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On hα-Open Sets In Topological Spaces
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abstract: In 2022, Abdullah et.al [10] introduced a new class of open sets in topological space called
hα-open sets. In this paper, we have introduced and study topological properties of hα-interior, hα-interior
points, hα-neighbourhood, hα-closure, hα-exterior, hα-limit points, hα-derived, hα-border, hα-frontier by
using the concept of hα-open sets. Also, we have presented the notion of almost hα-continuous, hα-contra
continuous, almost hα-contra continuous, and strongly hα-continuous functions. Some properties, counter
examples and theorems are established. Furthermore, we have shown that every strongly hα-continuous
function is continuous and the composition of an hα-continuous and a strongly hα-continuous function is
hα-irresolute.
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1. Introduction

Open sets are crucial to topology because they form the basis of topological spaces, which in turn
provides a way to the development of concepts like continuity, connectedness, compactness, separation
axioms, and convergence etc. In order to better understand the structure and characteristics of topological
spaces, numerous investigations from time to time have been conducted on open sets. The standard
definition of open sets is crucial for many classical results, topologist have long been exploring more
generalized and refine version of open sets to understand spaces with additional structure or weakened
conditions. There are various generalizations of open sets, (see [7,22]). One of the earliest advancements
came in 1963 when Levine [11] proposed the concept of semi-open sets along with semi-continuity, which
provided a framework for studying weaker forms of openness and continuity in topological spaces. Later,
in 1970 Levine [15] proposed the idea of generalized open sets as an extension of the traditional idea of
open sets. Andrijevic [12] in 1996, establisehed the concept of b-open sets, and various forms of continuity
related to this idea have been explored in [3,1,19,23,31,30]. In 2001, Sundaram and Pushpalatha [26]
extended the study of generalized open set and proposed the idea of strongly generalized open sets.
Generalized open sets introduction has allowed for broader definition of continuity such as generalized
continuity which is defined as, a function f : (X, τ) → (Y, τ) is termed as generalized continuous, if
f−1(G) is generalized open in (X, τ) for each generalized open set G in (Y, τ). Generalized continuity has
enabled the study of mappings that do not strictly preserve classical open sets but still retain a weaker
form of continuity. Chawalit [8,9] further study generalized continuous mapping and introduced some
relationships between generalized continuous and continuous functions. Njasted [25] in 1965, initially
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proposed the idea of α-open sets. In 2021, Abbas [13] gave the idea of h-open sets. By using these notions,
Abdullah et al. [10] in 2022 presented the idea of hα-open sets. Our aim of this paper is to present
and investigate the topological characteristics of hα-interior, hα-interior points, hα-neighbourhood, hα-
closure, hα-exterior, and hα-limit points, hα-derived hα-border, hα-frontier in the context of [13], by
using the idea of hα-open sets.
In 1996, Dontchev [15] introduced the notion of contra-continuous function. Baker [11] defined almost
contra-continuous and contra almost-β-continuous functions. A new class of functions known as regular
set connected functions was given by Dontchev et al. [16]. In [19], Singh and Singal presented the
class of almost continuous functions. These functions have also been the subject of some research in
recent years, see [14,20]. In 1960, Levine [23] proposed the idea of strong continuity in topological
spaces. Few decades earlier, many researchers contributed in this, see [21,6,27]. Recently Sharma et al.
[28] established the notion of strongly h-continuous function. In this paper, we introduced the notion
of almost hα-continuous, hα-contra-continuous, almost hα-contra-continuous, strongly hα-continuous
functions and investigate some of their properties. Also we show that every strongly hα-continuous
function is continuous and the composition of an hα-continuous and a strongly hα-continuous function
is hα-irresolute.

2. Preliminaries

This section deals with some basic definitions and results which will be used in the our next sections.
Throughout this paper, X, Y and Z stands for topological spaces with no separation axioms assumed,
unless otherwise stated. For a subset A of X , the closure of A and the interior of A will be a denoted
by Cl(A) and Int(A), respectively.

Definition 2.1 A subset A of a topological space (X, τ) is said to be:

1. h-open [13]: If for each non-empty set U in X,U ̸= X and U ∈ τ , as a result A ⊆ int(A ∪ U).

2. α-open [25]: If A ⊆ int(Cl(int(A))) and the complement of α-open is called α-closed.

3. hα-open [10]: If for each non-empty set U in X, U ̸= X and U ∈ τα, as a result A ⊆ int(A ∪ U)
and the complement of hα-open set is called hα-closed.

4. regular open [18]: If A = int(Cl(A)).

5. regular closed [18]: If A = Cl(int(A)).
The family of hα-open(resp. α-open) is denoted by τhα(resp.τα).

Lemma 2.1 [25] Every open set in a topological space is α-open.

Lemma 2.2 [10] Every open set in a topological space is hα-open.

Proposition 2.1 [10] Each continuous mapping is hα-continuous mapping.

Definition 2.2 Let (X, τ) and (Y, σ) be two topological spaces. Then a function f : (X, τ) → (Y, σ) is
said to be:

1. hα-continuous [10]: If f−1(G) is hα-open set in X for every open set G in Y .

2. hα-irresolute [10]: If f−1(G) is hα-open set in X for every hα-open set G in Y .

3. hα-totally continuous [10]: If f−1(G) is clopen in X for each hα-open set G in Y .

4. almost continuous [19]: If f−1(G) is open in X for every regular open set G in Y .

5. contra-continuous [15]: If f−1(G) is closed in X for every open set G of Y .

6. regular set connected [16]: If f−1(G) is clopen in X for every regular open set G of Y .

7. almost contra-continuous [11]: If f−1(G) is closed in X for every regular open set V of Y .

8. strongly continuous [23]: If f−1(G) is clopen in X for every open set G in Y .
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3. hα-open sets

In this section, we define and study the topological properties of hα-interior, hα-interior points, hα-
neighbourhood, hα-closure, hα-exterior, hα-limit points, hα-derived, hα-border, hα-frontier by using the
concept of hα-open sets and established some important results. Also we have shown that the family of
hα-open sets form a generalized topology in the sense of Császár [4].

Definition 3.1 Let (X, τ) be a topological space and A ⊆ X.Then hα-interior of A is defined as the
union of all hα-open sets contained in A and we denote it by inthα(A).It is obvious the inthα(A) is
hα-open set for any subset A of X.

Definition 3.2 Let (X, τ) be a topological space and A ⊆ X.Then A is said to be hα-neighbourhood of
a point x ∈ X if there exist W ∈ τhα(X,x) such that W ⊆ A.The family of all hα-neighbourhood of a
point x ∈ X is denoted by Nhα(x) and is called the hα-nbhd system of x.

Theorem 3.1 Let (X, τ) be a topological space. Then the union of any collection of hα-open set is
hα-open.

Proof: Let {Aλ}λ∈Λ be a collection of hα-open sets, and let A =
⋃

λ∈Λ Aλ. Then for any non-empty
U ̸= X,U ∈ τα, each Aλ satisfies Aλ ⊆ int(Aλ ∪ U). Since A ∪ U =

⋃
λ∈Λ(Aλ ∪ U). Then

int(A ∪ U) = int

(⋃
λ∈Λ

(Aλ ∪ U)

)
⊇
⋃
λ∈Λ

int(Aλ ∪ U) ⊇
⋃
λ∈Λ

Aλ = A.

Thus, A ⊆ int(A ∪ U), therefore A is hα-open. 2

Theorem 3.2 The Finite intersection of hα-open sets need not be hα-open

Example 3.1 Consider the set of real numbers (R) with the usual topology τ . Let A = (0, 1)∪ (1, 2) and
B = (1, 2) ∪ (2, 3). Then both A and B are hα-open in τ , but their intersection A ∩ B = (1, 2) is not
hα-open because if we take an α-open set U = (0, 1). Then the set A ∩ B = (1, 2) will not satisfy the
condition of hα-open set.

Remark 3.1 In general, the family of hα-open sets does not form a topology. But it forms a generalized
topology in the sense of Császár [4].

Proposition 3.1 If A is a subset of X.Then inthα(A) =
⋃{

W : W is hα-open, W ⊆ A
}

Proof: Let A be a subset of X and

let x ∈ inthα(A) ⇔ x is an hα-interior point ofA.

⇔ A is an hα-nbhd of point x.

⇔ there exist an hα-open set W suchthat x ∈ W ⊆ A.

⇔ x ∈
⋃{

W : W is hα-open,W ⊆ A
}
.

Hence inthα(A) =
⋃{

W : W is hα-open, W ⊆ A
}
.

2

Theorem 3.3 Let (X, τ) be a topological space and A, B are subsets of X.Then following holds:

1. If A ⊆ B, then inthα(A) ⊆ inthα(B).

2. inthα(A) ⊆ A.
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3. If B is an hα-open set contained in A, then B ⊆ inthα(A).

4. If A is hα-open set contained in A, then B ⊆ inthα(A).

5. inthα(X) = X and inthα(ϕ) = ϕ.

Proof: (1) Let A and B be any two subsets of X such that A ⊆ B. Let x ∈ inthα(A). Then x is an
hα-interior point of A and so A is an hα-nbhd of x. Also B an hα-nbhd of x ⇒ x ∈ inthα(B). Thus
inthα(A) ⊆ inthαB.
(2) Let x ∈ inthα(A) ⇒ A is an hα-nbhd of x ⇒ x ∈ A.Thus inthα(A) ⊆ A.
(3) Let B be any hα-open set suchthat B ⊆ A. Let x ∈ B ⊆ A. Since B is hα-open set contained in
A ⇒ A is an hα-nbhd of x and consequently x is an hα-interior point of A. Hence x ∈ inthα(A). Thus
B ⊆ inthα(A).

Note 1 inthα(A) is the largest hα-open set contained in B.

(4) Let A be an hα-open subset of X. Then by (2), we have inthα(A) ⊆ A. Also A is hα-open set
contained in A. Then by (3), we have A ⊆ inthα(A).Hence A = inthα(A).
(5) Since X and ϕ are hα-open sets. Then by Proposition 3.1, we have inthα(X) =

⋃{
W : W is hα-

open,W ⊆ X
}
= X and since ϕ is the only hα-open set contained in ϕ. Thus inthα(ϕ) = ϕ. Therefore

inthα(X) = X and inthα(ϕ) = ϕ. 2

Theorem 3.4 If A and B are subsets of a topological space X. Then inthα(A)∪inthα(B) ⊆ inthα(A∪B).

Proof: We know that A ⊆ A ∪B and B ⊆ A ∪B. Then by Theorem 3.3, inthα(A) ⊆ inthα(A ∪B) and
inthα(B) ⊆ inthα(A ∪B) ⇒ inthα(A) ∪ inthα(B) ⊆ inthα(A ∪B). 2

Theorem 3.5 If A and B are subsets of a topological space X. Then inthα(A∩B) = inthα(A)∩inthα(B).

Proof: Since we know that A ∩B ⊆ A and A ∩B ⊆ B. Then by Theorem 3.3, we have inthα(A ∩B) ⊆
inthα(A) and inthα(A ∩B) ⊆ inthα(B) ⇒ inthα(A ∩B) ⊆ inthα(A) ∩ inthα(B)
Again, let x ∈ inthα(A) ∩ inthα(B).Then x ∈ inthα(A) and x ∈ inthα(B). Hence x is an hα-interior
point of A and B.It follows that A and B are hα-nbhd of x, so that their intersection A ∩ B is also
hα-nbhds of x. Hence x ∈ inthα(A ∩ B).Thus x ∈ inthα(A) ∩ inthα(B) ⇒ x ∈ inthα(A ∩ B). Therefore
inthα(A) ∩ inthα(B) ⊆ inthα(A ∩B). Thus we have inthα(A ∩B) = inthα(A) ∩ inthα(B). 2

Proposition 3.2 Let (X, τ) be a topological space and A be a subset of X. Then

1. inthα(inthα(A)) = inthα(A).

2. inthα(int(A)) = int(A).

Proof: (1) Since inthα(A) ∈ τhα. Then by Theorem 3.3(4), we have inthα(A) = inthα(inthα(A)).
(2) Since int(A) is an open set.Then int(A) is hα-open set. By Theorem 3.3(4), we have int(A) =
inthα(int(A)). 2

Theorem 3.6 If A is a subset of a topological space X.Then int(A) ⊆ inthα(A).

Proof: Let A be a subset of X.
let x ∈ int(A) ⇒ x ∈

⋃{
W : W is open,W ⊆ A

}
⇒ there exist an open set W suchthat x ∈ W ⊆ A.
⇒ there exist an hα-open set W suchthat x ∈ W ⊆ A.
⇒ x ∈

⋃{
W : W is hα-open,W ⊂ A

}
.

⇒ x ∈ inthα(A).Hence int(A) ⊆ inthα(A). 2
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Theorem 3.7 A subset A of a topological space X is hα-open iff A is an hα-nbhd of each of its points.

Proof: Suppose A is hα-open set.Let x ∈ A then by Definition 3.2, an hα-nbhd of x is any subset of X
containing an hα-open set which itself contain x. But A is itself an hα-open set which itself contain x,
so A is a subset of A which itself contains an hα-open set which itself contains x. Thus for all points
x ∈ X, A is an hα-nbhd of x.
Conversely, suppose A is an hα-nbhd of each of its points. Then for each x ∈ A, there is an hα-open set
W containing x(denoted by Wx) suchthat x ∈ Wx ⊆ A. Clearly A =

⋃
x∈A

Wx, since each Wx is hα-open

set and we know that union of hα-open set is hα-open. Thus A is hα-open set. 2

Corollary 3.1 Let (X, τ) be a topological space and A ⊆ X. If A is hα-closed and x ∈ Ac. Then there
is an hα-nbhd N of x suchthat N ∩A = ϕ.

Proof: Since A is an hα-closed set, then Ac is an hα-open set. By Theorem 3.7, Ac contains hα-nbhd
of each of its points. Thus there exist an hα-nbhd N of x such that N ⊆ Ac i.e; N ∩A = ϕ. 2

Theorem 3.8 Let (X, τ) be a topological space and x ∈ X be arbitrary. Then

1. If M is a superset of an hα-nbhd N of x. Then M is also an hα-nbhd of x.

2. Is N1 and N2 be two hα-nbhd of x, then N1 ∩N2 is also hα-nbhd of x.

3. there is atleast one hα-nbhd of x.

4. for each hα-nbhd N of x, x ∈ N .

Proof: (1) Let N be an hα-nbhd of x, then there exist W ∈ τhα(X,x) such that W ⊆ N . Let M be a
superset of N such that x ∈ W ⊆ N ⊆ M ⇒ x ∈ W ⊆ M ⇒ M is an hα-nbhd of x.
(2) Let N1 and N2 be two hα-nbhd of x, then there exist W1, W2 ∈ τhα(X,x) such that W1 ⊆ N1 and
W2 ⊆ N2.Since x ∈ W1, x ∈ W2 ⇒ x ∈ W1 ∩W2.Also W1 ⊆ N1, W2 ⊆ N2 ⇒ W1 ∩W2 ⊆ N1 ∩N2 and
W1,W2 ∈ τhα(X) ⇒ W1 ∩W2 ∈ τhα(X).Therefore we have, there exist W1 ∩W2 ∈ τhα(X,x) suchthat
W1 ∩W2 ⊆ N1 ∩N2. Thus N1 ∩N2 is an hα-nbhd of x.
(3) Since x ∈ X ⊆ X ∈ τhα. By definition 3.7, X is an hα-nbhd of x. Hence there exist at least one
hα-nbhd of x.
(4) Let N be an hα-nbhd of x, then there exist W ∈ τhα(X,x) such that W ⊆ N . Consequently x ∈ N .

2

Definition 3.3 Let (X, τ) be a topological space and A ⊆ X. Then hα-closure of A is defined as the
intersection of all hα-closed sets in X containing A. It is denoted by Clhα(A).

Note 2 (1)Clhα(A) is hα-closed for any subset A of X.
(2)Clhα(A) is the smallest closed set containing A.

Theorem 3.9 Let (X, τ) be a topological space and A and B are subsets of X. Then

1. Clhα(X) = X and Clhα(ϕ) = ϕ.

2. A ⊆ Clhα(A).

3. If A ⊆ B, then Clhα(A) ⊆ Clhα(B).

4. If B is an hα-closed set containing A. Then Clhα(A) ⊆ B.

5. A is hα-closed iff A = Clhα(A).
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Proof: (1) By definition of hα-closure, X is the only hα-closed set containing X. Therefore Clhα(X) =⋂{
X
}
= X. Hence Clhα(X) = X also by definition of hα-closure, Clhα(ϕ) =

⋂{
ϕ
}
. Hence Clhα(ϕ) = ϕ.

(2) By definition of hα-closure of A, it is obvious that A ⊆ Clhα(A).
(3) Let A and B be subset of X such that A ⊆ B, by (2) B ⊆ Clhα(B), Since A ⊆ B, we have
A ⊆ Clhα(B).But Clhα(B) is closed set.Thus Clhα(B) is a closed set containing A.Since we know that
Clhα(A) is the smallest closed set containing A, we have Clhα(A) ⊆ Clhα(B).
(4) Let B be any hα-closed set containing A. Since Clhα(A) is the intersection of all hα-closed set
containing A, Clhα(A) is contained in every hα-closed set containing A. Thus in particular Clhα(A) ⊆ B.
(5) If A is hα-closed then A itself is the smallest hα-closed set containing A and hence Clhα(A) = A.
Conversely, suppose Clhα(A) = A, we know that Clhα(A) is the smallest hα-closed set containing A and
so A is hα-closed. 2

Theorem 3.10 If A and B are subsets of a topological space X. Then Clhα(A∩B) ⊆ Clhα(A)∩Clhα(B).

Proof: Let A and B be subsets of X. Clearly A∩B ⊆ A and A∩B ⊆ B.Then by Theorem 3.8, we have
Clhα(A ∩B) ⊆ Clhα(A) and Clhα(A ∩B) ⊆ Clhα(B) ⇒ Clhα(A ∩B) ⊆ Clhα(A) ∩ Clhα(B). 2

Corollary 3.2 If A and B are subsets of a topological space X. If A is hα-closed set, then Clhα(A∩B) ⊆
A ∩ Clhα(B).

Proof: Proof follows from Theorem 3.10 and 3.9(5). 2

Theorem 3.11 For an x ∈ X, x ∈ Clhα(A) iff V ∩A ̸= ϕ for every hα-open set V containing x.

Proof: Let x ∈ X and x ∈ Clhα(A). Suppose there exist an hα-open set V containing x suchthat
V ∩ A = ϕ. Then A ⊂ X \ V and X \ V is hα-closed , we have Clhα(A) ⊂ X \ A. This shows that
x /∈ Clhα(A), a contradiction. Thus V ∩A ̸= ϕ for every hα-open set V containing x. Conversely suppose
that V ∩A ̸= ϕ for every hα-open set V containing x. To prove x ∈ Clhα(A), let x /∈ Clhα(A) then there
exist an hα-closed set B containing A such that x /∈ B. Then x ∈ X \ B and X \ B is hα-open. Also
(X \B) ∩A = ϕ, which is a contradiction. Thus x ∈ Clhα(A). 2

Corollary 3.3 Let (X, τ) be a topological space and A ⊆ X. Then Clhα(Clhα(A)) = Clhα(A).

Proof: Since Clhα(A) is hα-closed set. Then by Theorem 3.9, we have Clhα(Clhα(A)) = Clhα(A). 2

Definition 3.4 Let (X, τ) be a topological space and A ⊆ X. Then hα-exterior of A is denoted by
exthα(A) and is defined as exthα(A) = inthα(X \A).

Example 3.2 Let X = {x, y, z}, τ = {ϕ,X, {y}, {y, z}} and τhα = {ϕ,X, {y}, {y, z}, {z}, {x, z}
If A = {x, y}, then exthα(A) = {z}.

Theorem 3.12 Let (X, τ) be a topological space and A,B are subsets of X. Then

1. If A ⊆ B, then exthα(A) ⊆ exthα(B).

2. exthα(A ∪B) = exthα(A) ∩ exthα(B).

3. exthα(A ∩B) ⊇ exthα(A) ∪ exthα(B).

4. exthα(X) = ϕ and exthα(ϕ) = X.

5. exthα(A) = exthα(X \ exthα(A)).

6. exthα(A) is hα-open set.
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7. exthα(A) = X \ Clhα(A)

8. exthα(exthα(A)) = inthα(Clhα(A)).

Proof: (1) Since A ⊆ B, then exthα(B) = inthα(X \B) ⊆ inthα(X \A) = exthα(A).Hence exthα(B) ⊆
exthα(A).
(2) exthα(A ∪ B) = inthα(X \ (A ∪ B)) = inthα((X \ A) ∩ (X \ B)) = inthα(X \ A) ∩ inthα(X \ B) =
exthα(A) ∩ exthα(B).
(3)exthα(A ∩ B) = inthα(X \ (A ∩ B)) = inthα((X \ A) ∪ (X \ B)) ⊇ inthα(X \ A) ∪ inthα(X \ B) =
exthα(A) ∪ exthα(B).
(4) exthα(X) = inthα(X \X) = inthα(ϕ) = ϕ and exthα(ϕ) = inthα(X \ ϕ) = inthα(X) = X.
(5) exthα(X \ exthα(A)) = exthα(X \ (inthα(X \A))) = inthα(X \A) = exthα(A).
(6) and (7) straight forward.
(8) exthα(exthα(A)) = exthα(X \ Clhα(A)) = inthα(X \ (X \ Clhα(A)) = inthα(Clhα(A)). 2

Theorem 3.13 Let (X, τ) be a topological space and A is a subset of X. Then

1. exthα(A) ⊆ Ac.

2. inthα(A) ⊆ exthα(exthα(A)).

Proof: (1) exthα(A) = inthα(A
c) ⊆ Ac, by Theorem 3.3(2).

(2) By (1), we have exthα(A) ⊆ Ac. Then by Theorem 3.12(1), we have exthα(A
c) ⊆ exthα(exthα(A))

but exthα(A
c) = inthα(A). Thus inthα(A) ⊆ exthα(exthα(A)). 2

Theorem 3.14 Let (X, τ) be a topological space and A be a subset of X. Then exthα(A) =
⋃{

W : W is

hα-open, W ⊆ Ac
}
.

Proof: By Definition 3.4, exthα(A) = inthα(X \ A) i.e; exthα(A) = inthα(A
c). But by Theorem 3.1 we

have inthα(A
c) =

⋃{
W : W is hα-open, W ⊆ Ac

}
. Thus exthα(A) =

⋃{
W : W is hα-open, W ⊆ Ac

}
.
2

Definition 3.5 Let (X, τ) be a topological space and A ⊆ X.A point x ∈ Xis said to be hα-limit point
of A if every hα-open set W containing x contains atleast one point of A different from x i.e; ∀ W ∈
τhα(X,x) ⇒ W

⋂(
A \ {x}

)
̸= ϕ. The set of all hα-limit point of A is called hα-derived set of A and is

denoted by Dhα(A).

Example 3.3 Let X = {a, b, c, d}, A = {a, c, d}, τ = {ϕ,X, {a}, {a, b}, {a, c}, {a, b, c}} and τhα =
{ϕ,X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {b, c, d}.Then Dhα(A) = {d}.

Theorem 3.15 Let (X, τ) be a topological space and A ⊆ X. Then a point x ∈ X is an hα-exterior
point of A iff x is not an hα-limit point of A i.e; iff x ∈ Clhα(A

c).

Proof: Let x be an hα-exterior point of A, then x is an hα-interior point of Ac, so Ac is an hα-nbhd of
x containing no point of A. It follows that x is not an hα-limit point of A i.e; x ∈ Clhα(A

c). Conversely
suppose that x is not an hα-limit point of A, then there exist an hα-nbhd N of x which contains no point
of A implies that x ∈ N ⊆ Ac. It follows that x is an hα-exterior point of A. 2

Theorem 3.16 Let (X, τ) be a topological space and A be a subset of X. Then following are equivalent:

1. ∀ W ∈ τhα, x ∈ W ⇒ A ∩W ̸= ϕ.

2. x ∈ Clhα(A).
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Proof: (1) ⇒ (2): Suppose (1) holds, suppose x /∈ Clhα(A) then there exist an hα-closed set M such
that A ⊆ M and x /∈ M . Thus W = X \M is an hα-open set such that x ∈ W and W ∩A = ϕ, which is
a contradiction.
(2) ⇒ (1):Straight forward. 2

Theorem 3.17 Let (X, τ) be a topological space and A ⊆ X. Then following holds:

1. Clhα(A) = A ∪Dhα(A).

2. A is hα-closed iff Dhα(A) ⊆ A.

Proof: (1) Let x /∈ Clhα(A) then there exist an hα-closed set M suchthat A ⊆ M and x /∈ M . Hence
W = X \M is an hα-open set such that x ∈ W and W ∩ A = ϕ.Therefore x /∈ A and x /∈ Dhα(A) then
x /∈ A∪Dhα(A). Thus A∪Dhα(A) ⊆ Clhα(A). On the other hand suppose x /∈ A∪Dhα(A) implies that
there exist an hα-open set W in X such that x ∈ W and W ∩ A = ϕ. Hence M = X \W is hα-closed
set in X such that A ⊆ M and x /∈ M and thus x /∈ Clhα(A). Hence Clhα(A) ⊆ A ∪Dhα(A).
(2) Let A be a an hα-closed set, then Ac is hα-open so for each x ∈ Ac there exist an hα-nbhd N of
x such that N ⊆ Ac. Since A ∩ Ac = ϕ.Then hα-nbhd N of x contains no point of A and so x is not
an hα-limit point of A. Thus no point of A can be a hα-limit point of A i.e; A contains all its limits
points.Hence Dhα(A) ⊆ A. Conversely, Let Dhα(A) ⊆ A and let x ∈ Ac then x /∈ A. Since Dhα(A) ⊆ A,
x /∈ Dhα(A) hence there exist an hα-nbhd N of x such that N ∩ A = ϕ, so N ⊆ Ac. Thus Ac contains
an hα-nbhd of each of its points and so Ac is hα-open i.e; A is hα-closed. 2

Theorem 3.18 If A is a subset of a discrete topological space (X, τ).Then Dhα(A) = ϕ.

Proof: Let x ∈ X and since every subset of X is open and so hα-open. In particular the singleton
W = {x} is hα-open. But x ∈ W and W ∩ A = {x} ∩ A ⊆ {x}. Hence x is not an interior point of A
and so Dhα(A) = ϕ. 2

Theorem 3.19 Let τ1 and τ2 be two topologies on X such that τhα1 ⊆ τhα2 .For any subset A of X every
hα-limit point of A with respect to τ2 is an hα-limit point of A with respect to τ1.

Proof: Let x be an hα-limit point of A with respect to τ2. Then W ∩ (A \ {x}) ̸= ϕ for every W ∈ τhα2

such that x ∈ W .But τhα1 ⊆ τhα2 so, in particular W ∩ (A \ {x}) ̸= ϕ for every W ∈ τhα1 such that x ∈ W .
Hence x is an hα-limit point of A with respect to τ1. 2

Remark 3.2 The converse of the above theorem need not be true by the following example.

Example 3.4 Let X = {1, 2, 3}, τ1 = {ϕ,X, {1}}, τ2 = {ϕ,X, {1}, {1, 2}}, τhα1 = {ϕ,X, {1}, {2, 3}} and
τhα2 = {ϕ,X, {1}, {2}, {1, 2}, {2, 3}. Then τhα1 ⊆ τhα2 and {2} is an hα-limit point of A = {1, 3} with
respect to τ1 while {2} is not an hα-limit point of A = {1, 3} with respect to τ2.

Definition 3.6 Let (X, τ) be a topological space and A ⊆ X. Then hα-border of A is denoted by bhα(A)
and is defined as bhα(A) = A\inthα(A) and the set Frhα(A) = Clhα(A)\inthα(A) is called the hα-frontier
of A.

Note 3 If A is hα-closed subset of X, then bhα(A) = Frhα(A).

Example 3.5 Let X = {1, 2, 3},A = {1, 2}, τ = {ϕ,X, {2}, {2, 3}, and τhα = {ϕ,X, {2}, {3}, {1, 3}, {2, 3}.
Then inthα(A) = {2}, bhα(A) = {1}, Clhα(A) = {1, 2} and Frhα(A) = {1}.

Theorem 3.20 Let (X, τ) be a topological space and A ⊆ X. Then following holds:

1. A = inthα(A) ∪ bhα(A).
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2. inthα(A) ∩ bhα(A) = ϕ.

3. A is hα-open iff bhα(A) = ϕ.

4. bhα(inthα(A)) = ϕ.

5. inthα(bhα(A)) = ϕ.

6. bhα(bhα(A)) = bhα(A).

7. Clhα(A) = inthα(A) ∪ Frhα(A).

Proof: (1) and (2) directly follows from Definition 3.6.
(3) Since inthα(A) ⊆ A, by Theorem 3.3 A is hα-open iff A = inthα(A) iff bhα(A) = A \ inthα(A) = ϕ.
(4) Since inthα(A) is hα-open, it follows from (3) that bhα(inthα(A)) = ϕ.
(5) If x ∈ inthα(bhα(A)), then x ∈ bhα(A) ⊆ A and x ∈ inthα(A). Since inthα(bhα(A)) ⊆ inthα(A).Thus
x ∈ bhα(A) ∩ inthα(A) = ϕ, which is a contradiction to (2).
(6) We have bhα(bhα(A)) = bhα(A) \ inthα(bhα(A)) = bhα(A).
(7) inthα(A) ∪ Frhα(A) = inthα(A) ∪ (Clhα(A) \ inthα(A)) = Clhα(A). 2

Theorem 3.21 Let (X, τ) be a topological spaces and A ⊆ X. Then A is hα-closed iff Frhα(A) ⊆ A.

Proof: Suppose A is hα-closed. Then Frhα(A) = bhα(A) ⊆ A ⇒ Frhα(A) ⊆ A.Conversely, suppose
Frhα(A) ⊆ A. Then Clhα(A) \ inthα(A) ⊆ A and so Clhα(A) ⊆ A. By Theorem 3.9, A ⊆ Clhα(A).
Hence A is hα-closed. 2

Corollary 3.4 Let (X, τ) be a topological space and A ⊆ X. Then following holds:

1. inthα(A) ∩ Frhα(A) = ϕ.

2. Frhα(A) = Clhα(A) ∩ Clhα(X \A).

3. inthα(A) = A \ Frhα(A).

4. bhα(A) = A ∩ Clhα(X \A).

4. Almost hα-continuous functions, hα-contra continuous functions, Almost hα-contra
continuous functions and Strongly hα-continuous functions

In this section we have introduced and discussed the notion of Almost hα-continuous, hα-contra con-
tinuous, Almost hα-contra continuous, and strongly hα-continuous functions. Some properties, counter
examples and theorems are established.

Definition 4.1 A mapping f : (X, τ) → (Y, σ) is said to be almost hα-continuous if f−1(V ) is hα-open
set in X for every regular open set V in Y .

Example 4.1 Let X = {a, b, c} = Y , τ = {ϕ,X, {b}, {b, c}}, σ = {ϕ, Y, {b, c}, {b}, {a.c}, {c}} and τhα =
{ϕ,X, {b}, {c}, {b, c}, {a, c}}.
Clearly the identity function f : (X, τ) → (Y, σ) is almost hα-continuous function.

Definition 4.2 A function f : (X, τ) → (Y, σ) is said to be hα-contra continuous if f−1(V ) is hα-closed
in X for every open set V in Y .

Example 4.2 Let X = {a, b, c} = Y , τ = {ϕ,X, {a}, {a, b}}, σ = {ϕ, Y, {a}} and τhα = {ϕ,X, {a}, {b}, {a, b}, {b, c}.
Clearly the identity function f : (X, τ) → (Y, σ) is hα-contra-continuous function.

Definition 4.3 A function f : (X, τ) → (Y, σ) is said to be almost hα-contra continuous, if f−1(V ) is
hα-closed set in X for every regular open set V in Y .
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Example 4.3 Let X = {a, b, c, d} = Y , τ = {ϕ,X, {a}, {c}, {a, c}, {a, b}, {a, b, c}}, σ = {ϕ, Y, {a}, {b}, {a, b}, {a, b, c}} and
τhα = {ϕ,X, {a}, {c}, {a, c}, {a, b}, {a, b, c}, {a, c, d}}.
Define a function f : (X, τ) → (Y, σ) by f(d) = b and f(b) = a. Then f is almost hα-contra-continuous function.

Theorem 4.1 Every hα-continuous function is almost hα-continuous.

Theorem 4.2 Every hα-contra continuous function is almost hα-contra continuous.

Theorem 4.3 Every hα-continuous function is regular set connected function.

Theorem 4.4 Every hα-contra continuous function is regular set connected function.

Theorem 4.5 Every almost continuous function is almost hα-continuous function.

Theorem 4.6 Every totally continuous function is hα-contra continuous function.

Note 4 The proof of Theorems 4.1-4.6 are straight forward.

Theorem 4.7 Every contra-continuous function is hα-contra-continuous function.

Proof: Suppose f : (X, τ) → (Y, σ) be a contra continuous function. Let V be an open set in Y . Since
f is contra-continuous, we have f−1(V ) is closed in X ⇒ f−1(V ) is hα-closed in X. 2

Remark 4.1 The converse of the above theorem need not be true by the following example.

Example 4.4 In Example 4.2, the identity function is hα-contra-continuous but not contra-continuous.

Theorem 4.8 If f : (X, τ) → (Y, σ) is hα-continuous and g : (Y, σ) → (Z, ρ) is almost continuous.
Then g ◦ f : (X, τ) → (Z, ρ) is almost hα-continuous function.

Proof: Let V be a regular open subset of Z. Since g is almost continuous, so g−1(V ) is open subset
of Y . Since f is hα-continuous, f−1(g−1(V )) = (g ◦ f)−1(V ) is hα-open subset in X. Therefore g ◦ f :
(X, τ) → (Z, ρ) is almost hα-continuous function. 2

Corollary 4.1 If f : (X, τ) → (Y, σ) is hα-contra continuous and g : (Y, σ) → (Z, ρ) is almost continu-
ous. Then g ◦ f : (X, τ) → (Z, ρ) is almost hα-contra continuous.

Theorem 4.9 If f : (X, τ) → (Y, σ) is continuous and open and g : (Y, σ) → (Z, ρ) is almost hα-
continuous. Then g ◦ f : (X, τ) → (Z, ρ) is almost hα-continuous function.

Proof: Let V be any regular open subset of Z. Since g is almost hα-continuous, we have g−1(V ) is
hα-open subset of Y . Also f is continuous and open, we have f−1(g−1(V )) = (g ◦ f)−1(V ) is hα-open
set in X. Therefore g ◦ f : (X, τ) → (Z, ρ) is almost hα-continuous function. 2

Theorem 4.10 If f : (X, τ) → (Y, σ) is hα-contra continuous and g : (Y, σ) → (Z, ρ) is hα-totally
continuous. Then g ◦ f : (X, τ) → (Z, ρ) is hα-contra-continuous function.

Proof: Let V be an open set in Z which implies V is hα-open set. Since g is hα-totally continuous, then
g−1(V ) is clopen in Y . Also f is hα-contra-continuous, so f−1(g−1(V )) = (g ◦ f)−1(V ) is hα-closed set
in X. Thus g ◦ f : (X, τ) → (Z, ρ) is hα-contra-continuous-function. 2

Definition 4.4 A function f : (X, τ) → (Y, σ) is said to be strongly hα-continuous if f−1(V ) is open set
in X for every hα-open set V in Y .
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Example 4.5 (1) Let X = {1, 2, 3} = Y , τ = {ϕ, {1}, {2}, {1, 2}, {3}, X}, σ = {ϕ, {1}, Y }, σhα =
{ϕ, {1}, {2, 3}, Y }. Define a function f : (X, τ) → (Y, σ) by f(1) = 3, f(3) = 1 and f(2) = 2. Then f is
strongly hα-continuous function.
(2) Let X = {1, 2, 3, 4} = Y , τ = {ϕ, {1, 2, 3}, {4}, X}, σ = {ϕ, {4}, Y }, σhα = {ϕ, {4}, {1, 2, 3}, Y }.
Then the identity function f : (X, τ) → (Y, σ) is strongly hα-continuous function.

Theorem 4.11 Every hα-totally continuous function is strongly hα-continuous function.

Proof: Suppose f : (X, τ) → (Y, σ) is hα-totally continuous function. Then for every hα-open set V in
Y , we have f−1(V ) is clopen in X ⇒ f−1(V ) is open in X for every hα-open set V in Y . 2

Remark 4.2 The converse of the above theorem need not be true by the following example.

Example 4.6 Let X = {1, 2, 3} = Y , τ = {ϕ, {1}, {3}, {1, 3}, X}, σ = {ϕ, {1}, {3}, {1, 3}, Y } and
σhα = {ϕ, {1}, {3}, {1, 3}, Y }. Then the identity function f : (X, τ) → (Y, σ) is strongly hα-continuous
function but not hα-totally continuous function.

Theorem 4.12 Every strongly hα-continuous function is hα-irresolute.

Proof: Suppose f : (X, τ) → (Y, σ) be a strongly hα-continuous function. Let V be an hα-open set in
Y . Since f is strongly hα-continuous, we have f−1(V ) is open set in X ⇒ f−1(V ) is hα-open set in X.

2

Remark 4.3 The converse of the above theorem need not be true by the following example.

Example 4.7 Let X = {a, b, c} = Y , τ = {ϕ, {a}, {a, b}, X}, σ = {ϕ, {a}, Y }, σhα = {ϕ, {a}, {b, c}, Y },
and τhα = {ϕ, {a}, {b}, {a, b}, {b, c}, X}.
Then clearly the identity function f : (X, τ) → (Y, σ) is an hα-irresolute function but not strongly hα-
continuous because g−1({b, c}) = {b, c} is not open in X.

Theorem 4.13 Every strongly hα-continuous function is hα-continuous.

Proof: Let V be an open set in Y . Then V is an hα-open set in Y . Since f is strongly hα-continuous,
we have f−1(V ) is open set in X ⇒ f−1(V ) is open set in X for every open set V in Y . 2

Remark 4.4 The converse of the above theorem need not be true by the following example.

Example 4.8 In Example 4.7, the identity function f : (X, τ) → (Y, σ) is hα-continuous but not strongly
hα-continuous.

Theorem 4.14 If a function f : (X, τ) → (Y, σ) is strongly hα-continuous and g : (Y, σ) → (Z, ρ) is
hα-totally continuous. Then g ◦ f : (X, τ) → (Z, ρ) is strongly hα-continuous function.

Proof: Let V be an hα-open set in Z.Since g is hα-totally continuous function, we have g−1(V ) is clopen
in Y ⇒ g−1(V ) is hα-open set in Y . Also f is strongly hα-continuous, then f−1(g−1(V )) = (g ◦ f)−1(V )
is open set in X. Thus g ◦ f : (X, τ) → (Z, ρ) is strongly hα-continuous function. 2

Theorem 4.15 If g : (X, τ) → (Y, σ) is hα-continuous and f : (Y, σ) → (Z, ρ) is strongly hα-continuous.
Then f ◦ g : (X, τ) → (Z, ρ) is hα-irresolute.

Proof: Suppose g : (X, τ) → (Y, σ) is hα-continuous and f : (Y, σ) → (Z, ρ) is strongly hα-continuous
function. Let V be an open set in Z ⇒ V is an hα-open set in Z, then we have f−1(V ) is open in Y .Also
g is hα-continuous, then g−1(f−1(V )) = (f ◦ g)−1(V ) is hα-open set in X for every open set V . 2
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Corollary 4.2 If g : (x, τ) → (Y, σ) is strongly hα-continuous and f : (Y, σ) → (Z, ρ) is hα-irresolute.
Then f ◦ g : (X, τ) → (Z, ρ) is strongly hα-continuous.

Theorem 4.16 If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, ρ) are strongly hα-continuous functions.
Then g ◦ f : (X, τ) → (Z, ρ) is also strongly hα-continuous function.

Proof: Suppose f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, ρ) are strongly hα-continuous functions. Let V
be an hα-open set in Z. Since g is strongly hα-continuous function, we have g−1(V ) is open in Y ⇒ g−1(V )
is hα-open set in Y .Also f is strongly hα-continuous function ⇒ f−1(g−1(V )) = (g ◦ f)−1(V ) is open in
X. 2

Remark 4.5 The converse of above theorem need not be true.

Example 4.9 Let X = Y = Z = {1, 2, 3, 4}, τ = {ϕ, {1, 2, 3}, X}, σ = {ϕ, {1, 2}, {3, 4}, Y }, ρ =
{ϕ, {4}, Z}, σhα = {ϕ, {1, 2}, {3, 4}, Y } and ρhα = {ϕ, {4}, {1, 2, 3}, Z}.
Consider the identity function f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, ρ). Then the identity function
g ◦ f : (X, τ) → (Z, ρ) is strongly hα-continuous but neither g is strongly hα-continuous nor f is strongly
hα-continuous because f−1({1, 2}) = {1, 2} which is not open in X and g−1({4}) = {4} is not open in
Y .

Theorem 4.17 If a function f : (X, τ) → (Y, σ) is strongly hα-continuous and g : (Y, σ) → (Z, ρ) is
hα-continuous. Then g ◦ f : (X, τ) → (Z, ρ) is continuous.

Proof: Suppose f : (X, τ) → (Y, σ) is strongly hα-continuous and g : (Y, σ) → (Z, ρ) is hα-continuous.
Let V be an open set in Z. Then g−1(V ) is hα-open set in Y . Since f is strongly hα-continuous, we have
f−1(g−1(V )) = (g ◦ f)−1(V ) is open set in X. Therefore g ◦ f : (X, τ) → (Z, ρ) is continuous. 2

Proposition 4.1 A function f : (X, τ) → (Y, σ) is strongly hα-continuous iff f−1(V ) is closed in X for
every hα-closed set V in Y .

