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Certain Properties of Mathieu-Type Series Associated with Hypergeometric Functions
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ABSTRACT: The objective of current article is to investigate some properties of Mathieu-type series and with
their alternating version as kernel Gauss hypergeometric function. Also we discussed some particular cases of
the result obtained here.
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1. Introduction and Preliminaries

In last decade some researchers like Pogany, either alone and/or with his colleagues Saxena, Srivastava,
Baricz, Butzer,and Tomovski [1,2,3,4,5,6] studied Mathieu—type series and their alternating variants
with constitutive terms and many well known special functions, for example, Gauss hyper-geometric
function(GHF), confluent hyper-geometric function (CHF), generalized hypergeometric function, Meijer
G-functions and many more.

Many generalizations of GHF and other special function were studied in last few years by many
scientists and researchers. The significance of these well known function is that they inherit most of the
character and quality of the original functions.

In 2021, Jain et al. [7] have studied GHF, CHF type and also studied many properties, relations of
these functions.

Generalized GHF and generalized confluent hypergeometric function are given as follows [7]:
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where, (pg); is Pochhammar symbol defined in [7].
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provided, Re(p2) > Re(p1) > 0, Re(v1) > 0, Re(v2) > 0 and s > 0,and |z| < 1;
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where B (s)

(v1,v

,) (w1, w2) is the generalized beta function [8] defined by

B wne) = | (L ) By, (s (w(1 - w) ™) do, (13)
min {Re (w1), Re (w2)} > 0, Re(v1) > 0, Re(ve) > 0, s > 0.
Here, o
Ey 0, (2) = ; I‘(lvlz:—vg)’ (Re(v1) > 0, Re(vg) > 0). (1.4)

Ey, v, (2) is 2-parameter Mittag-Leffler function defined as [14,15,16,17,18].

Note that when vo = 1 in 1.1 and 1.2, we get extended GHF and extended CHF studied by Shadab
et. al [10]
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here, Re(vz) > Re(vy) > 0,s>0and | z |< 1;
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here, Re(vg) > Re(v1) > 0, and s > 0.

Setting v7 = vo = 1 in (1.1) and (1.2), we get extended GHF and CHF studied by Chaudhry et al.
[11]
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here, s > 0, Re(p2) > Re(p1) >0, | z |< 1;
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here, s > 0 and Re(p2) > Re(p1) > 0.

Yet another case, let v1 = v3 = 1 and s = 0 then (1.1) and (1.2) reduces to classical GHF and CHF
defined in [12]
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1=0
here, Re(p2) > Re(p1) > 0.
Now, by inserting the F ((51) s

we generalized the Mathieu-type a-series M, , and its alternating variant 1\~/Im7n in the form of series.

)(po, p1,pe; 2) as kernel in the definition of the Mathieu—type series in [1],
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2. Main Results

Definition 2.1 For m,n,r > 0; Re(pz2) > Re(p1) > 0, Re(vy) > 0,Re(vz) > 0, s > 0 and b = (bg)r>1
Mathieu-type series involving extended hypergeometric function defined as:

FO ) (mopivni—i2)
y P25 P33 br

(vi,v2)
My [F) i bi7] = (2.1)
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With same range of parameter, we also define its alternating variant.

Definition 2.2 For given m,n,r > 0; Re(ps) > Re(p1) > 0, Re(v1) > 0,Re(vy) > 0, s > 0 and
b= (bi)r>1 alternating Mathieu—type series involving extended hypergeometric function defined as:
. (DR 1FS) - (m, paipa; o)
M, » F(S) 3 b; = (v1,02) k 2.2
, [ (v1,v2)’ ,7‘] ]; bkm(bk—l-TZ)" (2.2)

where R and R represent the sets of real and positive real numbers then the real sequence b = (by)k>1
is the restriction of an increasing function b: RT — R* such that b(x)|,en = b.

To obtain our main results, we need to prove important Laplace transform of extended confluent
hypergeometric function (1.2).

Theorem 2.1 For m > 0; Re(pz) > Re(p1) > 0, Re(v1) > 0, Re(ve) > 0, s > 0, the following result

holds true:
w

'(m)

/0 efzttmflq)gz)wu)(pl,pg; wt)dt = e F((sl),m)(m’pl,pg; ;) (2.3)
Proof: To prove the result, consider left hand side and denote it by I,
- / e_zttm—1q>gz)1 UZ)(pl,pg;wt)dt. (2.4)
0 :
From generalized confluent hypergeometric function (1.2), we have:
0o (s)
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On interchanging the integration and summation, we get
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Then using the definition of Gamma function [13] and relation between Gamma function and pochham-

F(FT;F)]“) = (m)g, we have

mer symbol
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Then from equation (1.1), we get our desired result.
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3. Integral Representation of M,, , and 1\~/Im7n

Here, we give integral form for the series M, , and 1\~/Im’n in the form of the linear combination of
the two principal integrals.

