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On ha-Open Sets In Topological Spaces

Sahil Billawria, Irfan Ahmed and Shallu Sharma

ABSTRACT: In 2022, Abdullah et.al [10] introduced a new class of open sets in topological space called
ha-open sets. In this paper, we have introduced and study topological properties of ha-interior, ha-interior
points, ha-neighbourhood, ha-closure, ha-exterior, ha-limit points, ha-derived, ha-border, ha-frontier by
using the concept of ha-open sets. Also, we have presented the notion of almost ha-continuous, ha-contra
continuous, almost ha-contra continuous, and strongly ha-continuous functions. Some properties, counter
examples and theorems are established. Furthermore, we have shown that every strongly ha-continuous
function is continuous and the composition of an ha-continuous and a strongly ha-continuous function is
ha-irresolute.
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1. Introduction

Open sets are crucial to topology because they form the basis of topological spaces, which in turn
provides a way to the development of concepts like continuity, connectedness, compactness, separation
axioms, and convergence etc. In order to better understand the structure and characteristics of topological
spaces, numerous investigations from time to time have been conducted on open sets. The standard
definition of open sets is crucial for many classical results, topologist have long been exploring more
generalized and refine version of open sets to understand spaces with additional structure or weakened
conditions. There are various generalizations of open sets, (see [7,22]). One of the earliest advancements
came in 1963 when Levine [11] proposed the concept of semi-open sets along with semi-continuity, which
provided a framework for studying weaker forms of openness and continuity in topological spaces. Later,
in 1970 Levine [15] proposed the idea of generalized open sets as an extension of the traditional idea of
open sets. Andrijevic [12] in 1996, establisehed the concept of b-open sets, and various forms of continuity
related to this idea have been explored in [3,1,19,23,31,30]. In 2001, Sundaram and Pushpalatha [26]
extended the study of generalized open set and proposed the idea of strongly generalized open sets.
Generalized open sets introduction has allowed for broader definition of continuity such as generalized
continuity which is defined as, a function f : (X,7) — (Y, 7) is termed as generalized continuous, if
f~Y(G) is generalized open in (X, 7) for each generalized open set G in (Y, 7). Generalized continuity has
enabled the study of mappings that do not strictly preserve classical open sets but still retain a weaker
form of continuity. Chawalit [8,9] further study generalized continuous mapping and introduced some
relationships between generalized continuous and continuous functions. Njasted [25] in 1965, initially
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proposed the idea of a-open sets. In 2021, Abbas [13] gave the idea of h-open sets. By using these notions,
Abdullah et al. [10] in 2022 presented the idea of ha-open sets. Our aim of this paper is to present
and investigate the topological characteristics of ha-interior, ha-interior points, ha-neighbourhood, ha-
closure, ha-exterior, and ha-limit points, ha-derived ha-border, ha-frontier in the context of [13], by
using the idea of ha-open sets.

In 1996, Dontchev [15] introduced the notion of contra-continuous function. Baker [11] defined almost
contra-continuous and contra almost-/3-continuous functions. A new class of functions known as regular
set connected functions was given by Dontchev et al. [16]. In [19], Singh and Singal presented the
class of almost continuous functions. These functions have also been the subject of some research in
recent years, see [14,20]. In 1960, Levine [23] proposed the idea of strong continuity in topological
spaces. Few decades earlier, many researchers contributed in this, see [21,6,27]. Recently Sharma et al.
[28] established the notion of strongly h-continuous function. In this paper, we introduced the notion
of almost ha-continuous, ha-contra-continuous, almost ha-contra-continuous, strongly ha-continuous
functions and investigate some of their properties. Also we show that every strongly ha-continuous
function is continuous and the composition of an ha-continuous and a strongly ha-continuous function
is ha-irresolute.

2. Preliminaries

This section deals with some basic definitions and results which will be used in the our next sections.
Throughout this paper, X, Y and Z stands for topological spaces with no separation axioms assumed,
unless otherwise stated. For a subset A of X , the closure of A and the interior of A will be a denoted
by CI(A) and Int(A), respectively.

Definition 2.1 A subset A of a topological space (X, T) is said to be:
1. h-open [15]: If for each non-empty set U in X, U # X and U € 7, as a result A C int(AUU).
2. a-open [25]: If A Cint(Cl(int(A))) and the complement of a-open is called a-closed.

3. ha-open [10]: If for each non-empty set U in X, U # X and U € 7%, as a result A C int(AUU)
and the complement of ha-open set is called ha-closed.

4. regular open [18]: If A = int(CIl(A)).

5. regular closed [18]: If A = Cl(int(A)).
The family of ha-open(resp. a-open) is denoted by T"* (resp.7®).

Lemma 2.1 [25] Every open set in a topological space is a-open.
Lemma 2.2 [10] Every open set in a topological space is ha-open.
Proposition 2.1 [10] Each continuous mapping is ha-continuous mapping.

Definition 2.2 Let (X, 7) and (Y, o) be two topological spaces. Then a function [ : (X,7) = (Y,0) is
said to be:

1. ha-continuous [10]: If f~1(G) is ha-open set in X for every open set G in'Y.
ha-irresolute [10]: If f~1(G) is ha-open set in X for every ha-open set G in'Y .
ha-totally continuous [10]: If f~1(G) is clopen in X for each ha-open set G in'Y.

almost continuous [19]: If f~1(G) is open in X for every regular open set G in'Y .
contra-continuous [15]: If f~1(G) is closed in X for every open set G of Y.

regular set connected [16]: If f~1(G) is clopen in X for every reqular open set G of Y.
almost contra-continuous [11]: If f~Y(G) is closed in X for every reqular open set V of Y.

