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Constrained Rational Cubic Fractal Interpolation Using Function Values

L. Rajesh and K. Mahipal Reddy *

ABSTRACT: This paper presents the development of a constrained rational cubic fractal interpolation us-
ing function values based on iterated function systems. The rational cubic fractal interpolation function is
constructed using a cubic polynomial in the numerator and a linear polynomial in the denominator, with
convergence properties that offer flexibility for modeling complex datasets exhibiting fractal-like behavior.
We show that the proposed approximation converges to the original function as the discretization parameter
trends to zero. The framework incorporates a single shape-control parameter and enforces constraints through
(i) piecewise linear functions, (ii) linear functions, and (iii) rectangular bounds that confine the interpolated
curve within a specified range. A detailed performance analysis is provided, along with a systematic approach
for selecting scaling factors and shape parameters. The effectiveness of the proposed method is validated
through extensive numerical experiments.

Key Words: Fractals, Iterated Function System, Fractal Interpolation Function, Convergence, Con-
strained Interpolation.
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1. Introduction

In recent decades, interpolation and fractal models have evolved due to iterated function systems
(IF'S), which have revolutionized data analysis and approximation. Fractal interpolation provides greater
flexibility in capturing the nuances of irregular and highly variable datasets than conventional interpo-
lation methods like polynomials and splines. It is perfect for simulating real-world events like financial
trends, physiological signals, and geological fluctuations because of its recursive and self-similar char-
acter, which preserves fine structural details and effectively handles non-smooth data. M.F. Barnsley
[5,7] pioneered the concept of iterated function systems (IFS) to formalize fractal interpolation functions
(FIFs). Barnsley and A. N. Harrington [6] introduced smooth FIFs, or C"-FIFs, where the construc-
tion begins with the availability of all 7*"-order derivatives of the function at the initial endpoint of the
domain. Abdulla Sana and K. Mahipal Reddy [1] applied IFS techniques alongside K-means clustering
and self-organizing maps for segmentation and design in the fashion industry, showcasing the integration
of mathematical principles with digital design methodologies. A.K.B. Chand et al.[8] constructed of
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a Cl-rational cubic fractal interpolation function effectively models constrained data while preserving
smoothness and shape. The derived error estimates demonstrate the accuracy of rational cubic frac-
tal interpolation function (RCFIF) within C*[z;, z,] for k& = 1,3. Numerical results confirm that the
proposed RCFIF remains within prescribed bounds under suitable IFS conditions. Drakopoulos V. et
al. [9] introduced affine fractal interpolation functions using a suitable IFS framework, presenting a brief
theoretical foundation for affine FIF models in two dimensions. They derived constraints on contractivity
factors to maintain positivity and monotonicity in bivariate affine FIF's, with numerical experiments vali-
dating their shape-preserving properties. Katiyar, S.K. et al. [10] investigated how to improve methods for
fractal interpolation by creating a sophisticated class of rational cubic spline FIFs with a fixed quadratic
denominator and several shape-controlling factors. Greater flexibility is provided by an enhanced method
with three form parameters that incorporates a novel tension parameter. Numerical experiments that
the suggested method is more accurate, efficient, and superior to conventional interpolation techniques.
Gowrisankar A. et al.[2] provided IFS parameter constraints for affine recurrent fractal interpolation
function (RFIF), ensuring their placement between piecewise linear segments, and developed an affine
recurrent fractal interpolation function using a recurrent iterated function system. Balasubramani N. et
al. [3] developed a novel class of a-fractal rational cubic splines based on iterated function systems. This
approach utilized a cubic polynomial in the numerator and a quadratic polynomial in the denominator,
ensuring boundedness under specific parameter constraints. K. Mahipal Reddy et al. [11] The restricted
nature of a novel family of rational cubic fractal interpolation functions in both univariate and bivariate
contexts is examined. We present the convergence findings of the RCFIF in relation to an original func-
tion. In particular, we establish adequate conditions based on the limitations of iterated function system
parameters at fewer discretized values, ensuring that the associated RCFIF retains its inherent properties
related to restricted data when the data lies (i) between two piecewise specified lines and (ii) within a
rectangle. K. Mahipal Reddy et al. [12] the proposed rational fractal interpolation function (FIF) offers
a flexible and effective framework for modeling data using only function values. By incorporating three
families of shape parameters, it ensures improved control over the interpolant’s shape while maintaining
convergence and providing a clear error bound. Numerical examples confirm the method’s capability to
handle constrained interpolation problems accurately and efficiently. K. Mahipal Reddy et al. [13] the
Overveld scheme to third-degree curves, determining curvature continuity and convex hull property. It
also identifies conditions for positive-preserving fractal-like Bézier curves in proposed subdivision ma-
trices. The resulting 2D /3D curves resemble fractal images and demonstrate the shape dependence on
subdivision matrices’ elements. Vijay et al.[17] explored various methods for creating fractal-like Bézier
curves in both 2D and 3D environments, including subdivision schemes, Iterated Function System (IFS)
theory, and the perturbation of both Bézier curves and Bézier basis functions. It outlines convergence
conditions, one-sided approximation conditions, and considerations for perturbed Bézier basis functions.
Vijay et al. [15] provided new classes of zipper fractal interpolation curves and surfaces that are continu-
ously differentiable and preserve convexity. Over a rectangular grid, it creates surfaces and builds curves
using univariate Hermite interpolation data. When applied to a bivariate data-generating function, these
surface interpolants converge uniformly. You can vary the signature vectors in both directions to gen-
erate a large number of zipper fractal surfaces. Vijay et al.[16] introduced novel classes of continuously
differentiable convexity-preserving zipper fractal surfaces. It constructs curves for univariate Hermite
interpolation data and generates surfaces over a rectangular grid. These surface interpolants converge
uniformly to a bivariate data-generating function. You can obtain a wide variety of zipper fractal sur-
faces by varying signature vectors in both directions. K. Mahipal Reddy et al.[14] presented a rational
cubic spline function for fractal interpolation developed using a rational iterated function system. The
function’s graph is positioned within a prescribed rectangle, and a partially blended surface is created.
Stability analysis is conducted, and sufficient conditions are investigated for the surface to fit a stipulated
cuboid. K. Mahipal Reddy et al. [4] showcased the iterative beauty of fractals through MATLAB-based
graphical representations, enhancing the visual understanding of fractal structures.

