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Isoperimitric problem perturbed by the potential of the reproduction kernel of a
reproducing kernel Hilbert space

Idriss Ouskhnid∗ and Abdesselam Bouarich

abstract: The purpose of This paper is to study the minimizer of the isoperimetric perturbation problem,
over measurable sets of fixed volume.The problem is perturbed by an addition of repulsive nonlocal potentials
of kernel K, which is a reproduction kernel of a reproducing kernel Hilbert space. We establish the existence
of a minimizer of this problem. Besides, we study the geometric shape of a minimizer.
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1. Introduction

The study of isoperimetric problems for a set of finite perimeter and fixed volume has been a central
topic in geometric analysis and the calculus of variations. Classical problems focus on minimizing the
perimeter functional P (E) over set E of fixed volume, leading to the well-known solution given by balls, as
established by the isoperimetric inequality. When additional interaction terms, the problem, the problem
more complicate and requires new techniques to understand the existence, regularity and some geometric
properties of minimizers.

In this paper, we investigate the minimization of the functional:

G(Ω) := P (Ω) +

∫
Rn

∫
Rn

χΩ(x)χΩ(y)K(x− y)dxdy, (1.1)

where Ω is a set of finite perimeter and prescribed volume |Ω| = v, and K is the fundamental solution of
the operator elliptic

L(u) = −div(A∇(u)) + u,

with A is a symetry matrix. The first term in the A(Ω) is a classical perimeter of the set Ω in the sense
of De Giorgi (see [10]):

P (Ω) := sup

{∫
Ω

div(F (x))dx; F ∈ C1
c (Rn,Rn), ∥F∥∞ ≤ 1

}
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and the second term in A(Ω) is non local interaction energy, making the problem more complex than the
isoperimetric problem,

PK(Ω) =

∫
Rn

∫
Rn

χΩ(x)χΩ(y)K(x− y)dxdy,

where the kernel K satisfies the following hypothesises:

• (H1) K is non-negative and radially symmetric.

• (H2) K(· − x) is belonging L2(Rn) for every x ∈ Rn .

This non local interaction term arise in various physical and biological models, such as in the study of
aggregation phenomena, where attractive and repulsive forces compete to determine the shape of optimal
configurations. This work interests to study the minimization problem under volume constraint :

min{G(Ω) : Ω ∈ D} (1.2)

In the reminder of this paper we denote by D the admissible class of sets and defined by:

D := {Ω ⊂ Rn/χΩ ∈ BV (Rn), |Ω| = m}

Note that the two components of G have opposing effects. the perimeter term works to concentrate
the mass into a ball, while the term PK pushes the mass outwards.

Our main results in this work are the following:

1. Existence of minimizers for every mass. This part, in subsection (2.2).

2. Study some properties of the operator L(u) = −div(A∇(u)) + u, in (3).

3. Building a reproducing kernel Hilbert space, and we investigate this result to prove some estimation
for energy functional PK(Ω). The analysis is conducted in (4) and the exact result is shown in
theorem (4.1).

4. The difference PK(Br)−PK(Ω) for every sets Ω ∈ D is controlled by the term infy∈Ω

√
|Br(y)△ Ω|

in section (5) and the precise result is stated in theorem (5.1).

This paper is laid out as follows: in section (1), I give a brief introduction to isoperimetric problems;
in section (2), we study the existence of a minimizer in admissible class D; in section (3), I state some
properties fundamental of operator elliptic L = L(u) = −div(A∇(u)) + u where A is symmetric matrix;
in section (4) I prove some lemma and the main results building the reproducing kernel Hilbert space; in
section (5), I study shape of the minimizer of the optimization problem (1.2).

2. Study the minimizer of the optimization problem 1.2

2.1. The lower semi continuity of the functional G

In this part, we aim to examine the lower semi continuity of the functional PK and derive that the
functional G is lower semi continuous, which plays a significant role in the analysis of the existence of a
minimizer for the optimization problem 1.2.

The following proposition includes an auxiliary result that will be utilized frequently throughout the
remainder of the paper.