S S N R I

strongly continuous [25]: If f~1(G) is clopen in X for every open set G in'Y .
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3. ha-open sets

In this section, we define and study the topological properties of ha-interior, ha-interior points, ha-
neighbourhood, ha-closure, ha-exterior, ha-limit points, ha-derived, ha-border, ha-frontier by using the
concept of ha-open sets and established some important results. Also we have shown that the family of
ha-open sets form a generalized topology in the sense of Csédszar [4].

Definition 3.1 Let (X, 7) be a topological space and A C X.Then ha-interior of A is defined as the
union of all ha-open sets contained in A and we denote it by intpe(A).It is obvious the intpy(A) is
ha-open set for any subset A of X.

Definition 3.2 Let (X, 1) be a topological space and A C X.Then A is said to be ha-neighbourhood of
a point x € X if there exist W € 7" (X, x) such that W C A.The family of all ha-neighbourhood of a
point x € X is denoted by Npo(x) and is called the ha-nbhd system of x.

Theorem 3.1 Let (X,7) be a topological space. Then the union of any collection of ha-open set is
ha-open.

Proof: Let {Ax}xea be a collection of ha-open sets, and let A = (Jy., Ax. Then for any non-empty
U# X,U € 7%, each Aj satisfies A\ C int(AxUU). Since AUU = [Jycp(AxUU). Then

int(AUU) = int (U(AAUU)> O (Jint(AxuU) 2 | Ay = A

AEA A€A AEA

Thus, A C int(AUU), therefore A is ha-open. O

Theorem 3.2 The Finite intersection of ha-open sets need not be ha-open

Example 3.1 Consider the set of real numbers (R) with the usual topology 7. Let A = (0,1)U(1,2) and
B = (1,2) U (2,3). Then both A and B are ha-open in T, but their intersection AN B = (1,2) is not
ha-open because if we take an a-open set U = (0,1). Then the set AN B = (1,2) will not satisfy the
condition of ha-open set.

Remark 3.1 In general, the family of ha-open sets does not form a topology. But it forms a generalized
topology in the sense of Csdszdr [4].

Proposition 3.1 If A is a subset of X.Then intp,(A) = U{W : W is ha-open, W C A}

Proof: Let A be a subset of X and

let z € intpa(A) x is an ha-interior point ofA.
A is an ha-nbhd of point x.
there exist an ha-open set W suchthat x € W C A.

S U{W : W is ha-open, W C A}.

t o0

Hence intpq(A) = J{W : W is ha-open, W C A}.

Theorem 3.3 Let (X, 7) be a topological space and A, B are subsets of X.Then following holds:
1. If A C B, then intpo(A) C intpe(B).
2. intha(A) g A.
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3. If B is an ha-open set contained in A, then B C intpo(A).
4. If A is ha-open set contained in A, then B C intpq(A).
5. intha(X) =X and intpe (@) = ¢.

Proof: (1) Let A and B be any two subsets of X such that A C B. Let = € intpq(A). Then z is an
ha-interior point of A and so A is an ha-nbhd of . Also B an ha-nbhd of © = x € intpe(B). Thus
intha(A) Q inthaB.

(2) Let © € intpo(A) = A is an ha-nbhd of x = x € A.Thus intp.(A) C A.

(3) Let B be any ha-open set suchthat B C A. Let x € B C A. Since B is ha-open set contained in
A = A is an ha-nbhd of x and consequently x is an ha-interior point of A. Hence z € intpo(A). Thus
B - intha (A)

Note 1 intpo(A) is the largest ha-open set contained in B.

(4) Let A be an ha-open subset of X. Then by (2), we have intp,(4) C A. Also A is ha-open set
contained in A. Then by (3), we have A C intpo(A).Hence A = intpo(A).

(5) Since X and ¢ are ha-open sets. Then by Proposition 3.1, we have into(X) = U{W : W is ha-
open, W C X} = X and since ¢ is the only ha-open set contained in ¢. Thus intp.(¢) = ¢. Therefore
nthe(X) = X and intpe (@) = ¢. O

Theorem 3.4 If A and B are subsets of a topological space X. Then intpq(A)Uintpe(B) C intpo (AUB).

Proof: We know that A C AU B and B C AU B. Then by Theorem 3.3, intp(A4) C intpo (AU B) and
intha(B) C intha(A @] B) = intha(A) @] intha(B) - intha(A U B) O

Theorem 3.5 If A and B are subsets of a topological space X. Then intpe,(ANB) = intpe(A)Nintne (B).

Proof: Since we know that AN B C A and AN B C B. Then by Theorem 3.3, we have inty,(4A N B) C
inthe(A) and intpe (AN B) Cintpe(B) = inthe (AN B) C inthe(A) Nintpa (B)

Again, let @ € intpo(A) Nintpe(B). Then x € intpe(A) and x € intpo(B). Hence z is an ha-interior
point of A and B.It follows that A and B are ha-nbhd of x, so that their intersection A N B is also
ha-nbhds of x. Hence x € intpo (AN B). Thus x € intpe(A) Nintpe(B) = x € intpe (AN B). Therefore
intha(A) Nintpe (B) C intpa (AN B). Thus we have intpo (AN B) = intpa(A) Nintpe (B). O

Proposition 3.2 Let (X, 7) be a topological space and A be a subset of X. Then
1. intha(intha(A)) = intha(A).
2. intpa(int(A)) = int(A).

