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RT-conjugate codes in the Rosenbloom-Tsfasman metric

Bodigiri Sai Gopinadh and Venkatrajam Marka∗

abstract: Linear Complementary Dual (LCD) codes are a special class of linear error-correcting code
used in data transmission and storage. These codes possess specific algebraic properties that make them
useful in applications, such as communication systems, cryptography, and data storage devices. These are
particularly valuable in scenarios that require a high degree of error detection and correction. This study
explores the characteristics of RT-conjugate codes within the Rosenbloom-Tsfasman metric (RT-metric). In
this study, we focus on a specific subclass of LCD codes characterized by conjugate conditions. In particular,
we establish sufficient conditions under which a linear code in the RT metric qualifies as an LCD code through
its conjugate structure. We also analyzed the weight distribution of the dual of these codes in terms of their
type and proposed several construction methods for RT-conjugate codes.
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1. Introduction

Linear Complementary Dual (LCD) code has a wide range of applications in cryptography, com-
munication systems, and data storage. Massey first introduced these codes [1] and demonstrated that
they offer an optimal linear coding method for a two-user binary adder channel. Subsequently, Yang and
Massey [2] identified a necessary and sufficient condition for classifying cyclic codes as LCD codes. Carlet
et al. [3] explored the existence of q-ary LCD MDS codes. They successfully addressed this issue in the
Euclidean case and introduced certain classes of Hermitian LCD MDS codes. Research on LCD codes,
including Euclidean, Galois, Hermitian, and σ-LCD codes, is theoretically and practically important.
Several studies have been conducted in this area (see [4,5,6,7,8,9,10]).

The Rosenbloom-Tsfasman metric (RT-metric) was first introduced by Rosenbloom and Tsfasman [11]
in coding theory. Similarly, this metric was independently introduced by Martin and Stinson [13] and
Skriganov [14] in the context of uniform distribution theory. As a generalization of the classical Hamming
metric, the RT-metric has rapidly attracted the interest of coding theorists, resulting in a continuous
stream of research on the codes defined by this metric. Much of this research has focused on various
aspects, including bounds on codes [15], weight distributions and MacWilliams identities [17,16,18,19],
linearity properties [20,21,22], maximum distance separability [14,23], automorphism groups [24], burst
error enumeration [26,25,27], covering properties [28], normality [29], construction of self-dual codes
[30], the existence of LCD codes [31], and properties of reversible codes [32] across different algebraic
structures.
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The inner product used in the RT-metric (see [14]) differs from the conventional inner product, which
defines duality in the Hamming metric. Consequently, many LCD codes in the Hamming metric do
not retain this property in the RT-metric. Therefore, it is essential to investigate the existence of LCD
codes within this different inner product framework and study the characteristics of such codes if they
are found. The aim of this investigation was to address this issue by outlining the necessary criteria for
classifying linear code in the RT-metric as an LCD code. Additionally, we explore the potential weight
distribution of their dual codes, which we describe in terms of the “type” of the code. These codes are
effective in handling asymmetric and burst errors in delay-sensitive communication systems under the
RT-metric [11]. The algebraic structure of LCD codes enables efficient decoding, enhances error detection
and correction, and provides cryptographic advantages such as resistance to side-channel attacks [12].
These properties make them suitable for applications in communication, cryptography, and data storage.

The organization of the paper is as follows. In Section 2, we present the basic definitions and concepts
that are essential for the results discussed in the subsequent sections. A linear code of dimension k over Fq

in the RT metric has exactly k distinct non-zero weights. Based on this observation, Section 3 introduces
and formally defines RT-conjugate codes, and establishes sufficient conditions under which such codes
are LCD under the RT metric. The relationship between the Hamming and RT metrics is also discussed
in this section. In Section 4, we investigate the duals of these codes, their weight distributions, and their
covering radii. Section 5 presents some construction methods along with illustrative examples. Finally,
Section 6 concludes the paper.

2. Preliminaries

The RT-distance between two vectors x = (x1, x2, . . . , xη) and y = (y1, y2, . . . , yη) in space Fη
q is

determined by the maximum index i where the corresponding components of x and y differ provided that
1 ≤ i ≤ η. This can be expressed as dρ(x, y) = max{i | xi ̸= yi}. The subsets of Fη

q equipped with this
metric are called q-ary RT-metric codes or simply q-ary codes in the RT-metric. If these subsets form
vector spaces, they are referred to as linear RT-metric codes.

For k-dimensional linear code C ⊆ Fη
q , the generator matrix G, k × η, contains rows that form the

basis of code C . A set of k linearly independent columns from G is referred to as the information set for
C .

RT-ball Bρ(x; r), or ρ-ball, is defined as the set {y ∈ Fη
q | dρ(x, y) ≤ r}, where x ∈ Fη

q is the center
and r is the radius. The packing radius of a code is the maximum radius r for which ρ-balls centered at
distinct codewords do not intersect. Conversely, the covering radius is the minimum radius R such that
ρ-balls centered at codewords cover the entire space Fη

q . The code is considered perfect if its packing
radius is equal to its covering radius. As introduced in [29], the concept of partition number provides a
simplified approach for determining the covering radius for codes in the RT-metric.