Proposition 2.1 For every pair of measurable set in admissible class D and for every K ∈ L2(Rn),
there is a constant Cv,K such that

|PK(E)− PK(F )| ⩽ Cm,K |E∆F |
1
2 (2.1)

In particular the functional PK is continuous in the sense of characteristic function.
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Proof: We have,

PK(E)− PK(F ) =

∫
Rn

∫
Rn

(χE − χF ) (x)χE(y)K(x− y)dxdy

+

∫
Rn

∫
Rn

(χE − χF ) (y)χE(x)K(x− y)dxdy

(2.2)

and ∫
Rn

∫
Rn

∣∣∣ (χE − χF ) (x)χE(y)
∣∣∣2dxdy =

∫
Rn

∫
Rn

∣∣∣ (χE − χF ) (x)
∣∣∣2∣∣∣χE(y)

∣∣∣2dxdy
=

∫
Rn

∣∣∣χE(y)
∣∣∣2(y)dy ∫

Rn

∣∣∣ (χE − χF ) (x)
∣∣∣2dx

=

∫
Rn

∣∣∣χE(y)
∣∣∣(y)dy ∫

Rn

∣∣∣ (χE − χF ) (x)
∣∣∣dx

= |E||E∆F |

(2.3)

Hence, (x, y) 7−→ (χE − χF ) (x)χE(y) belongs the space L2(Rm × Rm).
Since the functional K is belonged to L2(Rm × Rm), then by Hölder inequality

∣∣∣ ∫
Rn

∫
Rn

[(χE − χF ) (x)χE(y)]K(x− y)dxdy
∣∣∣ ⩽ (∫

Rn

∫
Rn

∣∣∣ (χE − χF ) (x)χE(y)
∣∣∣2dxdy) 1

2

(∫
Rn

∫
Rn

∣∣∣K(x− y)
∣∣∣2dxdy) 1

2

⩽ |E|
1
2 |E∆F |

1
2 ∥K∥L2(Rn)

(2.4)

Consequently,

|PK(E)− PK(F )| ⩽ 2v
1
2 ∥K∥L2(Rn)|E∆F |

1
2

This implies that, the functional PK is Hölderian . 2

Since the perimeter is lower semi-continuous (see [4, Theorem 5.2 page 199]), then we have this significant
finding.

Corollary 2.1 The functional G is lower semi-continuous.

2.2. The minimizers of the optimization problem (1.2) is reatched in admissible class D

Theorem 2.1 There exists a set Ω∗ in the admissible class D such that

inf
Ω∈D

{G(Ω)} = G(Ω∗)

Proof: The fact that the kernel K is positive, gives that the infimum of the energy functional G(Ω) over
set of finite perimeter and fixed volume is a finite reel.

Putting M = infΩ∈D G(Ω). By the characterisation of the lower bound, there exists a minimising
sequence (Ωk) in D such that G(Ωk) converge to M as k −→ +∞. Then there exists a reel constant
C > 0 such that G(Ωk) ⩽ C for all k ∈ N.

We have |Ωk|BV (Rn) = |Ωk|+ P (Ωk). Then for every k ∈ N,

|Ωk|BV (Rn) = v + G(Ωk)− PK(Ωk)

⩽ v + C

This implies that the sequence (Ωk) is bounded in the space BV (Rn). So by the compactness in BV (Rn)
there exists a set Ω∗ ⊂ Rn of the finite perimeter and a subsequence which note also (Ωk) such that χΩk

converge to χΩ∗ in L1(Rn).
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We have, ∣∣∣|Ωk| − |Ω∗|
∣∣∣ = ∣∣∣ ∫

Rn

(χΩk
− χΩ∗)(x)dx

∣∣∣
⩽

∫
Rn

∣∣∣χΩk
(x)− χΩ∗(x)

∣∣∣dx
= ∥χΩk

− χΩ∗∥L1(Rn)

Thus, |Ωk| → |Ω∗| as k → ∞. Since |Ωk| = v for all k, then |Ω∗| = limk→∞ |Ωk| = v. Consequently the
set Ω∗ belongs to Dv. Hence by the lower semi continuous of the functional G (see the corollary 2.1), one
has

G(Ω∗) ⩽ lim inf
n−→+∞

G(Ωk)

Since that the sequence(G(Ωn)) converge to M as n −→ +∞ then lim infn−→+∞ G(Ωn) = M . This
implies that G(Ω∗) ⩽ M .