By the motivation of prior work [11] on the constrained of rational cubic fractal interpolation using
function values. This paper introduces a novel approach to Constrained of rational Cubic fractal interpo-
lation using function values based on IFS, focusing on flexibility, efficiency, and convergence. It explores
constrained aspects and convergence properties of a new family of rational Cubic fractal interpolation,
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ensuring C'! continuity in univariate cases. We propose a new interpolation method that enhances scien-
tific and engineering applications.

In this paper, In Section 2, we present relevant definitions and essential results concerning fractal inter-
polation. In section 3, we provide the construction of rational cubic fractal interpolation (RCFT) using
function values. In section 4, we derive the convergence analysis. In section 5, we present the constraints
on the vertical scaling factors and shape parameters of the constrained rational cubic fractal interpolation
using function values. In section 6, we illustrate numerical examples to demonstrate the effectiveness of
the proposed approach.

2. Basics of Fractal Interpolation Function (FIF)

Let the interpolation data be given by {(x;, t;) € RxR:¢ € Ny41 ={1,2,...,N + 1}}, where the
nodes are ordered such that z1 < 9 < -+ < xy4+1. Define the domain I = [z1, xn41], J = [z1, zn] and
the subintervals I} = [z;, x;41] for i = 1,2,..., N. Assume that each subinterval satisfies the condition
TN — 1 > Tip1 — T, ensuring proper contraction.

For each i, define a transformation W, : J] x R = I x R by:

Wz(xvt) = (‘/Z(x)aLZ(xvt)>7

where V; : J — If is a continuous affine transformation given by V;(z) = a;x + b;, and L; : J xR = R
is a continuous function that is contractive in the second argument. The pair (V;, L;) must satisfy the
following conditions:

Vi(z) = Vi(@")| < Sile —a™|,  [Li(x,t) — La(z, )| < Mit — 7],

for all z,z* € J, t,t* € R, with |S;| < a;, and |M;| < a;. Moreover, the boundary conditions ensure
interpolation:

Vilz1) = x5, Vilen) =wip1, Li(zr,t) =t, Li(zn,ty) = tigr.

The set {J x R,W; : i = 1,2,..., N} constitutes an Iterated Function System whose unique attractor
G C J x R corresponds to the graph of a continuous function g : J — R. This function precisely
interpolates the data points, i.e., g(x;) = t; for all i = 1,2,..., N, and satisfies a functional equation of
self-referential identity:

g(Vi(x)) =Li(z, g(x)), forallzeJandi=1,2,...,N.

Proposition 1:[6] Let {(z;,t;) : ¢ = 1,2,..., N} be a given set of interpolation data. Let each V;(z)
be an affine map, and let L;(z,t) = a;t 4+ ¢;(x) be a continuous function defined on each subinterval
J = [z1,zn] C [x1,xn41]. Suppose that for some integer j > 0, the contraction condition |o;| < sa]

with 0 < s < 1 holds, and ¢; € C?[z1, 2] for each i € J. Define the functions

Fiw(x t):iai“rq’(ﬁ)(m) oo W@) o avay)
[N a? ) 1,k alf “ o ) 2,k a,;\/ — OZN7

for k =1,2,...,7. If the boundary condition
Fioq1w@n,tne) = Fi (@1, t1 k)

is satisfied for all ¢ = 1,2,...,.N and k = 1,2,...,j,then the system of functions
vi(z,t) = {(Vi(z), Li(x,t)) : ¢ = 1,2,..., N} uniquely defines a fractal interpolation function (FIF)
f € Cizy,zn], where f(*) denotes the s-th order differentiable FIF constructed by the corresponding
maps.
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3. Construction of Rational Cubic Fractal Interpolation using function values

Given an interpolation dataset {(z;,%;) : ¢ € Nn41}, we define for each, i € Ny, a function
L; : I; x R — R satisfying the conditions L;(z1, t1) = t;,Li(zn, tn) = tit1 . The corresponding
map W;(z,t) = (Vi(z), L;(z,t)), then forms part of an iterated function system, with «;, serving as the
vertical scaling factor for each i € Ny.

The affine map is defined as V;(x) = a;x + b;, while the rational vertical map takes the form

Pi(x)
Qi(z)

Consequently, the rational fractal interpolation function satisfies the functional equation ®.

L;(x,t) = ait +

x el (3.1)

where P;(x) = M (1 — 0)® + Ma6(1 — )% + M36%(1 — ) + M,6°,
Qi(x) =1+ (ri —2)(1 - 0).
My, My, M3, My, are the coefficient of P;(x), r; is the shape parameter

xr — X

0= z e J.

TN — o1
Putz=x1,0 =0and z =2y, 0 =11in (3.1), we get
Pi(r1) =M;, Qi(x1) =1and P(zn) =M, Qi(rn)=1.

