusion

