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Magnetohydrodynamic Stokes Flow of Couple Stress Fluid Past a Viscous Liquid Drop in
a Porous Medium

Sivaprasad Jammula1 and Phani Kumar Meduri2∗

abstract: This article analyzes the steady flow of couple stress fluid past a viscous liquid droplet embedded
in a porous medium under the influence of a magnetic field, employing a no-slip condition. The Stokes and
Brinkman equations examine the flow dynamics within and around the liquid drop. The influence of an
external magnetic field on fluid flow is characterized by Lorentz’s force in the transverse direction. Analytical
expressions for stream functions and drag force on a liquid drop are derived. The analysis yields specific cases,
such as viscous fluid flow past a viscous liquid drop and a solid sphere, with results in strong agreement with
established literature. Graphical analysis illustrates the relationship among the coefficient of drag, couple
stress parameter, and Hartmann number. At low couple stress parameter values, strong couple stress effects
result in higher drag. The drag also increases with the rising Hartmann number. Streamline patterns are
analyzed about different couple stress parameters and Hartmann numbers.
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1. Introduction

The behavior of non-Newtonian fluids, particularly couple stress fluids, has become a focal point in
fluid mechanics due to their ability to model microstructural effects in complex media. The couple stress
theory, initially formulated by Stokes, incorporates the effects of particle rotations and characteristic
length scales, which are essential in fluids like synovial fluid, blood, and polymer suspensions. Under-
standing the flow of such fluids past spherical interfaces is vital for biomedical engineering, microfluidics,
and material science applications, especially when the sphere is a viscous fluid rather than a solid. Ap-
plying an external magnetic field transversely to the flow direction introduces magnetohydrodynamic
effects, complicating the flow behavior by introducing Lorentz forces that modify the velocity and stress
fields. The combined effects of couple stresses, magnetic forces, porous medium, and interfacial dynamics
between the surrounding fluid and the viscous liquid drop constitute a complex and significant issue in
practical applications. These configurations occur in practical applications such as magnetically guided
drug delivery, industrial filtration, enhanced oil recovery, nanofluid cooling technologies, and electromag-
netic control in metallurgical processes, where accurate flow manipulation is essential.
G. G. Stokes [1] laid the theoretical foundation for viscous flow by deriving internal fluid friction equa-
tions at low Reynolds numbers. Hartmann [2] initially showed that a uniform magnetic field suppresses
laminar flow in electrically conducting fluids by inducing a resistive Lorentz force. Brinkman [3] extended
Darcy’s law by including viscous shear effects, formulating the Brinkman equation for flow in a porous
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medium. This fundamental research facilitates enhanced fluid dynamics modeling inside porous matrices
comprised of closely packed particles. Chester [4] initially examined the flow of a viscous, incompressible,
electrically conducting fluid around a spherical within a parallel magnetic field. He altered the conven-
tional Stokes drag solution by including a uniform magnetic field at infinity and aligned with the fluid’s
flow direction. Blerkom Van [5] examined the magnetohydrodynamic flow of a viscous, conductive fluid
around a sphere with the aligned flow and magnetic field, emphasizing the force dynamics throughout
several regimes. His research provided preliminary insights into the influence of magnetic fields on spheri-
cal flow dynamics. Stokes [6] formulated the couple stress fluid theory, introducing couple stress effects to
account for rotational motions and microstructural influences in viscous flow. Stokes [7] investigated the
effects of couple stresses on creeping flow past a sphere, introducing microstructural fluid behavior into
the classical Stokes flow problem. His work highlighted how couple stress fluids deviate from Newtonian
predictions, particularly in drag characteristics around spherical bodies. Ramkissoon [8] investigated
the influence of couple stresses on fluid flow, revealing their significant role in modifying drag forces
on immersed bodies. Happel and Brenner [9] delivered an exhaustive analysis of low Reynolds number
hydrodynamics, encompassing both theoretical and practical dimensions of slow viscous flows. Their
research provides a fundamental reference for examining creeping flows around particles, such as spheres,
in diverse fluid settings. Kyrlidis et al. [10] studied conducting fluid crawling over axisymmetric objects
in an aligned magnetic field. They showed that stronger magnetic fields create thin boundary layers and
stationary zones near the body. This significantly increases drag, revealing magnetohydrodynamic effects
in low Reynolds number flows. Sekhar et al. [11] developed a two-dimensional axisymmetric model to
investigate continuous magnetohydrodynamic flow around a sphere in an aligned magnetic field. Their
findings demonstrated nonlinear fluctuations in recirculation and a linear escalation in drag correspond-