Substitute x = x7 and z =z in (3.1), we obtain My = (r; — 1)(¢t; — ayt1)
and My = t;41 — a;tn. Derivative of ® in (3.1) with respect to z is

Qi(z) Pi(x) — P;(2)Qj(x)
(Qi(x))? '

Substitute, V;(x1) = x;, Vi(xn) = x;41 and M, My expression in (3.2), we get

o' (Vi(x))a; = a;®'(x) +

M, = (2’/‘1' — 1)(ti — Oéih) + (7’1‘ — 1)(A1]’Lz — OéiA1($N — l‘l)),
Mg = (’I“i + 1)(ti+1 — OtitN) — Ai+1hi + aiAN(acN — 1‘1).
The symbol A; indicates the slope between two adjacent points (z;,t;) and (z;41, t;+1) in a set of ordered
data points {(z;,t;) :i=1,2,...,Nx}. Fori=1,2,..., N, it is expressed as follows:
A, = liv1 — 4 .
Ti+1 — Ty
This figure, which is used to generate the rational cubic polynomial P;(z) in the vertical map of the
rational cubic fractal interpolation function, represents the average rate of change of the function values

over the subinterval [z;, z;+1]. It is also essential for figuring out the local behavior of the interpolating
curve between successive nodes. We obtained a rational cubic fractal interpolation as

Pi(x)

Qi(z)’

Py(x) = (ri — 1)(ti — cit1)(1 — 0)> + {(2r; — 1)(t; — asty) + (ri — 1)(Ashs — ai\y
(xn —21))}0(1 — )2 + {(ri + 1) (tig1 — itn) — Aip1hi + a;An(zy — x1)}
0%(1 — 0) + (tit1 — uitn)6?,

tit1 —t;
i =1 i —2)(1—-0), A; = 0= ,
R N A

O(Vi(x)) = ai®(x) +

TN ze]J
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3.1. Numerical Example

Consider the given data set for interpolation: {(z;, t;)}%_, = {(0,4), (2,6),
(3,3),(4,7),(5,5),(6,8)}. Figure 1 illustrates the construction of the RCFI. The new scaling factors and
shape parameter a = [0.38 0.18 0.17 0.19] and 7; = [5]1x5 are used to construct Figure 1(a). Similarly,
the scaling factors and shape parameter o = [0.15 0.19 0.18 0.17] and r; = [4]1 x5 are applied in Figure
1(b). For Figure 1(c), we use o = [0.28 0.12 0.16 0.11] and r; = [2]1x5. The RCFI shown in Figure 1(d)
is obtained using the scaling factors and shape parameter & = [0 0 0 0] and r; = [8]1x5 -

0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
x x x

(a) o = [0.38 0.18 0.17 0.19] (b) a = [0.15 0.19 0.18 0.17] (¢) @ = [0.28 0.12 0.16 0.11]

55 /
> 5

25

(d) a=1[0000]

Figure 1: Construction of Rational Cubic Fractal Interpolation

4. Convergence Analysis

In this section, we develop the convergence analysis. The dataset {(x;, ;) : 4 € Nyy1} is assumed to
be derived from a generation function ¢ € C!(J). Let’s C represent the classical interpolation function
corresponding to the rational cubic fractal model. To examine the convergence of the fractal interpolant
® to the true function v, we leverage the known convergence behavior of C' and the bounded deviation
between ® and C. This analysis is facilitated using the triangle inequality: ||® — ¢[00 < ||® — Cloo +

|IC — ¢]|0o- We have ®(V;(z)) = a; P(x) + gl((?) If o; = 0 then, we get
Clz) = Pi(z)  Mi(1—9)* 4+ Md(1 — 9)* + Msd?(1 — 9) + My9?
C Qi(z) 1+ (r; —2)(1—9) ’
Tit1 — &4
Where Ml = (T‘i - 1)(t2 — aitl),

My = (2r; — 1)(t; — atr) + (i — 1)(Ashy — a; A (N — 1)),
Mz = (r; + 1)(tiy1 — aity) — Aiprhi + a0 An(zy — 71)
and M4 = t¢+1 — ot
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Now, we express the difference between ®(x) and C(x) as:

b(z) — O() = Qiz;) (ri = Dtr (1= 0)> + {(2rs — Dty + (ri = DA 2y — 1)}
19(1 — 19)2 + {(’I’z + 1)tN — AN((EN — xl)}ﬁQ(l — 19) + tN193 .
It can also be stated as:
O(z) - C(x) = Q_Li(l’?) {[Aot1 + A1ty + A2 A1 + A3AN]},

where Ag = (r; — 1)(1 = 9)° + (2r; = D)I(1 = 9)%, Ay = (r; + 1)0*(1 = 9) +
Ay = (r; = Dhd(1 = 9)*, A = —h9*(1 - 1).

A0+A1 —1 A2+A3 - hzﬁ(lfﬂ)[m(lfﬂ) — 1}

Qi) 7 Qi) 1+ (r—2)(1-9)

|®(x) — C(z)| < |ay| [max{t1,tn} + E(I, h) max{A1,An}],
hi9(1 —N[r;(1 —9) — 1]
T -20-9)

where FE(9,h) =

_ Pi(z)
Qi(x)

The maximum approximation error can be evaluated using the infinity norm:

Now, $(z) — C(x) = ¥(x)

[W(x) = C2)] < {[(2) = till(ri = 1)(1 = 9)° + [2ri — LI(1 = 9)*] + [(2) — tisa]
[l + 1[92 (1 = 0) +9°] + h[| A [9(1 = 9)* + [ i [92(1 = 9)]}.

1
Qi(Y;)

[Y(x) = Clz)] < [Y(®; h) + hs max{|Aql, |Aiga [},

where (3 h) = |ri — 1|(1 = 9)® 4 |2r; — 191 — )2 + |y + 1[92 (1 — 9) + 93,
The expression can be written as,

[t|oo = max{|t1],|tn]:4=1,2,..., N} <max{|t;| :i=1,2,...,N},

|Aloe = max{|A1],|An]:i=1,2,...,N} <max{|A;| :i=1,2,...,N},

|h|oo = max{|h;| :4=1,2,...,N =1}, |r|ec = max{|r;] :4=1,2,...,N}.
Thus, |®(z) — ¥(z)| < |a;| [max{ti,tn} + E(Y, h) max{A;, Ax}]

[Y(¥; h) + hi max{|A;|, [Ai1]}]

L1
Qi(V;)

Convergence Result: Let ¢ be a uniformly continuous function defined on v, and suppose that
v(¢;h) — 0, as h — 0. Then , by utilizing the classical interpolation C corresponding to ¥ we can
estimate the error using the inequality: ||® — ¢|loc < [|P — Clloo + [|C — || co-
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5. Constrained Rational Cubic Fractal Interpolation Function Using Function Values

In this section, the focus is on identifying the vector scaling factors and shape parameters that
satisfy the imposed constraints for the RCFI. We aim to formulate a constrained RCFI such that the
interpolation data {(z;,t;) : i € Ny41}, lies entirely within two piecewise linear bounding functions,
defined as T! = &z +m; and T¢ = &z + m?. Given the implicit structure of RCFI, we examine two
distinct cases for the vertical scaling factor: «; > 0 and «; < 0, for all ¢ € Ny.

To ensure that all points generated through iteration respect these bounds when the dataset is enclosed
by the piecewise linear functions, the model must satisfy a specific constraint condition.

Ti(Vi(z)) < F(Vi(x)) < T (Vi(2)), Vi(z) = aix + by, i € Ny.
We can rewrite it for a non-negative scaling factor as follows:

&(Vi(2)) +myi < aif(x) + P;(6;)

<& (Vi(@)) +mj, i € Ny,

Qi(05)
which further simplifies to:
ilasa +b) +mi < asf(@) + T2 < e (agw o+ by) +
Qi(05)
where 0; = m.
TN — X1

We aim to derive conditions on the IFS parameters that guarantee the subsequent inequalities hold:

Pi(0;) Pi(0;)
Qi(0;) Qi(0))

We now present a theorem that establishes the conditions for the constrained RCFI.

Eilax +b;) +my < aif(x) + and o, f(z) + <& (aix+b;) +m]. (5.1)

Theorem 5.1 Consider the interpolation dataset {(z;,t;) : i € Nni+1} positioned between a pair of
piecewise linear functions. If the bounds are given by ']I‘i» =&x+m; and T =z +mj, i € Ny, then the
rational cubic fractal interpolation will remain between these functions, provided that the IFS parameters
are selected appropriately.

—Th(xi) tiys — Ti(wigr) Ti(ws) —ti Ti(ig1) —tin
17Tl(l’1)7 tN T(IN) 7T?($1)—t17 T?(,’L‘N)—t]\[ ’

(1) 0 < a; < min |‘az7

(ti = Ti(w:)) — ity = Th(x1)) + Pildi — Ay | J*] + &i(i — ai)| ]
2[(tz = Th(x:)) — ai(ty — Th(x1))] + hidi — i A |J*] + & (e — ai) [ T*|
—[(tis1 = Ti(zi+1)) — @ity — Ti(zn)) — hilisy + i An|J*|]
(tiv1 — Ti(zi41)) — ailtny — Ti(zn)) + &ilai —ai)|J*|
(T¥(x;) — t;) — i (T¥ (1) — t1) — hilN; + ;A |T*| + & (a; — a;)| T
(T (i) — ti) — (T (1) — t1)] — hildy + QA |J*| + & (ai — aq)| T*|
—[(Tf (zit1) — tip1) — (T} (2n) — tn)] — i1 + ;AN |7
(T3 (ziv1) — tiv1) — ai(T (2n) — tn) + & (@i — i) |7 ’
and |J*| = |zn — 21].

(#9)r; > max lO,

Proof: We can represent the left-hand side equation (5.1) in the form,

i f(2)Qi(0 )+P( ) {[&i(aiz + b;) +m;]Qi (0 )}>O

Assume that o; > 0. Thus, f(z) > &z +m; = o, f(2)Qi(8;) > ai(&x +my)Q4(6;).
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As a result, the established conditions naturally guarantee the fulfillment of the subsequent inequalities

ai(&x + mz)Ql(e )+ Pi(0 ) (&iair + bi) +m;)Qi(0 ) >0,
= a;[&i(21 + 0 (xn — 21) +my]Qi(0;) + Pi(6;) —
+ bi] +m;]Qi(0;) > 0,
= ;[§rr +mi]Qi(05) + cii(en — 21)0;Q4(0;) + P;(0;) —
+mi]Qi(0;) — &ai(zn — 21)0;Q;(6;) > 0.

Which can be written as,

[gz(az[xl + gj(xN - xl)

[gl(alxl + b; )

@il +mi]Qi(0;) + cifj(zn — 11)0;Qq(0;) + P;(0;)

= [Gilaiz1 + bi) +mi]Qi(0;) — &iai(zn — 21)0;Q:(05) > 0. (5.2)

Using degree elevation technique on Q;(6;) and 6;Q;(6;) we obtain,

Qi(0;) = (rs — 1)(1 = 0)° + (2 — 1)(1 — )26+ (1 + 1)62(1 — 0) + 6°, g
0,(Qul6) = (o= 1)(1 = 0)20 + r2(1 —0) + 0" o
Using (5.2) and (5.3), we get

{Oéi(fil‘l + mi) — [&(aixl + bz) + mz]}{(rl — 1)(1 — 9)3 + (27”1‘ — 1)(1 — 9)29
+ (ri + 1)92(1 —0)+ 93} + [&i (i — ai) | T {(r: — 1)(1 9) 0 +T192(1 —-0)+ 93}
+ {[(r1 = Dt — ait)](1 = 0)® + [(2r; — 1)(t; — aity + (ri — D{hildi — ;M| T*[}]

(1 — 9)29 + [(Ti + 1)(ti+1 — OéitN) — hiAi+1 + OziAN|J*|](1 - 0)92

+ [(tit1 — astn)]
6°} >0,

By rearranging and simplifying the given inequality, we obtain

= (ri = D[(t: — (&Gi(aszr 4 bi) + mi)) — a(ty — (L +ma))](1 — 6)°

+{2r; = D[t = (&G(aiz1 + ;) + my)) — ai(ts — (§z1 +my))]

+ (ri = D[Ridi — i Ay [T + & — i) [T*]}(1 = 0)%0 + {(r; + 1)
[(tiv1 — (Gilaizy + bi) +mi)) — ity — (Gz1 +m4))] — hildiga

+ AN 4 ri(&i(er — a) [ TN (1 = 0) + {[(tig1 — (Eilaizr +by)
+mi)) — ity — (&Gzr +mi)) + (Eilai — ag)| ) }0° > 0

Hencea O S (67 < min a;, ;(I ) , +1 ;(I +1)
t1 — T (z1) tny — Th(zy)

i—Ti) —a T)) + hidi — oA |J*] + & (o — aq) | J*
v > maz |0, (ti — T — oty — Zl)+ i AT + & — aq)| S|
[(tl — Tt ) — Ozl(tl — Tz)] + thz — OJZA1|J*| +§i(OLZ‘

—ai)|J*|’
[t =T = qulty = TY) — hildies + @iy |
(tiv1 — Tl)_az(tN_Tl)+§l(az ai)|J*|
The right-hand side inequality of (5.1) can be expressed as,
Ti(Vi(2)) < F(Vi(x)) < T} (Vi(x)), Vi(z) = aiz +b;, j € Ny.
Vi) + s < auf(a0) + oy < E0A) i, 6= ST je Ny,
i\Yj

IN —T1
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Here f(z) > &z +m] = a;if(v) > a;(§x +my)
Pi(0;)

= a;f(2)Q(0;) = oi(&z +17)Q0;) = ai f(z) + 2:(0,) < & (az +bi) +m;
= a; f(2)Qi(0;) + Pi(0;) — Qi(0;) — [ (e + b)) + m7] <0
= a;(§z +mi)Qi(0;) + Pi(0;) — (Qi(0;))[& (aiz + b;) + m] < 0
= (& (@1 +my) — & (@i + bi) +17)]Qi(6;) — (& |T7| — & ail T7(]0,;Q:(6;)
+P(6;)<0
By performing degree elevation on Q;(6;) and 6;Q;(6;) we derive,
[(& (aizr + b;) +m]) — (& ay +mi){(ri = 1)(1 = 6)* + (2r; = 1)(1 - 6)*0
+ (i + 1D)0*(1 = 0) + 63 + € (a; — )| T*[{(rs — 1)(1 — 0)20 + 7:6%(1 — 0) + 63}
—{[(r1 = V)(ti = ait)](1 = 0) + [(2ri = 1)(t; — cvitr + (ri = D{Pildi — ;AT }]
(1=0)%0 + [(ri + 1) (tig1 — aitn) = hilip1 + i An|T*|(1 = 0)6% + [(tig1 — aitn)]
03} > 0.
Rewriting and simplifying the inequality, we derive
= (ri = D& (@izy +bi) +mf) = t;) — (w1 +mf) = 0](1—6)° + {(2r: — 1)
(& (aizy 4+ b;) + m7) — t;) — i ((§Fzn +mg) — ta] + (ri = D[ (@i — i) [T — i
+ AT = 0)20 + {(ri + D& (asar + i) +mf) = tiv1) — ai((Ezr +m))
— )]+ il€) (@ — @) | T[] + hildir — AN |T*}0%(1 = 0) + [((&] (aizr + bi) +m])
—tiy1) — ai((§z1 +m)) —tn) + & (ai — oq) | J*]]0° > 0.

Ti(zi) —ti Ty (@ig1) — tipa
Ti(x1) —t1” Ti(en) —tn
(T3 (wi) — ti) — (T (1) — t1) — hilAi + o Aq | 7] + & (a5 — o) [T
2[(T} (@s) — ta) — a(Ti(z1) — t1)] — i + €D | J* + & (@ — o) T*|

Hence, 0 < a; < min [ai, )

r; > max |0,

(T} (wit1) — tig1) — (T} (2n) — tn)] = A1 + @ AN[ 7|
(Ti(zit1) — tiv1) — (T (zn) —tN) + & (@i — i) [T

Next, we consider the constrained RCFI when the scaling factors are negative.

Theorem 5.2 Let {(x;,t;) :i € Nxy1} be a given interpolation dataset such that the inequality T!(x) <
t; < T¥(x) holds for all i € Ny. In order to ensure that the rational cubic fractal interpolation with
negative scaling remains strictly confined within the bounding functions Ti(x) = &x + m; and T¥(z) =
&+ m?, certain conditions on the Iterated Function System (IFS) parameters must be imposed.

ti = Th(x;) tigr — Th(zip1) Ti(x) —ti Ti(wip1) — tiy

tl—T?(l‘ly tN— (1‘ ) ']I‘li(:vl)—t17 ']I'é(xN)—tN
(ti — ’]I‘l(xz)) — az(tl — ']I‘“(xl)) + h A OllA1|J*| + (5:041 — §Zaz)|J*|
2(ti — Ti(wi)) — cvi(ts — T (1)) + hili — AL [T*| + (§f i = &iaq) | T*|
—[(tig1 — Th(xi1)) — oty — T (2n)) — hiliy1 + o An|J*]

(tigr — Th(wiq1)) — ity — Tz n)) + (& i — &iai)|T*|
(T () — ti) — o (Th(x1) — t1)) — RalNi + o Ay | J*| + (& a; — Eay)| T
2U(T () — ;) — i (Th(z1) — t1)] — hiNi + Ay | J*] + (§Fa; — &ag) | T*|
—[(T¥(2ip1) = tig1) — ai(Th(zn) — tn) — hidigy + AN)[T*|]
(T (zi41) — tit1) — @i(Th(zn) — tn) + (EFai — &) | T*])

)

(i)0>oz2->ma:r[—ai7

(#3) mi > max [0

)
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Proof: In this case, the scaling factor «; is required to satisfy the constraint —a; < a; < 0.
The left-hand side of an inequality (5.1) can be expressed as follows,
Pi(0)

Cilax+b;) +m; <o, f(z) + 0:(60)

Here, f(z) > &2 +m! = aif(2) > a(&w +m})
P;(0)

= a; f(2)Qi(0) + Pi(0)[&i(aix + ;) +my]Qi(0) > 0

= {ai(§ o +m]) — [z + bi) +mi]}Qi(0) + Pi(0) > 0

= {oi(& (@1 4 01T*]) + m) — [&(ai(z1 + 0]T*]) + b;) + mi]}Qs(0) + Pi(6) > 0

= lai(&§zr +m]) — (Elaizr + b;) +my)]Qi(0) + {[67 i — §ail|T7[}0Q:(0)
+Py(9) > 0.

— [&(a;z+b;) +m;] >0

Utilizing the degree of elevation, we obtain
Qi(0;) = (ri —1)(1 - 9) + (2r; — 1)(1 9) 0+ (r; + 1)92( —6)+ 63,
0;(Qi(0;)) = (ri = 1)(1 = 0)*0 + r:6*(1 — 0) + 6°.
= [oi(&xr +m]) — (E(airr + bi) +my)][(rs — (1= 0)° + (2r; — 1)(1 - 6)%6
+ (i + DO*(1 = 0) + 6% + {[&] i — &ai]|T*[}(rs — 1)(1 = 0)260 + 7,67 (1 — 0) + 67
+{(r1 = Dt — ait)](1 = 0)* + [(2rs — 1) (t: — ity + (rs = D{hildi — ;A |T*[}]
(1=60)%0 + [(ri + 1) (tig1 — aitn) — hiip1 + o An[J*[[(1 = 0)6% + [(tig1 — citn)]
9} > 0.
Which is simplified as,
= (ri = D[t — T} (xi)) — ity — Tf (21)](1 = 0)* + {[2[(t; — T}(x:))
— ai(ty — T (1)) + hi — D | ¥ | + (& i — Giag)| T |Jrs — [(t: — Tj(s))
— Oéi(tl — T?(l‘l)) + h; — OéZAllJ*| + (§ o — fiai)|J*H}(1 — 9)29
+ {ril(tivr — Th(i41)) — @ity — T (an)) + (& @i — &ai)|J* )] + [(tigr — Th(wis1))
—ai(ty — T{(zn)) — hilig1 + G AN[TH}607(1 = 0) + [(tix1 — Th(wis1)) — ity
=T (zn)) + (& ai — &ai)| T*))]6° > 0,

ti —Ti ZT;

a: ( ) (mz-i-l)
“t 7TU(Z1)’

ZN)

tz—i—l

i
u
7

Hence, 0> a; > max [ — T (
(t: — T( i) — ity — T (z1)) + hild — ;A | J*| + (§ i — &iaq)| |
2(ti — Th(xs)) — ity — T(x1))] + hildi — a A [T + (& i — &iay)|T*]

—[(tir1 — Ti(zis1)) — ity — Ty (an)) — hilisy + AN]J*]]
(tigr — Th(zit1)) — ity — T (zn)) 4 (§ o — &iaq)] T

r; > max[

We can represent the right-hand side of an inequality (5.1) can be expressed as follows,
P;i(6;)
Qi(6;)
Here, f(x) > &z +m; = o f(x) > oi(&x + my)
= a; f(2)Qi(0) > ai(&x +my)Qi(0)

ai f(x) +

<&l (aix+b) +m;
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Pi(0)
Qi(0)

= o;f(x) + — [ (ax +b;) +mi] <0

= & (aiz + bi) + mi]Qi(0) — i f (2)Qi(0) + Pi(0) = 0
= [6 (aiz +bi) + m;]Qi(0) — (ai(§iz +mi)Qi(0) + Pi(0)) = 0

= [& (ai(xy + 0|T*|) + bi) + m;]Qi(0) — ci(&i(wr + (0)|T7]) + ma)Q:(6) — Pi(6) > 0.
Applying the degree of elevation, we get

[(&7 (ai(w1 +01T7]) + by) +mf) — ay(&(xr + 01T [) +m)][(rs = 1)(1 = 0)° + (2r; — 1)
(1=0)20+ (ri + 1)0*(1 — ) + 0°] + [(& @i — &) |T*)[(ri — 1)(1 — 0)*0 4 76 (1 — 0)
+ 63 — Py(0) > 0.

By extending the above approach, the following inequality is derived:

[(& (ai(@r + 01T*]) + i) + m]) — i(&(xr + 0]T*[) +ma)][(ri = 1)(1 = 6)° + (2r; — 1)

(1=60)%0+ (ri + 1)0%(1 — 0) + 6°] + [(& a; — &) | T*[|[(rs — 1)(1 — 0)*0 + 7:6°(1 — 6)

+ 03] = {[(r1 — 1)(t; — it )] (1 — 0)3 + [(2r; — 1)(t; — ity + (ri — D{hiA; — as AT}
(1= 0)20 + [(ri + 1) (tig1 — citn) — hildip1 + s An|T*(1 — 0)0% 4 [(tis1 — autn)]
63} > 0.

T (w;) —t; T (wig1) —tiga
Té(l’l)—h? 'I[‘li(a:N)—tN ’

0 (T?(xz) —t;) — ai(Té(xl) - 751) — hiA; + OéiA1|J*| + (ffai - fiai)u*\
2T () — i) — (T (1) — t1)] — hildi + Ay | J*] + (& a; — &) | T*]

Hence, 0 > o; > max | — ay,

r; > max

—[(T¥(wig1) — tiv1) — i(Th(zn) — tn) — hidip1 + AN JT*|]
(T¢(2ig1) — tiy1) — ai(Th(zn) — tn) + (a; — &ag)|T*])

Remark 5.1 Let the interpolation data set {(x;,t;) : i € Nyy1} be such that each data point satisfies
the condition T!(x) < t; < T%(z), foralli € Nyyi, j € Ny . Assume that the bounding functions
Tl(x) = &x+m and T%(x) = &z +m* are distinct linear expressions defined at the knots x;, with
t € Ny_1. The rational cubic fractal interpolation function exhibits a controlled negative scaling trend,
strictly constrained within the region bounded by T and T, which is achieved through a suitable choice
of IF'S parameters that satisfy the prescribed criteria.

: , ot = Ti(w) i = Ti(win) Ty(w) =t Ty (i) — tin
s >m“””[ BT T T 6 M)ty |
.. ) (ti—’]l‘l(xz))—az(tl —']I‘“(xl))+h A alA1|J*|—|—(§;‘al—§ZaZ)|J*|
)iz maz [0 20(ts = Th(:)) — (s — T (@0)] + hilds — auAg|J7] + (€1 — Ga))| I
—[(tig1 — Th(xi1)) — oty — T (2n)) — hiliy1 + o An|J*]
(tig1 — Th(miq1)) — ity — T (xn)) + (EF o — &ag)|J*|
(T () — t:) — o (Th(x1) — t1) — halAy + @ A | J*| + (§Fai — &) | 7|
2U(T () — ;) — i (Th(z1) — t1)] — hiNi + Ay | J*] + (§Fa; — &ag) | T*|
—[(T¥(2i41) = tig1) — ai(Th(zn) — tn) — hidig1 + G AN)|[T*]
(T%(zi41) — tiv1) — (T zn) — tn) + (EFai — &) | T*])
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Remark 5.2 If ¢ = 0 when m; = s; and & = 0 when mjsa, then the resulting RCFI will definitely
stay within the limits s1 < f(x) < so according to Theorems 5.1 and 5.2. A certain condition must be
met by the parameters defining the iterated function system to guarantee that the graph of the RCFI stays
entirely contained within the rectangle [x1, xn] X [s1, S2].

(i) To ensure the intended interpolation characteristics, we choose each vertical scaling factor a; from
the interval (af, aF) fori=1,2,...,N.,

) li—s1 tiy1 —81 S2—t S2 —¥iq1
where ozzR:mm [ai, ! i ! as

th—s1’ tnv—s1 'sa—t1 sa—tn

t; —s1 tiy1 —S1 S2—1; S2 — 41
tl_SQ’ tN—SQ’Sl—tl’ Sl—tN

L _
oy —max[—ai,

(ii) The shape parameter r; is selected as

(ti — Ti(xi)) — ity — Th(x1)) + hildi — @i Ay]J*]
2[(ti — Ti(zi)) — evi(tr — Th(z1))] + hili — @i Aq]J*]

—[(tig1 — Twi1)) — o (tn — Th(xn)) — hidip1 + 0 An|J*]
(tivr — Th(xit1))) — ai(ty — Ti(zn)) ’
(T (w5) — t;) — (T} (21) — 1) — hiAi + @ Aq ] T
(T (i) — ti) — (T (1) — t1)] — hildi + i Aq | J*|

(T (wit1) — tip1) — ua(Ty (2n) — tn)] — hilip1 + Ay |7
(T (it1) — tiv1) — (T (zn) — tN)

T > mazx [O,

(ti — Ti(w)) — @ity = T (a1)) + hildi — oAy | J*]

2[(1} — T (371)) — Oéi(tl — Tlu(lj))] + hlAl — O{iA1|J*‘ ’

—[(tig1s = Th(wi1)) — ity — Ty (zn)) — hidip1 + i An|J*]
(tiyr — Ti(wig1)) — cu(ty — T (zn)) ’
(T?(aﬁ, tz) —Oél ( 1) —tl) —hiAi+OtiA1|J*|
(T (ws) — ti) — ai(Ti(w1) — t1)] = hildi + Ay [ T*|
—[(T} (it1) — tit1) — ai(Th(an) — ty) — hildip1 + AN)|T*]]
(T (iy1) — tiv1) — ai(Ti(zn) — tn)

r; > max |0,

6. Result and discussion

This section provides various examples of how to create a constrained RCFI, in which the graphs are
constrained by two piecewise linear functions and straight lines that remain within a defined rectangular
area. This condition happens when T% and T! contain the provided interpolation data. Generally, if we
construct an RCFT using arbitrary IFS parameters, it might fall outside these ranges. We set specific
limits on the scaling factor a; and the shape parameters r; based on the data, as explained in section
6, to ensure that the RCFI keeps the structure of the restricted data. To evaluate the accuracy of the
proposed RCFI and confirm its efficacy in comparison to conventional methods, we analyze numerous
numerical examples. We created an algorithm that employs input data points, scaling factors, and form
parameters to repeatedly apply the IFS approach to generate the RCFI graph.

6.1. Example of the constrained RCFI lies between two piecewise lines:

Examine a dataset {(x;, )%, = (0, 4),(2, 6),(3, 3),(4, 7),(5, 5),(6, 8)} that is restricted by two
piecewise linear functions. An extra point (6, 8) is added to make this into an acceptable interpolation
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dataset with related upper and lower bounds T% and T%. This feature allows derivatives at the grid points
to be approximated by setting A; = L=k

Tip1—T; "
z+3 if 0<zx<2 z + 6 if 0<x<2
T — -3z +11 if 2<x<3 and T — -3z + 14 if 2<x<3
)3z -7 if 3<z<4 )4z -7 if 3<xz<4
—2x + 13 if 4<x<5 —2x + 17 if 4<zx<5

To build restricted rational cubic fractal models (RCFIs), Figure 2 shows how the RCFI is structured
and emphasizes how shape parameter choices affect the results. According to Table 2, when the IFS
parameters change in Figure 2(a), the RCFI is no longer contained inside the two piecewise linear limits.
However, Figure 2(b) shows that when the shape parameters and scaling factors meet the criteria in
Theorem 2, the RCFI stays within the boundaries. The resultant RCFI is shown in Figure 2(c) when the
scaling factor oy and the shape parameter r are changed. Likewise, r and as variations are reflected in
the RCFI in Figure 2(d). Additionally, beginning with the configuration in Figure 2(b), the limited RCFI
in Figure 2(e) is obtained by suitably adjusting the scaling and geometric parameters corresponding to
ag and r. In Figure 2(f), the restricted RRFIF is the consequence of varying the scaling parameters r and
ay. In summary, Figures 2(a) and (b) depict the unconstrained situation, the restricted configuration is
established, and the effects of certain parameter adjustments are examined in Figures 2(c)-2(f).