The fact that the set Ω∗ belongs to the admissible class D, gives
M ⩽ G(Ω∗). Consequently,

inf
Ω∈D

G(Ω) = G(Ω∗)

2

3. The fundamental properties of the operator L

In this section, we examine the principal properties of the operator L, which will be used subsequently
to ascertain the configuration of the minimizer Ω∗ of the optimization problem (1.1).

Let A : Rn → M(n,R) be a map which send a point x ∈ Rn on a symmetric matrix A(x) = (ai,j(x)),
where the entries ai,j(x) will be supposed differential bounded functions on Rn, that there is M > 0 such
that |ai,j(x)| ≤ M for all i, j. Moreover, in the sequel we suppose that this hypotheses :

∃λ0 > 0, λ1 > 0,∀x, z ∈ Rn, λ0∥z∥2 ≤ ⟨A(x)z, z⟩ ≤ λ1∥z∥2

Thunks to the field of matrices A(x) we define on the Sobolev space H1(Rn) a bilinear form by,

∀u, v ∈ H1(Rn), (u, v)A :=

∫
Ω

uvdx+

∫
Ω

⟨A∇u,∇v⟩dx

Proposition 3.1 The bilinear form, (·, ·)A : H1(Rn)×H1(Rn) → R, define an inner product such that,

∀u ∈ H1(Rn), (u, u)A ≥ min(λ0, 1)(∥u∥H1(Rn))
2

Consequently, the norm
√
(u, u)A is equivalent to the standard Sobolev norm on H1(Rn).

Proof: Let u and v be elements in H1(Rn).
we have, ∣∣∣ ∫

Rn

A(x)∇u(x) · ∇v(x)dx
∣∣∣ ⩽ ∫

Rn

∣∣∣A(x)∇u(x) · ∇v(x)
∣∣∣dx

⩽
∫
Rn

∥ A(x)∇u(x) ∥∥ ∇v(x) ∥ dx

⩽ nM ∥ ∇u(x) ∥2∥ ∇v(x) ∥2
⩽ nM∥u∥H1(Rn)∥v∥H1(Rn)

By the Hölder inequality, we have∫
Rn

∣∣∣u(x)v(x)∣∣∣dx ⩽ ∥u∥H1(Rn)∥v∥H1(Rn)

Moreover, |(u, v)A| ⩽ max(1, nM)∥u∥H1(Rn)∥v∥H1(Rn).



Isoperimitric problem perturbed by the potential ... 5

Hence the bilinear form (., .)A is well defined on H1(Rn)×H1(Rn).
The fact that the matrix A is symmetric, gives the bilinear form (., .)A is symmetric.
We have,

A(x)∇u(x) · ∇u(x) ⩾ λ0 ∥ ∇u(x) ∥2 .

Then, ∫
Rn

A(x)∇u(x) · ∇u(x)dx ⩾ λ0

∫
Rn

∥ ∇u(x) ∥2 dx

Thus,

(u, u)A ⩾ min(λ0, 1)

(∫
Rn

∥ ∇u(x) ∥2 dx+

∫
Rn

u(x)2dx

)
= min(λ0, 1) ∥ u ∥2H1(Rn)

This gives that if (u, u)A = 0, then ∥u∥H1(Rn) = 0, which gives that u = 0.
Consequently the bilinear form (., .)A is a inner product on H1(Rn)×H1(Rn) 2

Note that, by the mean of the field of matrices x ∈ Rm → A(x) ∈ M(m,R) we can define a differential
operator:

L = −div(A∇) + id : H1(Rm) → H−1(Rn)
u 7→ −div(A∇u) + u

which acts naturally as a distribution on Rn.

Proposition 3.2 The operator L : H1(Rn) → H−1(Rn) is bijective, and its inverse L−1 is continuous.

Proof: Let f be an element in H−1(Rn). We prove that the equation

L(u) = f (3.1)

has a unique solution in H1(Rn).
For every v ∈ H1(Rn), we have in the sense of distribution :

⟨L(u), v⟩H−1(Rn),H1(Rn) = ⟨f, v⟩H−1(Rm),H1(Rn)

Note that for every u and v in H1(Rn), one has

(u, v)A =

∫
Rm

A(∇u) · ∇vdx+

∫
Rn

u(x)v(x)dx

= ⟨A(∇u),∇v⟩D′ (Rn) + ⟨u, v⟩D′ (Rn)

= ⟨−div(A(∇u)), v⟩D′ (Rn) + ⟨u, v⟩D′ (Rn)

= ⟨−div(A(∇u)) + u, v⟩D′ (Rn)

= ⟨L(u), v⟩D′ (Rn)

By above we can deduce that to establish the equation (3.1) has a unique solution is equivalent to proving
that the formulation variational

a(u, v) = F (v)

has a unique solution in H1(Rn), where a(u, v) = (u, v)A and
F (v) = ⟨f, v⟩H−1(Rm),H1(Rn).