ing to the interaction parameter. Devakar and Iyengar [12] analyzed Stokes’ first and second problems
for incompressible couple stress fluids, highlighting the influence of couple stress effects on unsteady
viscous flow near boundaries. Devakar et al. [13] investigated analytical solutions for several fully de-
veloped flows of Couple Stress fluids that were contained within concentric cylinders with slip boundary
conditions. Jaiswal [14] investigated the viscous flow around a Reiner-Rivlin liquid sphere submerged
in a saturated porous media, employing the Brinkman equation to analyze the flow within the porous
medium. Murthy and Kumar [15] derived an exact solution for Stokes flow over a contaminated fluid
sphere by applying a no-slip condition at the fluid interface, offering insights into interfacial effects on
low Reynolds number flows. Ashmawy [16] investigated the drag force on a slip spherical particle in a
couple stress fluid, demonstrating how couple stress effects and slip conditions modify particle motion
and resistance. Madasu and Bucha [17] investigated magnetohydrodynamic flow within a fluid-filled
spherical cell by employing Happel’s and Kuwabara’s boundary conditions to simulate flow and stress
continuity. Their methodology encapsulates the interplay between the internal fluid sphere and the ex-
ternal medium influenced by magnetic forces. Siddique and Umbreen [18] provided analytical solutions
for incompressible couple stress fluid flows employing Laplace and Fourier transform methods. Their
research emphasizes the influence of couple stresses on velocity profiles throughout time and differing
Reynolds numbers. Madasu and Bucha [19] investigated magnetohydrodynamic creeping flow around
a weakly permeable spherical particle utilizing cell models that integrate Stokes and Darcy flow. They
examined the influence of magnetic fields, permeability, and volume fraction on drag and hydrodynamic
behavior. Selvi et al. [20] examined creeping flow surrounding a non-Newtonian liquid sphere within
a porous medium, employing Brinkman and Stokes models. Their findings underscore the influence of
viscosity ratio, permeability, and non-Newtonian characteristics on drag force dynamics. Kunche and
Meduri [21] used analytical methods to study micropolar fluid flow across a sphere under interfacial
slip. The study also examined stream functions and drag on spheres when micropolar fluids flow past
Newtonian fluid spheres and vice versa. Madasu and Sarkar [22] analytically studied the flow of a couple
stress fluid past a sphere under a magnetic field, revealing the combined impact of couple stress effects
and magnetohydrodynamic forces on flow characteristics. Wang et al. [23] conducted an analytical
investigation of the MHD clamshell instability on a sphere characterized by opposing tilts of magnetic
field lines over the equator. Their research, driven by solar tachocline dynamics, provides insights into
the evolution of instability under mild shear circumstances. Devi and Meduri [24] analyzed the flow of
a couple stress fluid around a polluted fluid sphere under slip boundary circumstances. Their research
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elucidates the impact of interfacial slip and contamination on flow dynamics and drag forces in intricate
fluid systems. Maurya et al. [25] investigated the influence of a magnetic field on the flow of a couple
stress fluid surrounding a solid sphere within a porous medium. They found that the drag force dimin-
ishes with increased couple stress parameters. Meduri and Kunche [26] analytically calculated the drag
force for a viscous fluid flowing past a contaminated micropolar fluid droplet, as well as for a viscous
fluid flowing past a contaminated viscous fluid droplet situated in a confined porous medium. Sakthivel
and Shukla [27] used the method of separation of variables to determine the stream function and corre-
sponding drag force on a solid spherical particle enclosed in a Newtonian liquid sphere and immersed in
a couple stress fluid medium. Alotaibi and El-Sapa [28] illustrated the role of the Lorentz force in liquid
density, considering a homogeneous and isotropic medium while neglecting couple stress and body force
effects in the flow direction. Meduri et al. [29] presented an exact solution for couple stress fluid flow
past a fluid sphere in a porous medium with slip, highlighting the effects of couple stresses, porosity, and
slip-on flow behavior. Ramasamy and Chauhan [30] investigated the creeping flow of a couple stress fluid
past a semipermeable spherical particle with a solid core, examining the combined influence of couple
stress effects and an external magnetic field. Jammula and Meduri [31] derived an exact solution for
laminar viscous flow over a contaminated liquid drop in a porous medium, emphasizing the effects of
surface contamination and magnetohydrodynamics on flow behavior.
This work examines the flow of couple stress fluid past a viscous liquid drop placed in a porous medium
under magnetic effect. It aims to derive an analytical solution for stream functions and compute the drag
force acting on the liquid drop and the coefficient of drag employing no-slip boundary conditions. Couple
stress fluid flow past a viscous liquid drop study applies to magnetic drug delivery, microfluidics, and
adaptive suspension systems, such as using magnetorheological fluids in vehicle suspension for smoother
rides.

2. Modelling

Figure 1: Geometry of proposed model

Consider the axisymmetric, steady, incompressible CSF flow past a liquid drop of radius 1 under
the applied uniform magnetic field H̃1, which is considered in the transverse direction of the flow with
uniform fluid velocity U , as shown in Figure1. Also, in the absence of an external electric field and for
a very small magnetic Reynolds number, we can neglect the induced electric current. Here, the induced
magnetic field is taken to be very small in comparison to the external magnetic field. In addition, the
permeability k of the porous medium is considered.

Lorentz force is F̃ = J̃ × H̃1 i.e., F = µ2
h σe

(
q̃ × H̃1

)
× H̃1 , where H̃1 is magnetic induction

vector, J̃ is the electric current density, σe is the electric conductivity of the fluid and µh is the magnetic
permeability of the fluid.
Consider (r, θ, ∅) as the spherical co-ordinate system.
The current flow is slow, axially symmetric and stable, resulting in independent physical parameters
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associated with it ∅.
Thus, velocity vector of the internal and external regions is given by
q̃ = qr (r, θ) ẽr + qθ (r, θ) ẽθ.
Expressing velocity components in terms of stream function Ψ which satisfy the continuity equation as

qr = − 1

r̃2 sinθ

∂Ψ

∂θ
, qθ =

1

r̃ sinθ

∂Ψ

∂r̃
. (2.1)

Consider Ψ = Ψi for the internal region and Ψ = Ψe for the external region.
The governing equations for the steady flow of an incompressible viscous fluid in the internal region of
liquid drop by Stokes [1] equation are given by

∇̃ . q̃i = 0, (2.2)

∇̃pi + µi∇̃ × ∇̃ × q̃i = 0. (2.3)

The governing equations for the steady flow of an incompressible couple stress fluid in the external region
of liquid drop by Brinkman’s [3] conditions are given by

∇̃ . q̃e = 0, (2.4)

∇̃pe + µe ∇̃ × ∇̃ × q̃e + ηe∇̃ × ∇̃ × ∇̃ × ∇̃ × q̃e +
µe

k
q̃e − µ2

h σe

(
q̃e × H̃1

)
× H̃1 = 0,(2.5)

where q̃i is the internal fluid velocity, q̃e is the external fluid velocity, pi is the internal fluid pressure, pe
is the external fluid pressure, µi is coefficient of viscosity in the internal fluid, µe is coefficient of viscosity
in the external fluid, ηe is couple stress viscosity coefficient in the external fluid, k is the porous medium
permeability, a = 1 is the radius of the sphere, σe is the electric conductivity of the fluid, µh is the
magnetic permeability of the fluid.
“The non-dimensional parameters are
r̃ = a r, q̃i = U qi, q̃e = U qe, H̃1 = H0 H1,Ψ = U a2 ψ, ∇̃ = ∇

a .” (Meduri et al. [29]).
Substituting above terms in Equations (2.2) - (2.5), we get

∇ . qi = 0, (2.6)

∇pi + ∇ × ∇ × qi = 0, (2.7)

∇ . qe = 0, (2.8)

∇pe + ∇ × ∇ × qe +
1

λ2e
∇ × ∇ ×∇ ×∇ × qe + σ2 qe − H2 (qe × H1) × H1 = 0, (2.9)

where λ2e = a2µe

ηe
, σ2 = a2

k , H =
√

µ2
h H2

0 a2 σe

µe
is the Hartmann number, σ is the porosity parameter,

and λe is the couple stress parameter of fluid in the external region of liquid drop.
By using non-dimensional scheme and by eliminating the pressure terms from the Equations (2.7) and
(2.9), we get momentum equations as

E4ψi = 0, (2.10)

E2
(
E2 − σ2

2

) (
E2 − σ2

3

)
ψ
e
= 0, (2.11)
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where σ2
2 + σ2

3 = λ2e, σ
2
2 σ

2
3 = λ2e σ

2
1 , where σ

2
1 = σ2 +H2 and E2 ≡ ∂2

∂r2
+ 1

r2
∂2

∂θ2 − cotθ
r2

∂
∂θ .

The general solutions of the Equations (2.10) and (2.11) can be obtained by using separation of variables
as

ψi =

[
a5r

2 + a6 r
4 + a7r + a8

(
1

r

)]
1

2
sin2θ, (2.12)

and

ψe =

[
a1 r

2 + a2

(
1

r

)
+ a3

√
r K 3

2
(σ2 r) + a4

√
rK 3

2
(σ3 r)

]
1

2
sin2θ, (2.13)

where K 3
2
(∗) are modified Bessel functions of second kind of order 3

2 .
Coefficients are obtained by using the following boundary conditions.

1. Regularity conditions:

a) Far away from the liquid drop, the flow is uniform, i.e.,

lim
r→∞

ψe =
1

2
r2sin2θ. (2.14)

b) Velocity at the origin is finite, i.e.,

lim
r→0

ψi =finite. (2.15)

2. Impermeability condition: On the boundary normal velocity is zero, i.e.,

ψi = ψe = 0 on r = 1. (2.16)

3. No-slip condition: Tangential velocity is continuous across the surface, i.e.,

∂ψe

∂r
=
∂ψi

∂r
on r = 1. (2.17)

4. The liquid drop’s contact experiences continual shear stress, i.e

τrθe = τrθi, where τrθ = µe

(
1

r

∂qr
∂θ

+
∂qθ
∂r

− qθ
r

)
− 1

2

(
1

r

∂Mθ∅
∂θ

+
∂Mr∅
∂r

+
2Mr∅ +M∅r

r

)
.(2.18)

5. Type A condition: Couple stress disappears at the boundary, i.e.,

Mrϕ = 0 on r = 1. (2.19)

3. Solution

By using regularity conditions (2.14) and (2.15), we get a1 = 1, a7 = 0, and a8 = 0. By applying
the remaining boundary conditions (2.16) – (2.19), we get system of equations as

a2 + a3 K 3
2
(σ2) + a4 K 3

2
(σ3) = −1,

a5 + a6 = 0,

a2 + a3 K 3
2
(σ2)∆1 (σ2) + a4 K 3

2
(σ3)∆1 (σ3) + 2a5 + 4a6 = 2,

6 a2 +
[
4 + 2∆1 (σ2) + σ2

1

]
a3 K 3

2
(σ2) +

[
4 + 2∆1 (σ3) + σ2

1

]
a4 K 3

2
(σ3)− 6 µ a6 = 0,

σ2
2 [∆1 (σ2) + 1 + e] a3 K 3

2
(σ2) + σ2

3 [∆1 (σ3) + 1 + e] a4 K 3
2
(σ3) = 0,


(3.1)



6 Sivaprasad Jammula and Phani Kumar Meduri

where e = η′

η is couple stress viscosity ratio (CSVR).
By solving these equations, we get

a2 =
3 [M2∆1 (σ2) − M1∆1 (σ3) + 2M2 − 2M1]µ+ [M2M3 −M1M4]

M

a3 = − 3M2 [3µ+ 2]

M K 3
2
(σ2)

,

a4 =
3M1 [3µ+ 2]

M K 3
2
(σ3)

,

a5 = − 3 σ2
1 [M1 −M2]

2 M

a6 =
3 σ2

1 [M1 −M2]

2 M
,



(3.2)

The all values of M’s are given in Appendix.
Consequently, all coefficients are determined and substituted into equations (2.12) and (2.13) to obtain
the stream function expressions for the internal and external regions.

4. Drag force

The drag force (Fz) on the liquid drop is evaluated using the formula Happel and Brenner [9],

Fz = 2 π a2
{∫ π

0

(τrr cosθ − τrθ sinθ)r = 1 sinθ dθ

}
, (4.1)

where τrr = − p + 2 µe
∂qr
∂r .

By substituting the values of τrr and τrθ and simplifying, we get Fz as

Fz = −2

3
πµeUσ

2
1

(
−2 + a2 − 2 a3 K 3

2
(σ2)− 2 a4 K 3

2
(σ3)

)
, (4.2)

Substituting values from Equation (3.2), we get

Fz = 2πUµeσ
2
1

[
3 [M1∆1 (σ3)−M2∆1 (σ2) + 2M1 − 2M2]µ+ [M1M4 −M2M3]

M

]
, (4.3)

and coefficient of drag (CD) = Fz
1
2 ρ π U2 .

CD =
8

Re
σ2
1

[
3 [M1∆1 (σ3)−M2∆1 (σ2) + 2M1 − 2M2]µ+ [M1M4 −M2M3]

M

]
, (4.4)

where Re = 2ρU
µe
.

Special cases:

1. If H = 0 and σ = 0, we get couple stress fluid flow past a viscous liquid drop with no magnetic
effect and no porous medium. Then

Fz = 6πUµe

[
λ2
e[∆1(λe)+1+e][3µ+2]

λ2
e[∆1(λe)+1+e][3µ+3]−[∆1(λe)−1][3µ+2][1+e]

]
, and

CD = 24
Re

[
λ2
e[∆1(λe)+1+e][3µ+2]

λ2
e[∆1(λe)+1+e][3µ+3]−[∆1(λe)−1][3µ+2][1+e]

]
,

which agrees with the result of Sakthivel and Shukla [27].
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2. If H = 0, σ = 0 and λe → ∞, this becomes as a viscous fluid flow past a viscous liquid drop
with no magnetic effect and no porous medium. Then

Fz = 6π U µe

[
µ + 2

3

µ +1

]
, and CD = 24

Re

[
µ + 2

3

µ +1

]
,

which agree with the result reported in the book by Happel and Brenner [9] for the drag force
experienced by a liquid drop in a fluid medium.

3. If H = 0, σ = 0, λe → ∞, and µ → ∞, we get viscous fluid flow past a solid sphere with no
magnetic effect. Then

Fz = 6 π U µe and CD = 24
Re ,

which is the well-known Stokes [1] result and reported in the book by Happel and Brenner [9] for
flow past a solid sphere in an unbounded medium.

Thus, the expressions obtained in Equations (4.3) and (4.4) are validated with previous results in
the literature.

5. Results and discussion

The effect of altering the couple stress parameter and Hartmann number on the coefficient of drag at
fixed dependent parameters is investigated and reported in graphical and tabular formats.

Figure 2: Coefficient of drag (CD) with couple stress parameter (λe) for H = 1, σ = 0.1, µ = 0.5, e = 0.8,
and Re = 0.1.

λe 2 4 6 8 10 12 14 16 18 20
CD 475.03 422.06 405.84 398.73 394.97 392.74 391.31 390.34 389.65 389.14

Table 1: Values of coefficient of drag (CD) with couple stress parameter (λe) for H = 1, σ = 0.1, µ =
0.5, e = 0.8, and Re = 0.1.

Figure 2 shows the change in the coefficient of drag (CD) with couple stress parameter (λe) for fixed
Hartmann number, porosity parameter, viscosity ratio, and couple stress viscosity ratio values. With
increasing values of the couple stress parameter, a significant reduction in the drag coefficient is observed,
corresponding to a weakening of couple stress effects. At low couple stress parameter values, strong couple
stress effects result in higher drag, indicating more resistance to motion due to the increasing influence
of couple stress effects. The numerical values are presented in Table 1.
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Figure 3: Coefficient of drag (CD) with Hartmann number (H) for σ = 1, e = 0.8, µ = 0.5, λe = 15,
and Re = 0.1.

H 1 2 3 4 5 6 7 8 9 10
CD 508.00 810.74 1265.70 1870.50 2627.10 3537.20 4602.30 5823.60 7201.80 8737.50

Table 2: Values of coefficient of drag (CD) with Hartmann number (H) for σ = 1, e = 0.8, µ = 0.5, λe =
15, and Re = 0.1.

Figure 3 shows the change in the coefficient of drag (CD) with the Hartmann number (H) for the fixed
viscosity ratio, couple stress parameters, and CSVR values. The coefficient of drag increases with an
increase in the Hartmann number, indicating that the flow executes higher resistance to the motion of
the liquid drop due to the influence of the magnetic effect. A higher Hartmann number value represents
a greater magnetic effect and increases the resistance to motion. The numerical values are presented in
Table 2.

(a) (b)

Figure 4: Streamline plots for different couple stress parameters (a) λe = 1, and (b) λe = 10 at fixed
H = 0.1, σ = 0.1, e = 0.8, µ = 0.5.
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In Figure 4, for λe = 1, the external streamlines are highly curved and densely packed near the viscous
sphere, indicating strong couple stress effects and significant flow disturbance. As λe increases to 10, the
streamlines become smoother and more parallel, reflecting a shift toward Newtonian-like external flow.
Internally, the viscous fluid shows tighter closed streamline loops due to higher shear interaction at low
λe. With increasing λe, the interface shear weakens, resulting in more relaxed internal streamlines and
less distortion in the external flow.

(a) (b)

Figure 5: Streamline plots for different Hartmann numbers (a) H = 0.1, and (b) H = 1 at fixed
σ = 0.1, λe = 3, e = 0.8, µ = 0.5.

In Figure 5, At low Hartmann number H = 0.1, the external streamlines are more distorted and curved
around the sphere, indicating weaker Lorentz force resistance to flow. As H increases to 1, the stream-
lines become more parallel and less deviated, showing suppression of transverse motion due to stronger
magnetic damping. Internally, denser and more closed streamlines appear at lower H, reflecting stronger
induced circulation.

6. Conclusions

We presented an analytical solution for magnetohydrodynamic CSF flow past a viscous liquid drop,
utilizing no-slip condition. Analytical expressions for stream functions and drag force on a viscous liquid
drop are derived. Specific cases, such as viscous fluid flow past a viscous liquid drop and a solid sphere,
are deducted. The effects of the couple stress parameter and Hartmann number on drag are investigated
through graphical analysis and tabulated numerical results, while streamlines are employed to visualize
the flow characteristics.
We observed the following illustrations in our work:

1. A higher Hartmann number value represents a greater magnetic effect, which increases the resistance
to motion, resulting in higher drag.

2. Significant couple stress effects result in heightened drag at low values for the couple stress param-
eter.

3. As couple stress parameter increases, external streamlines smoothen while internal circulation weak-
ens due to reduced shear transmission.

4. As Hartmann number increases, magnetic damping makes internal streamlines more compact while
external streamlines compress vertically.
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Future studies may examine other non-Newtonian flows, like micropolar fluid, power law fluid etc.,
past other non-Newtonian flows influenced by magnetic effects.
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Appendix:

M1 = σ2
2 [∆1 (σ2) + 1 + e] ,

M2 = σ2
3 [∆1 (σ3) + 1 + e] ,

M3 = 4 + 2∆1 (σ2) + σ2
1 ,

M4 = 4 + 2∆1 (σ3) + σ2
1 ,

M = 3 [M1∆1 (σ3)−M2∆1 (σ2) +M2 −M1]µ+ [M1M4 −M2M3 − 6M1 + 6M2] .
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