Proof: Suppose f is strongly hα-continuous function. Let V be an hα-closed set in Y , then V c is hα-open
set in Y . Since f is strongly hα-continuous, we have f−1(V c) is open set inX. But f−1(V c) = X\f−1(V ).
Hence f−1(V ) is closed in X. Conversely, suppose f−1(V ) is closed set in X for every hα-closed set V in
Y . Let V be any hα-open set in Y , then V c is hα-closed set in Y . By assumption f−1(V c) is closed set
in X. But f−1(V c) = X \ f−1(V ) and f−1(V ) is open set in X. Hence f is strongly hα-continuous. 2

Theorem 4.18 Every strongly hα-continuous function is continuous.

Proof: Suppose f : (X, τ) → (Y, σ) be a strongly hα-continuous function.Let V be an open set in Y ⇒ V
is an hα-open set in Y . Since f is strongly hα-continuous function, we have f−1(V ) is open in X. 2

Remark 4.6 Converse of the above theorem need not be true by the following example.

Example 4.10 In Example 4.7, the identity function f : (X, τ) → (Y, σ) is continuous but not strongly
hα-continuous function.

Theorem 4.19 Every strongly continuous function is strongly hα-continuous function.

Proof: Suppose f : (X, τ) → (Y, σ) be a strongly continuous function. Let V be an open set in Y .Since
f is strongly continuous, we have f−1(V ) is clopen⇒ f−1(V ) is hα-open in X. 2

Remark 4.7 Converse of the above theorem need not be true.
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Example 4.11 Example 4.6 works here.

Theorem 4.20 Let X be a discrete topological space and Y be any topological space and f : X → Y be
a function. Then following are equivalent:

1. f is totally hα-continuous.

2. f is strongly hα-continuous.

Proof: (1) ⇒ (2) Proof is obvious.
(2) ⇒ (1) Let V be an hα-open set in Y . Then f−1(V ) is open in X. Since X is discrete space which
implies f−1(V ) is also closed in X. Thus f is totally hα-continuous function. 2

Theorem 4.21 If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, ρ) are strongly hα-continuous. Then g ◦ f :
(X, τ) → (Z, ρ) is hα-irresolute.

Proof: Let V be an hα-open set in Z. Since g is strongly hα-continuous, g−1(V ) is open set in Y ⇒
g−1(V ) is hα-open set in Y .Also f is strongly hα-continuous function, f−1(g−1(V )) = (g ◦ f)−1(V ) is
open set in X. Hence (g ◦ f)−1(V ) is hα-open set in X. 2

Theorem 4.22 If f : (X, τ) → (Y, σ) is hα-continuous and g : (Y, σ) → (Z, ρ) is strongly hα-continuous.
Then g ◦ f : (X, τ) → (Z, ρ) is hα-irresolute.

Proof: Suppose f : (X, τ) → (Y, σ) is hα-continuous and g : (Y, σ) → (Z, ρ) is strongly hα-continuous.
Let V be an hα-open set in Z.Since g is strongly hα-continuous, g−1(V ) is open set in Y . Also f is
hα-continuous function, we have f−1(g−1(V )) = (g ◦ f)−1(V ) is hα-open set in X. 2

Corollary 4.3 If f : (X, τ) → (Y, σ) is continuous and g : (Y, σ) → (Z, ρ) is strongly hα-continuous.
Then g ◦ f : (X, τ) → (Z, ρ) is strongly hα-continuous function.

Theorem 4.23 Let (X, τ) and (Y, σ) be two topological spaces. Then the following statements are equiv-
alent for a function f : (X, τ) → (Y, σ):

1. f is almost contra hα-continuous.

2. f−1(V ) is hα-open set of X for every regular closed set V of Y .

3. for each x ∈ X and each regular closed set V of Y containing f(x) there exist an hα-open set U
containing x such that f(U) ⊂ V .

4. for each x ∈ X and each regular open set V of Y not containing f(x) there exist an hα-closed set
K not containing x such that f−1(V ) ⊂ K.

Proof: (1) ⇒ (2): Let V be a regular closed set of Y . Then Y \ V is regular open set in Y then by (1),
f−1(Y \ V ) = X \ f−1(V ) is hα-closed in X which gives f−1(V ) is hα-open set in X.
(2) ⇒ (1): Let V be a regular open set in Y . Then Y \ V is regular closed set in Y , by (2) we have
f−1(Y \ V ) is hα-open set in X ⇒ X \ f−1(V ) is hα-open set in X ⇒ f−1(V ) is hα-closed set in X.
(2) ⇒ (3): Let V be a regular closed set of Y containing f(x) which implies x ∈ f−1(V ). Then by (2),
f−1(V ) is hα-open set in X containing x. Set U = f−1(V ) ⇒ U is hα-open set in X containing x and
f(U) = f(f−1(V )) ⊂ V ⇒ f(U) ⊂ V .
(3) ⇒ (2): Let V be a regular closed set in Y containing f(x) which implies x ∈ f−1(V ). Then by (3),
there exist an hα-open set Ux in X containing x such that f(U) ⊂ V i.e; U ⊂ f−1(V ) =

⋃
{Ux : x ∈

f−1(V )} which is union of hα-open sets. Therefore f−1(V ) is hα-open set of X.
(3) ⇒ (4): Let V be a regular open set of Y not containing f(x). Then Y \ V is regular closed set in
Y containing f(x), by (2) there exist an hα-open set U in X containing x such that f(U) ⊂ Y \ V ⇒
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U ⊂ f−1(Y \ V ) = X \ f−1(V ). Hence f−1(V ) ⊂ X \ U . Set X \ U = K, then K is hα-closed set not
containing x in X such that f−1(V ) ⊂ K.
(4) ⇒ (3): Let V be a regular closed set in Y containing f(x). Then Y \ V is regular open set in Y not
containing f(x). From (4) there exists hα-closed set K in X not containing x such that f−1(Y \ V ) ⊂
K ⇒ X \ f−1(V ) ⊂ K. Hence Y \K ⊂ f−1(V ) i.e; f(X \K) ⊂ V . Set U = X \K, then U is hα-open
set containing x in X such that f(U) ⊂ V . 2
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