Proof: (1) Since intj,(A) € 7"*. Then by Theorem 3.3(4), we have intpq (A) = intpa (intpa(A)).
(2) Since int(A) is an open set.Then int(A) is ha-open set. By Theorem 3.3(4), we have int(A) =
intpe (int(A)). O

Theorem 3.6 If A is a subsetl of a topological space X .Then int(A) C intpq(A).

Proof: Let A be a subset of X.

let z € int(A) = x € |J{W : W is open,W C A}

= there exist an open set W suchthat x € W C A.

= there exist an ha-open set W suchthat z € W C A.

=z € | J{W : W is ha-open,W C A}.

= T € inthe(A).Hence int(A) Cintpa(A). O
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Theorem 3.7 A subset A of a topological space X is ha-open iff A is an ha-nbhd of each of its points.

Proof: Suppose A is ha-open set.Let x € A then by Definition 3.2, an ha-nbhd of x is any subset of X
containing an ha-open set which itself contain x. But A is itself an ha-open set which itself contain =z,
so A is a subset of A which itself contains an ha-open set which itself contains x. Thus for all points
x € X, A is an ha-nbhd of z.

Conversely, suppose A is an ha-nbhd of each of its points. Then for each z € A, there is an ha-open set

W containing z(denoted by W,) suchthat € W,, C A. Clearly A = |J W,, since each W, is ha-open
z€A
set and we know that union of ha-open set is ha-open. Thus A is ha-open set. O

Corollary 3.1 Let (X,7) be a topological space and A C X. If A is ha-closed and x € A°. Then there
is an ha-nbhd N of x suchthat N N A = ¢.

Proof: Since A is an ha-closed set, then A¢ is an ha-open set. By Theorem 3.7, A€ contains ha-nbhd
of each of its points. Thus there exist an ha-nbhd N of z such that N C A¢i.e; NN A = ¢. |

Theorem 3.8 Let (X, 7) be a topological space and x € X be arbitrary. Then
1. If M s a superset of an ha-nbhd N of x. Then M is also an ha-nbhd of x.
2. Is N1 and N3 be two ha-nbhd of x, then N1 N Ny is also ha-nbhd of x.
8. there is atleast one ha-nbhd of x.

4. for each ha-nbhd N of x, x € N.

Proof: (1) Let N be an ha-nbhd of z, then there exist W € 7"%(X, ) such that W C N. Let M be a

superset of N suchthat re W CNCM =z W C M = M is an ha-nbhd of z.

(2) Let N; and Ny be two ha-nbhd of x, then there exist W, Wy € 7"*(X, z) such that W; C N; and

Wy € Ny.Since x € Wy, z € Wy = x € Wi NWa.Also W, C Ny, Wy C Ny = Wi N Wy C Ny N Ny and

W1,Wy € 7h(X) = Wy N W, € 7" (X). Therefore we have, there exist W3 N W, € 77 (X, x) suchthat

W1 N Wg g N1 n NQ. Thus N1 n N2 is an ho-nbhd of z.

(3) Since z € X C X € 7h®. By definition 3.7, X is an ha-nbhd of z. Hence there exist at least one

ha-nbhd of x.

(4) Let N be an ha-nbhd of z, then there exist W € 7"%(X, x) such that W C N. Consequently = € N.
O

Definition 3.3 Let (X, 7) be a topological space and A C X. Then ha-closure of A is defined as the
intersection of all ha-closed sets in X containing A. It is denoted by Clpo(A).

Note 2 (1)Clpa(A) is ha-closed for any subset A of X.
(2)Clpa(A) is the smallest closed set containing A.

Theorem 3.9 Let (X, 1) be a topological space and A and B are subsets of X. Then

~

. Clha(X) =X and Clha(¢) = (b
. AC Clpa(A).
. If AC B, then Clpo(A) C Clya(B).

. If B is an ha-closed set containing A. Then Cly(A) C B.

S NS

A is ha-closed iff A = Clpa(A).
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Proof: (1) By definition of ha-closure, X is the only ha-closed set containing X. Therefore Clp, (X) =
N{X} = X. Hence Clq(X) = X also by definition of ha-closure, Clo(¢) = ({9 }. Hence Clya(¢) = 6.
(2) By definition of ha-closure of A, it is obvious that A C Clp4(A).

(3) Let A and B be subset of X such that A C B, by (2) B C Clpo(B), Since A C B, we have
A C Clpo(B).But Clpa(B) is closed set.Thus Clp,(B) is a closed set containing A.Since we know that
Clpo(A) is the smallest closed set containing A, we have Clp,(A) C Clpo(B).

(4) Let B be any ha-closed set containing A. Since Clpo(A) is the intersection of all ha-closed set
containing A, Clp4(A) is contained in every ha-closed set containing A. Thus in particular Clp.(A) C B.
(5) If A is ha-closed then A itself is the smallest ha-closed set containing A and hence Clyo(A) = A.
Conversely, suppose Clpo(A) = A, we know that Cljo(A) is the smallest ha-closed set containing A and
so A is ha-closed. O

Theorem 3.10 If A and B are subsets of a topological space X. Then Clpo(ANB) C Clpo(A)NClpo(B).

Proof: Let A and B be subsets of X. Clearly AN B C A and AN B C B.Then by Theorem 3.8, we have
Clha(A n B) C Clha(A) and Clha(A N B) - Clha(B) = Clha(A N B) - Clha(A) N Clha(B). O

Corollary 3.2 If A and B are subsets of a topological space X. If A is ha-closed set, then Clpo,(ANB) C
ANClp(B).

Proof: Proof follows from Theorem 3.10 and 3.9(5). O

Theorem 3.11 For anx € X, x € Clpo(A) iff VN A £ ¢ for every ha-open set V containing .

Proof: Let x € X and = € Clpo(A). Suppose there exist an ha-open set V containing x suchthat
VNA=¢. Then A C X\V and X \V is ha-closed , we have Clo(A) C X \ A. This shows that
z ¢ Clpo(A), a contradiction. Thus VN A # ¢ for every ha-open set V containing x. Conversely suppose
that VN A # ¢ for every ha-open set V containing x. To prove 2 € Clpo(A), let © ¢ Clpo(A) then there
exist an ha-closed set B containing A such that z ¢ B. Then x € X \ B and X \ B is ha-open. Also
(X \ B)N A = ¢, which is a contradiction. Thus z € Cl4(A). O

Corollary 3.3 Let (X, 1) be a topological space and A C X. Then Clpa(Clpa(A)) = Clpa(A).

Proof: Since Clpo(A) is ha-closed set. Then by Theorem 3.9, we have Clpo(Clpa(A)) = Clpo(4). O

Definition 3.4 Let (X,7) be a topological space and A C X. Then ha-exterior of A is denoted by
extpa(A) and is defined as extpe(A) = intpa (X \ A).

Example 3.2 Let X = {x,y, 2}, 7 = {6, X, {y}, {y, 2}} and 7" = {6, X, {y}, {v, 2}, {2}, {x, 2}
If A= {x,y}, then extp,(A) = {z}.

Theorem 3.12 Let (X, 7) be a topological space and A,B are subsets of X. Then
1. If A C B, then extpo(A) C extpo(B).
extpa (AU B) = extpa(A) Nextna(B).

extha (AN B) D extpa(A) Uexty,(B).

extpa(A) = extpa (X \ extpa(4)).

S o e

(
(
extha(X) = ¢ and extyo(¢) = X.
(
(

extna(A) is ha-open set.
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7. extha(A) =X \ Clha(A)
8. extha(extpa(A)) = intha(Clha(A4)).

Proof: (1) Since A C B, then extpq(B) = intpe (X \ B) C intpa(X \ A) = extpa(A).Hence extpq(B) C
extpa(A).

(2) extha(AU B) = intpo (X \ (AU B)) = intpo (X \ A) N (X \ B)) = intpe(X \ A) Nintpo (X \ B) =
extpa (A) Nextny(B).

(B)extna (AN B) = intpo(X \ (AN B)) = intpa (X \ A) U (X \ B)) 2 intpo(X \ A) Uintpe (X \ B) =
extpa(A) U ezt (B).

(4) extpa(X) = intpa (X \ X) = intpa (o) = ¢ and extpo (@) = intpo(X \ ¢) = intpo (X) = X.

(5) extha(X \ extna(A)) = extna (X \ (intha (X \ A))) = inthe (X \ A) = extpa(A).

(6) and (7) straight forward.

(8) extpa(extpa(A)) = extna (X \ Clpa(A)) = intha (X \ (X \ Clpa(A)) = inthe(Clra(A)). O

Theorem 3.13 Let (X, 7) be a topological space and A is a subset of X. Then
1. extpo(A) C A°.

2. intha(A) C extha(extna(A4)).

Proof: (1) extpa(A) = intpa(A°) C A°, by Theorem 3.3(2).
(2) By (1), we have extpo(A) C A°. Then by Theorem 3.12(1), we have extpo(A°) C extpq(extna(A))
but extp(A°) = intpo(A). Thus intpe(A) C extpa(extpa(A)). O

Theorem 3.14 Let (X,7) be a topological space and A be a subset of X. Then extpo(A) = J{W : W is
ha-open, W C AC}.

Proof: By Definition 3.4, extpq(A) = intpo (X \ A) i.€; extpa(A) = intpa(A°). But by Theorem 3.1 we
have intpq (A°) = J{W : W is ha-open, W C A°}. Thus extpo(A) = J{W : W is ha-open, W C A°¢}.
|

Definition 3.5 Let (X, 7) be a topological space and A C X.A point x € Xis said to be ha-limit point
of A if every ha-open set W containing x contains atleast one point of A different from x i.e; YV W €
he (X, z) = WN(A\ {z}) # ¢. The set of all ha-limit point of A is called ha-derived set of A and is
denoted by Dpo(A).

Example 3.3 Let X = {a,b,c,d}, A = {a,c,d}, 7 = {¢,X,{a},{a,b},{a,c},{a,b,c}} and 7" =
{6, X, {a}, {b},{c} . {a,b},{a,c},{b,c} . {a,b,c},{b,c,d}. Then Dha(A) = {d}.

Theorem 3.15 Let (X, 7) be a topological space and A C X. Then a point x € X is an ha-exterior
point of A iff x is not an ha-limit point of A i.e; iff x € Clpa(A°).

Proof: Let x be an ha-exterior point of A, then x is an ha-interior point of A¢, so A€ is an ha-nbhd of
2 containing no point of A. It follows that x is not an ha-limit point of A i.e; x € Clpo(A€). Conversely
suppose that x is not an ha-limit point of A, then there exist an ha-nbhd N of x which contains no point
of A implies that z € N C A°. It follows that z is an ha-exterior point of A. O

Theorem 3.16 Let (X, 7) be a topological space and A be a subset of X. Then following are equivalent:
IL.YWeth 2 e W=ANW # ¢.
2. x € Clpa(A).
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Proof: (1) = (2): Suppose (1) holds, suppose = ¢ Clpo(A) then there exist an ha-closed set M such
that A C M and « ¢ M. Thus W = X \ M is an ha-open set such that x € W and W N A = ¢, which is
a contradiction.

(2) = (1):Straight forward. O

Theorem 3.17 Let (X, 7) be a topological space and A C X. Then following holds:
1. Clha(A) =AU Dha(A)
2. A is ha-closed iff Dypo(A) C A.

Proof: (1) Let z ¢ Clp,(A) then there exist an ha-closed set M suchthat A C M and « ¢ M. Hence
W = X \ M is an ha-open set such that z € W and W N A = ¢.Therefore © ¢ A and © ¢ Dy, (A) then
x ¢ AUDpo(A). Thus AUDpo(A) C Clpa(A). On the other hand suppose © ¢ AU Dj(A) implies that
there exist an ha-open set W in X such that x € W and W N A = ¢. Hence M = X \ W is ha-closed
set in X such that A C M and = ¢ M and thus x ¢ Clps(A). Hence Clpo(A) C AU Dpo(A).

(2) Let A be a an ha-closed set, then A° is ha-open so for each x € A€ there exist an ha-nbhd N of
x such that N C A°. Since AN A° = ¢.Then ha-nbhd N of x contains no point of A and so x is not
an ha-limit point of A. Thus no point of A can be a ha-limit point of A i.e; A contains all its limits
points.Hence Dpq(A) C A. Conversely, Let Dpo(A) C A and let © € A° then x ¢ A. Since Dpo(A) C A,
x & Dpo(A) hence there exist an ha-nbhd N of x such that NN A = ¢, so N C A°. Thus A¢ contains
an ha-nbhd of each of its points and so A€ is ha-open i.e; A is ha-closed. O

Theorem 3.18 If A is a subset of a discrete topological space (X, 7). Then Dpo(A) = ¢.

Proof: Let z € X and since every subset of X is open and so ha-open. In particular the singleton
W = {«} is ha-open. But © € W and WN A = {&} N A C {z}. Hence z is not an interior point of A
and so Dpo(A) = ¢. O

Theorem 3.19 Let 71 and 5 be two topologies on X such that T C 72 . For any subset A of X every
ha-limit point of A with respect to T2 is an ha-limit point of A with respect to 1.

Proof: Let z be an ha-limit point of A with respect to 2. Then W N (A \ {x}) # ¢ for every W € 75
such that x € W.But 7% C 7% so, in particular W N (A \ {z}) # ¢ for every W € 7% such that z € W.
Hence x is an ha-limit point of A with respect to 7. O

Remark 3.2 The converse of the above theorem need not be true by the following example.

Example 3.4 Let X = {1,2,3}, 71 = {¢, X, {1}}, 2 = {¢, X, {1}, {1,2}}, 7> = {9, X, {1}, {2,3}} and
he = {6, X, {1},{2},{1,2},{2,3}. Then 7' C 78 and {2} is an ha-limit point of A = {1,3} with
respect to T while {2} is not an ha-limit point of A = {1,3} with respect to 2.

Definition 3.6 Let (X, 7) be a topological space and A C X. Then ha-border of A is denoted by bpq(A)
and is defined as bpo(A) = A\intpo (A) and the set Frpo(A) = Clpo(A)\intpo(A) is called the ha-frontier
of A.

Note 3 If A is ha-closed subset of X, then bpo(A) = Frpq(A).

Example 3.5 Let X ={1,2,3},A={1,2}, 7 = {¢, X, {2}, {2, 3}, and rhe = {p, X, {2}, {3},1{1,3},{2,3}.
Then intha(A) = {2}, bra(A) = {1}, Claa(A) = {1,2} and Fria(A) = {1}.

Theorem 3.20 Let (X, 7) be a topological space and A C X. Then following holds:
1. A= intha(A) U bha(A),
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intha(A) N bya(A) = 6.
A is ha-open iff bpa(A) = 6.
b (it (A)) = 6.
intha(bha(A)) = ¢.

bha(bra(A)) = bra(A).

Clia(A) = intra(A) U Frua(A).

RN T

Proof: (1) and (2) directly follows from Definition 3.6.

(3) Since intpa(A) C A, by Theorem 3.3 A is ha-open iff A = intpq(A) iff bpa(A) = A\ intpa(A) = ¢.
(4) Since intpa(A) is ha-open, it follows from (3) that bp, (inthe(4)) = ¢.

(5) If & € intpa(bha(A)), then x € by (A) C A and z € intpq(A). Since intyo (bra(A)) C intpe(A). Thus
Z € bpo(A) Nintpa(A) = ¢, which is a contradiction to (2).

( ) We have bha (bha (A)) = bha (A) \intha (bha (A)) = bha (A)

( ) mtha( ) @] Frha(A) = intha(A) U (Clha(A) \intha(A)) = Clha(A). O

Theorem 3.21 Let (X, 7) be a topological spaces and A C X. Then A is ha-closed iff Frp,(A) C A.

Proof: Suppose A is ha-closed. Then Fryo(A) = bpa(A) € A = Fria(A) C A.Conversely, suppose
Frpo(A) C A. Then Clpo(A) \ intpo(A) € A and so Clpa(A) € A. By Theorem 3.9, A C Clpo(A).
Hence A is ha-closed. O

Corollary 3.4 Let (X, 7) be a topological space and A C X. Then following holds:

~

. tha(A) N Frpe(A) = ¢.

2. Fria(A) = Clpo(A) N Clpa (X \ A4).

3. intpa(A) = A\ Fria(A).

4. bpa(A) = ANClpa (X \ A4).

4. Almost ha-continuous functions, ha-contra continuous functions, Almost ha-contra
continuous functions and Strongly ha-continuous functions

In this section we have introduced and discussed the notion of Almost ha-continuous, ha-contra con-
tinuous, Almost ha-contra continuous, and strongly ha-continuous functions. Some properties, counter
examples and theorems are established.

Definition 4.1 A mapping f : (X,7) — (Y,0) is said to be almost ha-continuous if f~*(V) is ha-open
set in X for every reqular open set V in'Y .

Example 4.1 Let X = {a,b,c} =Y, 7= {0, X,{b},{b,c}}, o = {6,Y, {b,c}, {b},{a.c}, {c}} and 7> =
{0, X, {0}, {c}, {b, ¢}, {a, c}}.

Clearly the identity function f : (X,7) — (Y,0) is almost ha-continuous function.

Definition 4.2 A function f : (X,7) — (Y, 0) is said to be ha-contra continuous if f~*(V) is ha-closed
in X for every open set V inY.

Example 4.2 Let X = {a,b,c} =Y, 7 = {9, X,{a},{a,b}}, 0 = {9,Y,{a}} and 7" = {9, X, {a}, {b}, {a, b}, {b,c}.
Clearly the identity function f: (X,7) — (Y, 0) is ha-contra-continuous function.

Definition 4.3 A function f : (X,7) — (Y,0) is said to be almost ha-contra continuous, if f~1(V) is
ha-closed set in X for every regular open set' V in Y.
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Example 4.3 Let X = {a,b,c,d} =Y, 7 ={¢, X, {a},{c},{a,c}, {a,b},{a,b,c}}, o = {p,Y, {a}, {b},{a, b}, {a,b,c}} and

The = {#, X, {a},{c}, {a,c},{a, b} {a,b,c}, {a,c,d}}.
Define a function f: (X,7) — (Y,0) by f(d) =b and f(b) = a. Then f is almost ha-contra-continuous function.

Theorem 4.1 FEvery ha-continuous function is almost ha-continuous.

Theorem 4.2 FEvery ha-contra continuous function is almost ha-contra continuous.
Theorem 4.3 FEvery ha-continuous function is reqular set connected function.
Theorem 4.4 FEvery ha-contra continuous function is reqular set connected function.
Theorem 4.5 Fvery almost continuous function is almost ha-continuous function.
Theorem 4.6 FEvery totally continuous function is ha-contra continuous function.
Note 4 The proof of Theorems 4.1-4.6 are straight forward.

Theorem 4.7 FEvery contra-continuous function is ha-contra-continuous function.

Proof: Suppose f: (X,7) — (Y,0) be a contra continuous function. Let V' be an open set in Y. Since
f is contra-continuous, we have f~1(V) is closed in X = f~1(V) is ha-closed in X. O

Remark 4.1 The converse of the above theorem need not be true by the following example.
Example 4.4 In Ezample 4.2, the identity function is ha-contra-continuous but not contra-continuous.

Theorem 4.8 If f : (X,7) — (Y,0) is ha-continuous and g : (Y,0) — (Z,p) is almost continuous.
Then go f: (X, 7) = (Z,p) is almost ha-continuous function.

Proof: Let V be a regular open subset of Z. Since g is almost continuous, so g~!(V) is open subset
of Y. Since f is ha-continuous, f~*(g~1(V)) = (g o f)~1(V) is ha-open subset in X. Therefore go f :
(X,7) = (Z,p) is almost ha-continuous function. O

Corollary 4.1 If f : (X,7) — (Y, 0) is ha-contra continuous and g : (Y,0) — (Z, p) is almost continu-
ous. Then go f: (X,7) = (Z, p) is almost ha-contra continuous.

Theorem 4.9 If f : (X,7) = (Y,0) is continuous and open and g : (Y,0) — (Z,p) is almost ha-
continuous. Then go f: (X, 7) = (Z,p) is almost ha-continuous function.

Proof: Let V be any regular open subset of Z. Since g is almost ha-continuous, we have g=1(V) is
ha-open subset of Y. Also f is continuous and open, we have f~(g~1(V)) = (g o f)~*(V) is ha-open
set in X. Therefore go f: (X,7) = (Z, p) is almost ha-continuous function. O

Theorem 4.10 If f : (X,7) — (Y,0) is ha-contra continuous and g : (Y,0) — (Z,p) is ha-totally
continuous. Then go f: (X, 1) — (Z,p) is ha-contra-continuous function.

Proof: Let V be an open set in Z which implies V' is ha-open set. Since g is ha-totally continuous, then
g 1(V) is clopen in Y. Also f is ha-contra-continuous, so f~*(g=1(V)) = (g o f)~*(V) is ha-closed set
in X. Thus go f: (X,7) — (Z, p) is ha-contra-continuous-function. O

Definition 4.4 A function f : (X,7) — (Y, 0) is said to be strongly ha-continuous if f=*(V') is open set
in X for every ha-open set V in'Y.
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Example 4.5 (1) Let X = {17273} =Y, 7= {¢a{1}7{2}7{172}7{3}aX}7 g = {qﬁ,{l}’Y}, ohe =
{6,{1},{2,3},Y}. Define a function f: (X,7) = (Y,0) by f(1) =3, f(3) =1 and f(2) =2. Then f is
strongly ha-continuous function.

(2) Let X = {1,2,3,4} =Y, 7 = {¢,{1,2,3}, {4}, X}, 0 = {¢,{4},Y}, o™ = {¢,{4},{1,2,3},Y}.
Then the identity function f: (X,7) = (Y, 0) is strongly ha-continuous function.

Theorem 4.11 FEvery ha-totally continuous function is strongly ha-continuous function.

Proof: Suppose [ : (X,7) = (Y, 0) is ha-totally continuous function. Then for every ha-open set V' in
Y, we have f~1(V) is clopen in X = f~1(V) is open in X for every ha-open set V in Y. O

Remark 4.2 The converse of the above theorem need not be true by the following example.

Example 4.6 Let X = {1,2,3} =Y, 7 = {¢,{1},{3},{1,3}, X}, o = {¢,{1},{3},{1,3}, Y} and
ol = {¢,{1},{3},{1,3},Y}. Then the identity function f : (X,7) — (Y,0) is strongly ha-continuous
function but not ha-totally continuous function.

Theorem 4.12 FEvery strongly ha-continuous function is ha-irresolute.

Proof: Suppose f: (X,7) — (Y,0) be a strongly ha-continuous function. Let V' be an ha-open set in
Y. Since f is strongly ha-continuous, we have f~(V) is open set in X = f~!(V) is ha-open set in X.
O

Remark 4.3 The converse of the above theorem need not be true by the following example.

Example 4.7 Let X = {a,b,c} =Y, 7 = {¢,{a},{a,b}, X}, 0 = {¢,{a}, Y}, c"* = {6, {a}, {b,c}, Y},
and 7" = {¢, {a}, {b},{a, b}, {b,c}, X}.

Then clearly the identity function [ : (X,7) — (Y,0) is an ha-irresolute function but not strongly ho-
continuous because g~ ({b, c}) = {b,c} is not open in X.

Theorem 4.13 FEvery strongly ha-continuous function is ha-continuous.

Proof: Let V be an open set in Y. Then V is an ha-open set in Y. Since f is strongly ha-continuous,
we have f~1(V) is open set in X = f~!(V) is open set in X for every open set V in Y. O

Remark 4.4 The converse of the above theorem need not be true by the following example.

Example 4.8 In Ezample J.7, the identity function f : (X, 1) — (Y, 0) is ha-continuous but not strongly
ha-continuous.

Theorem 4.14 If a function f : (X,7) — (Y,0) is strongly ha-continuous and g : (Y,0) — (Z,p) is
ha-totally continuous. Then go f: (X, 7) — (Z,p) is strongly ha-continuous function.

Proof: Let V be an ha-open set in Z.Since g is ha-totally continuous function, we have g~ (V) is clopen
inY = g~!(V) is ha-open set in Y. Also f is strongly ha-continuous, then f=1(g=1(V)) = (go f)~1(V)
is open set in X. Thus go f: (X,7) — (Z, p) is strongly ha-continuous function. O

Theorem 4.15 Ifg: (X,7) — (Y, 0) is ha-continuous and f : (Y,0) — (Z, p) is strongly ha-continuous.
Then fog: (X,7) = (Z,p) is ha-irresolute.

Proof: Suppose g : (X,7) — (Y, 0) is ha-continuous and f : (Y,0) — (Z, p) is strongly ha-continuous
function. Let V be an open set in Z = V is an ha-open set in Z, then we have f~!(V) is open in Y.Also
g is ha-continuous, then g~ 1(f~1(V)) = (f o g)~*(V) is ha-open set in X for every open set V. ]
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Corollary 4.2 If g : (z,7) — (Y, 0) is strongly ha-continuous and f : (Y,0) — (Z, p) is ha-irresolute.
Then fog: (X,7) = (Z,p) is strongly ha-continuous.

Theorem 4.16 If f : (X,7) — (Y,0) and g : (Y,0) — (Z,p) are strongly ha-continuous functions.
Then go f: (X, 7) = (Z, p) is also strongly ha-continuous function.

Proof: Suppose f: (X,7) = (Y,0) and g : (Y,0) = (Z, p) are strongly ha-continuous functions. Let V'
be an ha-open set in Z. Since g is strongly ha-continuous function, we have g~ (V) isopenin Y = g=*(V)
is ha-open set in Y.Also f is strongly ha-continuous function = f=1(g7*(V)) = (go f)~1(V) is open in
X. O

Remark 4.5 The converse of above theorem need not be true.

Example 4.9 Let X =Y = Z = {1,2,3,4}, 7 = {6,{1,2,3}, X}, 0 = {¢,{1,2},{3,4},Y}, p =
{(ba {4}7 Z}; ol = {(ba {1’ 2}’ {3’ 4}7 Y} and pha = {¢a {4}v {1’ 2, 3}’ Z}'

Consider the identity function f : (X,7) = (Y,0) and g : (Y,0) — (Z,p). Then the identity function
gof:(X,7) = (Z,p) is strongly ha-continuous but neither g is strongly ha-continuous nor f is strongly
ha-continuous because f~1({1,2}) = {1,2} which is not open in X and g=1({4}) = {4} is not open in
Y.

Theorem 4.17 If a function f : (X,7) — (Y,0) is strongly ha-continuous and g : (Y,0) — (Z,p) is
ha-continuous. Then go f : (X, 7) — (Z,p) is continuous.

Proof: Suppose f : (X,7) = (Y, 0) is strongly ha-continuous and ¢ : (Y,0) — (Z, p) is ha-continuous.
Let V be an open set in Z. Then g~1(V) is ha-open set in Y. Since f is strongly ha-continuous, we have
Y971 (V)) = (go f)~1(V) is open set in X. Therefore go f : (X,7) — (Z, p) is continuous. O

Proposition 4.1 A function f: (X,7) — (Y, 0) is strongly ha-continuous iff f (V) is closed in X for
every ha-closed set' V in'Y.