Theorem 3.1 Consider m,n,r > 0;Re(v1) > 0, Re(ve) > 0, s > 0 and the real sequence b = (bg)r>1
monotone increasing and tends to oo, we have:

Mm,n[F(S) sbir] =mH, . (m+1,n,b)+nH,

(v1,v2)’ V1,02 V1,02

(myn+1,b1) (3.1)
where, ¥ Re(pz) > Re(p1) > 0,
00 (s) . ;7“2 -1
) = [ s S0 e
V1,V2 [ by xm($+r2)n

and [b=1] represent the integral part of the inverse of b.

()

Proof: Assume the Laplace transform of the function t’"‘lfI)(v1 v

(2.1) we have,

)(pl,pg; wt) from the above Theorem

s w z™m b1 (s
F((m),vz)(mmhpz;;):m/o e I(I’Ev)l,m)(]?hpz;m)dt (3.3)

Then from definition of Gamma function we have,
T(n)g™" :/ e 9" 1dt, Re(g) > 0, Re(n) > 0. (3.4)
0

Taking g = by + r2 in above equation, we get

1 oo
(b +7%) " = m/ e (betr)tgn—1gy. (3.5)
n)Jo
Now, put w = —72, z = by, in the equation (3.3), we have
s =2 O™ [ _emeig(s
F((v1),v2)(m?pl7p2; K) = F(m) /O e (bk)tt 1¢E’U)1,’U2)(p15p2; _TQt)dt (36)

Then from definition of Mathieu series (2.1), we have

(s)

2
F (m, p2; p3; )
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From equations (3.5), (3.6) and arranging the terms, we have
) %) oo e—rzutm—lun—l b (t440) (s) 5
s - b — —bk(t+u s .
Mm,n[F(vl,vg)ab7 r] —/0 /0 T(m)T(n) ’;e D)) o) (P1 P25 —r7t)diEdu (3.8)

By the Cahen formula [2] for summing up the Dirichlet series in the technique developed in [3], we
conclude

Fy(t+u) =Y e 0T = (t 4 u) / e~ W =1 (7)) da (3.9)
E>1 by
Which implies
Mm,,n [F((SB’UZ)v b; 7’} =
(3.10)

; /OO/OO/OO (—r’+z)u—t -1, n—1p—1 (s) 2
_— T TR )t T T b (2)] @) (1, p2s —rot)dtdud
Lm)L(n) Jo Jo b, (o1,02)
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Consider the RHS of the above equation and denote it by I; + I,

My [F) ibs7] = I + 1, (3.11)
where
—ztym g (s) 2
1 e > [e t q)vv P7P2§—Ttdt 2
I, = 7/ / (v1, 2)( 1 ) eimu[bil(ﬂi)]dﬂi e~ Uy gy (3.12)
r'(n) Jo by I'(m)

Then using the above result (3.3) and re-arranging the terms , we have

00 e} un—le—(w-&-rz)udu [b_l(.’L‘)] (5) —7”2
Li=m . (/0 T(n) L F(vl,vz)(m + 1, p2; ps; T)dfﬂ (3.13)

After using (3.5), we have

o) 2 -1
_ (5) R R L C))
Iy=m . F(Ul,v2)(m+1ap2,173,7)mdﬂf (3.14)
Assuming
< B (mopips; =)0 (o)) da
HS, . (m,n,b) = / (1:02) 2 (3.15)
L by am(x 4+ r2)n
Then (3.14) becomes,
Iy =mH; ,,(m+1,n,b) (3.16)
Similarly we get,
—ztym—1g(5) 2
o -l 0 emrtgm—1gp (p1,p2; —r2t)dt
I, = n/ b~ (@) / (v1,v2) da (3.17)
b (@+r2)nt 0 I'(m)
Then again using the (3.3) and re-arranging the terms we have,
s 2 _
e B paips =) b (@) ]de
I,=n A (3.18)
by ™ (z + r2)nt
From equation (3.15), we get
I, =nH;, ,,(m,n+1,b) (3.19)
Now, using equations (3.11),(3.16), (3.19) we get our desired result.
M, n [F((jf,vz); byr] =mH; ,, (m+1,n,b1)+nH, , (m,n+1,b) (3.20)
O

Theorem 3.2 Consider m,n,r > 0;Re(v1) > 0,Re(vg) > 0, s > 0 and the real sequence b = (by)r>1
monotone increasing and tends to oo, we have:

My, o [F) o ibir) = mH,  (m+1,n,b) +nH,

V1,v2

(m,n+1,by) (3.21)

where, ¥ Re(pa) > Re(p1) > 0,

(s) e =72 @in2 (T (p—1
~ e FU V- (mvp y P33 )SIH 7[b (1‘)] dzx
g (m,n,bl):/ (v,02) RIS G ) (3.22)

v1,V2 by :Cm(l’ + TQ)n

and [b=1] denotes the integral part of the inverse of b.
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Proof: The proof of Theorem (3.2) is done by similar method as used in Theorem (3.1).
Dirichlet series Fy(x) integral form, keeping in mind the Cahen formula [2], we have

Fy(z) = Z(—l)k_le_b’“(w) = ac/oo e " B(t)dt, (3.23)

E>1 by

and therefore,

Fy(z) = z/boo e~ "t sin? (g[bil(x)o dt, (3.24)

since the counting function reduces to

_ B 1— (_1)[b’1(t)] _ T

_ IR a2 (-1
Bt)= Y (-1) 5 sin (2 b (t)}) : (3.25)

k:kat
Hence, because
Fy(t +u) = (t+ u) / e~ (tH) gip? (g[lfl(t)]) dz, (3.26)
by

we conclude proof of Theorem (3.2) by obtaining the similar remaining steps as Theorem (3.1). O

Particular case when vy = 1, Theorem (3.1), (3.2) reduces to the following corollary.

Corollary 3.1 Consider m,n,r > 0;Re(vi) > 0, s > 0 and the real sequence b = (bg)r>1 monotone
increasing and tends to oo, we have:

M, [Fs,vl;b; r} =mH,,, (m+1,n,b) +nH,, (mn+1,b) (3.27)

where, ¥ Re(pz) > Re(p1) >0,

% Fly, (m, poi pg; =) b~ (w))d
H, ., (m,n,by) :/ o (msp2ips; =) b7 (@)lde (3.28)

by xm(x 4+ r2)n
and [b~1] denotes the integral part of the inverse of b.

Corollary 3.2 Consider m,n,r > 0;Re(v1) > 0, s > 0 and the real sequence b = (bg)r>1 monotone
increasing and tends to oo, we have:

]\meyn [F(sm); b; r} = mI-:TS,U1 (m+1,n,b1) + nﬁs,vl (m,n+1,b1) (3.29)

where, ¥ Re(pz) > Re(p1) >0,

2
2 > Fi, , P2; ;i '2£b71 d
Hs,vl(m,n,bl):/ vy (M, 2 Pgmz )sm2 52[ (;v)]) :v
b1 ™ (x4 12)

(3.30)

and [b=1] denotes the integral part of the inverse of b.
Case when vo = 1 and v; = 1 then Theorem (3.1), (3.2) reduces to the following corollary.

Corollary 3.3 Consider m,n,r > 0; s > 0 and the real sequence b = (by)x>1 monotone increasing and
tends to oo, we have:

M,, [FS; b; r] =mH;(m+1,n,b1) + nHs(m,n+1,b) (3.31)

where, ¥ Re(pz) > Re(p1) > 0,

Ho(m.m.by) = /°° Fy(m, p2; p3; —=)[b~* (x)]dx (3.32)

by xm(x 4+ r2)n

and [b=1] denotes the integral part of the inverse of b.
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Corollary 3.4 Consider m,n,r > 0; s > 0 and the real sequence b = (by)r>1 monotone increasing and
tends to oo, we have:

1\~/Im7n [Fs; b; 'r] = mﬁs(m +1,n,b1) + nI:IS(m, n+1,b1) (3.33)

where, ¥ Re(p2) > Re(p1) > 0,

] /oo Fy (m,paipss =2 ) sin? (5 b1 (2)]) da (3.34)
b

Hs(manabl) = .Tm(I T 7"2)n

1

and [b=1] denotes the integral part of the inverse of b.

Remark 1 The particular case of Theorem (3.1), (3.2) when v1 = vo = 1 and s = 0 is immediately
reduces to the GHF oFy result in [1].

4. Discussion

In this paper, firstly we have defined a Mathieu type series and its alternating variant involving
extended gauss hypergeometric function. Then we have calculated closed integral form M,, ,, and 1\~/Im,n
in the form of the linear combination of the two principal integrals and also discussed some special
cases of the result obtained here. An open problem can be posed concerning the existence of a generic

(appropriately convergent) series instead of F (s) (po, p1,p2;2) in 2.1 and subsequently in 2.2 which

(v1,v2)
could lead to general formulae similar to Theorems 2.1, 3.1.
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