Table 1: Scale control parameters and tension parameters in constructing the piecewise lines RCFI in
Figure

Scale factor («) Fig |r Fig
[0.36 0.18 0.16 0.15] | 2a | [2222 2] %a
[0.31 0.17 0.19 0.18] | 2b,d | [10 10 10 10 10] 2b,c,f
[0.17 0.11 0.15 0.19] | 2¢ [5555 5] 2d
[0.14 0.19 0.15 0.17] | 2e [100 100 100 100 100] | 2e
0000] of

2 2 2
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
x x x

(a) Unconstrained (b) Constrained RCFI. (c) Changed « in Fig.2b

2 2 2
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
x x x

(d) Changed r in Fig.2b. (e) Changed a & r in Fig.2b. (f) Classical of RCFI in Fig.2b.

Figure 2: RCFI lies between piecewise lines
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6.2. Example of constrained RCFI lies between two straight lines:

The dataset {(z;,t;)%_o = (0, 4),(2, 6),(3, 1),(4, 7),(5, 5),(6, 8)}, shows that the data points are
located both above and below the two boundary lines, T! = 2%’ 4+ 1 and T = %I + 6. The effects of
shape parameter selections on the RCFI structure are shown in Figure 3.The unconstrained Rational
Cubic Fractal Interpolation, as depicted in Figure 3(a), exceeds the defined bounding limits. Parameter
adjustments based on the provided theorem 5.2 yield the constrained interpolation seen in Figure 3(b).
Figures 3(c) to 3(e) systematically examine how tuning scaling and shape parameters modifies the inter-
polation relative to Figure 3(b). In Figure 3(f), a completely bounded RCFI is obtained by setting all
scaling coefficients to zero.

Table 2: Scale control parameters and tension parameters in constructing the piecewise lines RCFI in
Figure

Scale factor () Fig |r Fig
[0.38 0.19 0.19 0.19] | 3a [33333] 3a
[0.350.12 0.18 0.17] | 3b,d | [9999 9] 3b,c,f
0.29 0.19 0.14 0.11] | 3¢ | [40 40 40 40 40] | 3d
[0.15 0.16 0.13 0.18] | 3e [15 15 15 15 15] | 3e
000 0] 3

1
0 05 1 15 2 25 3 35 4
x

45 5 0 05 1 15 2 25 3 35 4 45 5

x

1
0 05 1 15 2 25 3 35 4 45 5

x

(a) Unconstrained

1
0 05 1 15 2 25 3 35 4 45 5
x

(b) Constrained RCFI.

1
0 05 1 15 2 25 3 35 4 45 5

x

(c) Changed « in Fig.3b

1
0 05 1 15 2 25 3 35 4 45 5
x

(d) Changed r in Fig.3b. (e) Changed « & r in Fig.2b. (f) Classical of RCFI in Fig.3b.

Figure 3: RCFI lies between straight lines.

6.3. Example of the constrained RCFI within the Rectangle:

The dataset {(z;, t;)} demonstrates how varying IFS parameters affect the structure of the RCFI
within the domain [0, 5] x [2,8], as shown in Figure 4. Figure 4(a) shows the unconstrained case where
the RCFI exceeds boundaries. Figure 4(b) presents a constrained RCFI achieved by selecting parameters
per Remark 5.2. Figures 4(c)—4(e) show effects of modifying scaling and shape parameters relative to
4(b), while 4(f) displays a fully restricted RCFI with all scaling factors set to zero.
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Table 3: Scale control parameters and tension parameters in constructing the rectangle lines RCFI in
Figure

Scale factor («) Fig |r Fig
[0.39 0.18 0.18 0.16] | 4a 11111 4a
[0.36 0.17 0.18 0.17] | 4bd | [T 7777 4b,c,f
[0.22 0.19 0.11 0.12] | 4c [100 100 100 100 100] | 4d
[0.12 0.19 0.17 0.19] | 4e [20 20 20 20 20] 4e
(000 0] 4f
(a) Unconstrained (b) Constrained RCFI. (c) Changed « in Fig. 4b
(d) Changed r in Fig.4b. Changed o & r Vin Fig.4b. (e) Classical of RCFI in Fig.4b.

Figure 4: RCFI lies within the rectangle bounds.

7. Conclusion

In this work, we developed a constrained rational cubic fractal interpolation using function values that
preserves key form properties while modeling complicated, irregular data. The approach provides a linear
denominator and a cubic numerator. A single shape-control parameter plus various constraint techniques,
such as piecewise linear limits, straight-line conditions, and rectangular enclosures, guarantees that the
interpolated curve complies with the intended geometric and functional characteristics. A systematic
parameter selection process and theoretical convergence analysis serve to further support the approach’s
resilience and flexibility. Numerical tests show that the technique may produce fractal interpolants that
are both aesthetically pleasing and preserve form on datasets. These findings confirm that the proposed
framework is suitable for practical applications in data visualization, geometric modeling, and scientific
computing, where dealing with irregularities and enforcing constraints is important.
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