By the proposition (3.1) the bilinear form a(., .) is bounded and coercive in H1(Rn)×H1(Rn). The fact
that f is an element of the space H−1(Rn), gives that the linear form F is bounded.
Thanks to the Lax-Milgram’s theorem, there exists unique element uf in H1(Rn) such that for every v
in H1(Rn)

a(uf , v) = F (v)

Consequently, for every f ∈ H−1(Rn) there exists unique uf ∈ H1(Rn) such that L(uf ) = f . This implies
that the operator L is bijective.
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By the proposition (3.1) we have, min(1, λ0) ∥ uf ∥2≤ (uf , uf )A.
So,

∥ uf ∥2H1(Rn)≤
1

min(1, λ0)
a(uf , uf )

This implies that, ∥ uf ∥2H1(Rn)⩽
1

min(1, λ0)
⟨f, uf ⟩H−1(Rm),H1(Rn). The fact that f ∈ H−1(Rn), gives

that
⟨f, uf ⟩H−1(Rn),H1(Rn) ≤∥ f ∥H−1(Rn)∥ uf ∥H1(Rn)

this and above implies that ∥ uf ∥H1(Rn)≤
1

min(1, λ0)
∥ f ∥H−1(Rn).

Therefore,

∥ L−1(f) ∥H1(Rn)≤
1

min(1, λ0)
∥ f ∥H−1(Rn)

Consequently the operator L−1 : H−1(Rn) → H1(Rn) is continuous. 2

Proposition 3.3 For every measurable set E ⊂ Rn, the characteristic function χE belongs to the space

H−1(Rn) and ∥χE∥H−1(Rn) ⩽ |E|
1
2 .

Proof: Let u be an element in the space H1(Rn).
we have

|⟨χE , u⟩| =
∣∣∣ ∫

Rn

χE(x)u(x)dx
∣∣∣

≤
(∫

Rn

|χE(x)|2dx
) 1

2
(∫

Rn

|u(x)|2dx
) 1

2

≤ |E| 12 ∥ u ∥L2(Rn)

≤ |E| 12 ∥ u ∥H1(Rn)

Which entails that χE ∈ H−1(Rn) and ∥ χE ∥H−1(Rn)≤ |E|
1
2 2

4. Build a reproducing kernel Hilbert space

This section is mainly devoted to the construction of a reproducing kernel space Hilbert, which denoted
by H(Rn) and which will allow us to establish an estimation for the energy functional PK .

We consider the application j : L2(Rn) → F(Rn,R) define by :

∀f ∈ L2(Rn), j(f)(x) =

∫
Rn

f(z)K(z − x)dz

Lemma 4.1 The application j : L2(Rn) → F(Rn,R) is continuous.

Proof: Let (fk) be a sequence of the function which converge to 0 in L2(Rn).
For every x ∈ Rn, we have

|j(fk)(x)| =
∣∣∣ ∫

Rn

fk(y)U(y − x)dy
∣∣∣

⩽
∫
Rn

|fk(y)||K(y − x)|dy

⩽ ∥fk∥L2(Rn)∥K(· − x)∥L2(Rn)

The fact that the sequence (fk) converge to 0 in L2(Rn), and K(· − x) ∈ L2(Rn), give that the sequence
(j(fk)(x)) converge to 0 for all x ∈ Rn on R. Hence the sequence (j(fk)) converge to 0 in F(Rn,R).
Consequently the application j is continuous. 2
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In the following we can interest in a building the reproducing kernel Hilbert space, which will noted by
H(Rn) and defined as H(Rn) = j(L2(Rn)), which we equip with the inner product ,

∀u, v ∈ L2(Rn) :< j(u), j(v) >H(Rn) :=< u, v >L2(Rn)

Theorem 4.1 The Hilbert space (H(Rn);< ., . >H) is a reproducing kernel Hilbert space and its kernel
K is given by:

K(x, y) =

∫
Rn

K(z − x)K(z − y)dz

where K is the fundamental solution of the differential operator

L = −div(A∇) + id

Proof: Let g be an element in H(Rn).
Then there exists an element G in L2(Rn) such that : g = j(G).
We have for every x ∈ Rn,

|g(x)| =
∣∣∣ ∫

Rn

G(z)K(z − x)dz
∣∣∣

≤∥ G ∥L2∥ K(.− x) ∥L2

The fact that ∥ G ∥2L2=< G,G >L2=< j(G), j(G) >H=< g, g >H, gives that for every x in Rn

|g(x)| ≤∥ g ∥H∥ K(.− x) ∥L2

.
This implies that the evaluation functional

Ex : H(Rn) → R
g 7→ g(x)

is bounded on H(Rn).
Now we show that the space H(Rn) is complete.
Let (fk) be a Cauchy sequence in H(Rn). Then there is a Cauchy sequence (vk) in L2(Rn) such that

j(vk) = fk.
The fact that the space L2(Rm) is complete, gives that there exists v ∈ L2(Rn) such that the sequence

(vk) converge to v. Since that the function j is continuous, then j(vk) converge to j(v). Therefore the
Cauchy sequence fk converge to j(v) in H(Rn). Finally the space (H(Rn), < ., . >H(Rn)) is a Hilbert
space.

This implies that the space (H(Rn), < ·, · >H) is a reproducing kernel Hilbert space.
Now we are passing to determine the reproducing kernel of the space H(Rn).
Let kx be the reproducing kernel at the point x and Nx ∈ L2(Rn) such that j(Nx) = kx.
We consider g an element in H(Rn), then there exists an element G ∈ L2(Rn) such that g = j(G).
So for all x ∈ Rn we have,

g(x) =< g, kx >H

=< G,Nx >L2

=

∫
Rn

G(z)Nx(z)dz

In the other hands, we have g(x) = j(G)(x) =
∫
Rn G(z)K(z − x)dz, then this and above implies that:

∀z ∈ Rn : Nx(z) = K(z − x)

For every y ∈ Rn we have,
kx(y) = j(Nx)(y)

= j(K(.− x))(y)

=

∫
Rn

K(z − x)K(z − y)dz
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Which entails that the reproducing kernel K for the reproducing kernel Hilbert space H is given by
the following :

K(x, y) =

∫
Rn

K(z − x)K(z − y)dz for all x, y ∈ Rn

2

Proposition 4.1 The application
L−1 : L2(Rn) → H(Rn)

f 7→ L−1(f) := j(f)
is bijective.

Proof:
f ∈ ker(L−1) ⇔ ∀x ∈ Rn;L−1(f)(x) = 0

⇔ ∀y ∈ Rn;

∫
Rn

L−1(f)(x)U(x− y)dx = 0

⇔
∫
Rn

∫
Rn

f(z)U(x− z)U(x− y)dzdx = 0

⇔
∫
Rn

f(z)
(∫

Rn

U(x− z)U(x− y)dx
)
dz = 0

⇔
∫
Rn

f(z)K(z, y)dz = 0

⇔< f ;K(., y) >L2= 0

⇔ f ∈ span{K(., y); y ∈ Rn}⊥

Since the subspace {K(., y)/y ∈ Rn} is dense in H(Rn), then

span{K(., y); y ∈ Rm}⊥ = {0}

This implies that the application L−1 is injective.
By the above and The fact that L−1(L2(Rn)) = H(Rn)) , give that the application L−1 is bijective.

2

Corollary 4.1 The application L−1 realize an isometric.

5. The geometric shape of the minimizer of the optimization problem (1.2)

In this section we give an estimation which compare PK(Br) with PK(Ω) for all set Ω in the admissible
class D.

Theorem 5.1 Let Ω ⊂ Rn be a set in the admissible class D. Then there exist a constant C0 > 0 such
that for every set Ω in admissible class D,

PK(Br) ⩽ PK(Ω) + C0 inf
y∈Ω

√
|Br(y)△ Ω|

Proof: By organizing the term PK(Br)− PK(Ω) we have

PK(Br)− PK(Ω) = 2

∫
Rn

∫
Rn

χBr (y)
(
χBr − χΩ

)
(x)K(x− y)dxdy

−
∫
Rn

∫
Rn

(
χBr

− χE

)
(x)

(
χBr

− χΩ

)
(y)K(x− y)dxdy

(5.1)

Define V(x) =
∫
Rn

(
χBr

− χΩ

)
(x)K(x− y)dy i.e V(x) = (χBr

− χΩ) ∗K(x).