Proof: Suppose f is strongly ha-continuous function. Let V' be an ha-closed set in Y, then V¢ is ha-open
set in Y. Since f is strongly ha-continuous, we have f~(V¢) is open set in X. But f~1(V¢) = X\ f~1(V).
Hence f~1(V) is closed in X. Conversely, suppose f~1(V) is closed set in X for every ha-closed set V in
Y. Let V be any ha-open set in Y, then V¢ is ha-closed set in Y. By assumption f~(V¢) is closed set
in X. But f~1(V¢) =X\ f~1(V) and f~!(V) is open set in X. Hence f is strongly ha-continuous. O

Theorem 4.18 FEvery strongly ha-continuous function is continuous.

Proof: Suppose f : (X,7) — (Y, 0) be a strongly ha-continuous function.Let V' be an open set in Y = V
is an ha-open set in Y. Since f is strongly ha-continuous function, we have f~1(V) is open in X. O

Remark 4.6 Converse of the above theorem need not be true by the following example.

Example 4.10 In Ezample /.7, the identity function f : (X,7) — (Y, 0) is continuous but not strongly
ha-continuous function.

Theorem 4.19 FEvery strongly continuous function is strongly ha-continuous function.

Proof: Suppose f: (X,7) — (Y,0) be a strongly continuous function. Let V be an open set in Y.Since
f is strongly continuous, we have f~1(V) is clopen= f~!(V) is ha-open in X. O

Remark 4.7 Converse of the above theorem need not be true.
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Example 4.11 Ezample 4.6 works here.

Theorem 4.20 Let X be a discrete topological space and Y be any topological space and f: X — Y be
a function. Then following are equivalent:

1. f is totally ha-continuous.

2. f is strongly ha-continuous.

Proof: (1) = (2) Proof is obvious.
(2) = (1) Let V be an ha-open set in Y. Then f~1(V) is open in X. Since X is discrete space which
implies f~1(V) is also closed in X. Thus f is totally ha-continuous function. O

Theorem 4.21 If f : (X,7) = (Y,0) and g : (Y,0) — (Z,p) are strongly ha-continuous. Then go f :
(X,7) = (Z,p) is ha-irresolute.

Proof: Let V be an ha-open set in Z. Since g is strongly ha-continuous, ¢g~*(V) is open set in Y =
g 1(V) is ha-open set in Y.Also f is strongly ha-continuous function, f=1(g=1(V)) = (go f)~1(V) is
open set in X. Hence (go f)~1(V) is ha-open set in X. O

Theorem 4.22 If f : (X,7) — (Y, 0) is ha-continuous and g : (Y,0) — (Z, p) is strongly ha-continuous.
Then go f: (X, 7) = (Z,p) is ha-irresolute.

Proof: Suppose f : (X,7) = (Y, 0) is ha-continuous and g : (Y,0) — (Z, p) is strongly ha-continuous.
Let V be an ha-open set in Z.Since g is strongly ha-continuous, g=!(V) is open set in Y. Also f is
ha-continuous function, we have f=1(¢g=1(V)) = (go f)~%(V) is ha-open set in X. O

Corollary 4.3 If f : (X,7) — (Y, 0) is continuous and g : (Y,0) — (Z,p) is strongly ha-continuous.
Then go f : (X,7) = (Z,p) is strongly ha-continuous function.

Theorem 4.23 Let (X, 1) and (Y,0) be two topological spaces. Then the following statements are equiv-
alent for a function f: (X,7) — (Y,0):

1. f is almost contra ha-continuous.
2. f~Y(V) is ha-open set of X for every regular closed set V of Y.

3. for each x € X and each regular closed set V. of Y containing f(x) there exist an ha-open set U
containing x such that f(U) C V.

4. for each x € X and each regular open set V of Y not containing f(x) there exist an ha-closed set
K not containing x such that f~1(V) C K.

Proof: (1) = (2): Let V be a regular closed set of Y. Then Y \ V is regular open set in Y then by (1),
7YY\ V)= X\ fY(V) is ha-closed in X which gives f~(V) is ha-open set in X.

(2) = (1): Let V be a regular open set in Y. Then Y \ V is regular closed set in Y, by (2) we have
7YY \ V) is ha-open set in X = X \ f~1(V) is ha-open set in X = f~(V) is ha-closed set in X.
(2) = (3): Let V be a regular closed set of Y containing f(x) which implies € f~1(V). Then by (2),
fY(V) is ha-open set in X containing x. Set U = f~1(V) = U is ha-open set in X containing = and
fU)=fHV)cV=FfU)CV.

(3) = (2): Let V be a regular closed set in Y containing f(z) which implies x € f~(V). Then by (3),
there exist an ha-open set U, in X containing x such that f(U) C V ie; U C f~1(V) = U{U, : = €
f~Y(V)} which is union of ha-open sets. Therefore f~1(V) is ha-open set of X.

(3) = (4): Let V be a regular open set of Y not containing f(x). Then Y \ V is regular closed set in
Y containing f(z), by (2) there exist an ha-open set U in X containing z such that f(U) C Y \V =
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Uc f~ Yy \V)=X\fYV). Hence f~1(V) C X\ U. Set X \ U = K, then K is ha-closed set not
containing z in X such that f~1(V) C K.

(4) = (3): Let V be a regular closed set in Y containing f(z). Then Y \ V is regular open set in Y not
containing f(x). From (4) there exists ha-closed set K in X not containing x such that f~1(Y \ V) C
K=X\f"YV)CcK. Hence Y\ K C f~1(V)ie; f(X\K)CV. Set U= X\ K, then U is ha-open
set containing = in X such that f(U) C V. O
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