The fact that the kernel K is a fundamental solution of the operator L, gives

L
(
K(x− y)

)
= δx in D′(Rn)
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where δx is the Dirac distribution at the x.
Formally, we compute the L(V)(y) as follows. We have

L(V)(y) =
∫
Rn

L(K(y − x))(χBr − χΩ)(x)dx

=

∫
Rn

δy(χBr
− χΩ)(x)dx

= (χBr
− χΩ)(y)

which implies that the function V can be satisfied as the solution to the equation:

L(V) = χBr − χΩ

We have,∫
Rn

∫
Rn

(
χBr

− χΩ

)
(x)

(
χBr

− χΩ

)
(y)K(x− y)dxdy =

∫
Rn

(
χBr

− χΩ

)
(y)V(y)dy

=

∫
Rn

L(V(y))V(y)dy

=

∫
Rn

A(y)∇V(y) · ∇V(y)dy +
∫
Rn

V2(y)

≥ λ0

∫
Rn

∥∇V(y)∥2dy +
∫
Rn

V2(y)dy

≥ 0

This and (5.1) yield

PK(Br)− PK(Ω)

PK(Br)− PK(Ω) ≤ 2

∫
Rn

∫
Rn

χBr (y)
(
χBr − χE

)
(x)K(x− y)dxdy

= 2

∫
Br

V(y)dy
(5.2)

We have L(V)(y) = (χBr
− χΩ)(y). Then L(V)(y) ⩾ 0 for all y in Br.

Hence, V is L super harmonic in Br. By mean value property, we can deduce that∫
Br

V(y)dy ≤ |Br|V(0)

This and (5.2) gives that

PK(Br)− PK(Ω) ⩽ 2|Br|V(0) (5.3)

We have V(x) = (χBr
− χΩ) ∗K(x). Then V(x) = j(χBr

− χΩ)(x) for all x in Rn.
The fact that (χBr

− χΩ) ∈ L2(Rn) and j(L2(Rn)) = H(Rn) gives
j(χBr

− χΩ) ∈ H(Rn) .
Since the space H(Rn) is a reproducing kernel Hilbert space, which implies that

V(x) ⩽∥ kx ∥H(Rn)∥ V ∥H(Rn) for all x ∈ Rn

This and (5.3) yield

PK(Br)− PK(Ω) ⩽ 2|Br| ∥ k0 ∥H(Rn)∥ V ∥H(Rn) (5.4)
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The fact that the application j is bounded, gives

∥ V ∥H(Rn)⩽∥ j ∥L(L2,H(Rn))

√
| Br △ Ω | (5.5)

Inserting (5.5) in (5.4) we obtain

PK(Br)− PK(Ω) ⩽ 2|Br| ∥ k0 ∥H(Rn)∥ j ∥L(L2,H(Rn))

√
| Br △ Ω |

The fact that the functional is invariance by translation, gives that

PK(Br)− PK(Ω) ⩽ 2|Br| ∥ k0 ∥H(Rn)∥ j ∥L(L2,H(Rn)) inf
y∈Ω

√
| Br(y)△ Ω |

Then
PK(Br)− PK(Ω) ⩽ C0 inf

y∈Ω

√
| Br(y)△ Ω |

where C0 := 2|Br| ∥ k0 ∥H(Rn)∥ j ∥L(L2,H(Rn)) □ 2

Proposition 5.1 There is a constant C0 such that for every set Ω in the admissible class D, one has

G(Br) ⩽ G(Ω) + C0 inf
y∈Ω

√
| Br(y)△ Ω |

Proof: Thanks to the theorem (5.1), we have

PK(Br) ⩽ PK(Ω) + C0 inf
y∈Ω

√
|Br(y)△ Ω|

for every set Ω in admissible class D.
By the isoperimetric inequality, the perimeter is minimized by balls.
So,

P (Br) ⩽ P (Ω)

Thus,
G(Br) ⩽ G(Ω) + C0 inf

y∈Ω

√
|Br(y)△ Ω|

2
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