For an RT-metric code C of minimum ρ-distance dρ and length η, the Singleton bound is given by
|C | ≤ qη−dρ+1. Linear codes with dimension k were translated into k ≤ η − dρ + 1. Codes that meet
this bound are referred to as the Maximum Distance Separable (MDS). Unless otherwise specified, all
the codes discussed in this paper are RT-metric codes over Fq.

RT-metric code C is classified based on its specific structural properties. It is called self-orthogonal if
it is entirely contained within its dual code C⊥. A code is considered self-dual when it satisfies equality
C = C⊥. By contrast, an LCD code is characterized by having no nonzero codewords in common with
its dual. Additionally, code C is termed reversible if, for every vector (v1, v2, . . . , vη) in C , its reversed
form (vη, vn−1, . . . , v2, v1) also belongs to C .

We use the notations [η, k, τρ]q to denote a q-ary linear code with minimum ρ-distance dρ, dimensions
k, and length η. In addition, the notation [η] represents the set {1, 2, . . . , η}.

3. RT-conjugate codes in the RT-metric

Definition 3.1 (see [30]): Consider the set [η] = {1, 2, . . . , η}. Two elements µ, ν ∈ [η] are said to be
conjugate if they satisfy the condition µ+ ν = η + 1.

Definition 3.2 (see [30]): Let A = (aij) be a p×r matrix. The flip of the matrix A, denoted by Flip(A),
is defined by Flip(A) = (aik) where k = r − j + 1 for 1 ≤ i ≤ p and 1 ≤ j ≤ r.
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Definition 3.3 (see [30]): Any generator matrix G of the linear code C is equivalent to G′. A linear
code having G′ as its generator matrix in standard form is said to be of type (τ1, τ2, . . . , τk).

Definition 3.4 If C is [η, k, τ ] RT-metric code of type (τ1, τ2, . . . , τk) is said to be RT-conjugate if τi’s
are pairwise conjugates.

Theorem 3.1 Let C be any [η, k, τ ] RT-metric code of type (τ1, τ2, . . . , τk) over Fq. Let the generator
matrix of C in the standard form (see [30]) be

G =


a1,1 . . . a1,τ1−1 a1,τ1 0 . . . 0 . . . 0 0
a2,1 . . . a2,τ1−1 0 a2,τ1+1 . . . a2,τ2 . . . 0 0
...

. . .
...

...
...

. . .
...

. . .
...

...
ak−1,1 . . . ak−1,τ1−1 0 ak−1,τ1+1 . . . 0 . . . ak−1,τk−1

0
ak,1 . . . ak,τ1−1 0 ak,τ1+1 . . . 0 . . . 0 ak,τk


where ai,τi ̸= 0, ai,τj = 0 for j ̸= i and τ1, τ2, ..., τk is the set of k possible RT-weights such that
1 ≤ τ = τ1 < τ2 < ... < τk ≤ η and τi = η − τk−i+1 + 1, for every i = 1, 2, . . . , k (all τi are pairwise
conjugates). Then, C is LCD in the RT-metric.

Proof. Given C is any [η, k, τ ] RT-metric code of type (τ1, τ2, . . . , τk) over Fq, Standard form of generator
matrix of C :

G =


a1,1 . . . a1,τ1−1 a1,τ1 0 . . . 0 . . . 0 0
a2,1 . . . a2,τ1−1 0 a2,τ1+1 . . . a2,τ2 . . . 0 0
...

. . .
...

...
...

. . .
...

. . .
...

...
ak−1,1 . . . ak−1,τ1−1 0 ak−1,τ1+1 . . . 0 . . . ak−1,τk−1

0
ak,1 . . . ak,τ1−1 0 ak,τ1+1 . . . 0 . . . 0 ak,τk


where ai,τi ̸= 0, aj,τj = 0 for j ̸= i and τ1, τ2, . . . , τk is the set of k possible RT-weights such that
1 ≤ τ = τ1 < τ2 < · · · < τk ≤ η and satisfies the condition τi = η − τk−i+1 + 1, where i = 1, 2, . . . , k.
From Theorem 3.4 in [31],“ G is a generator matrix for the [η, k, τ ] linear code in the RT-metric over Fq.
Then, C is the LCD code if and only if the k× k matrix GG3 is non-singular, where G3 = [Flip(G)]T ”,
which implies that

GG⋄ =


a1,1 . . . a1,τ1−1 a1,τ1 0 . . . 0 . . . 0 0
a2,1 . . . a2,τ1−1 0 a2,τ1+1 . . . a2,τ2 . . . 0 0
...

. . .
...

...
...

. . .
...

. . .
...

...
ak−1,1 . . . ak−1,τ1−1 0 ak−1,τ1+1 . . . 0 . . . ak−1,τk−1

0
ak,1 . . . ak,τ1−1 0 ak,τ1+1 . . . 0 . . . 0 ak,τk




0 0 . . . 0 ak,τk
0 0 . . . ak−1,τk−1

0
...

...
. . .

...
...

0 a2,τ2 . . . 0 0
...

...
. . .

...
...

0 a2,τ1+1 . . . ak−1,τ1+1 ak,τ1+1

a1,τ1 0 . . . 0 0
a1,τ1−1 a2,τ1−1 . . . ak−1,τ1−1 ak,τ1−1

...
...

...
...

...
a1,1 a2,1 . . . ak−1,1 ak,1


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=


0 0 . . . 0 a1,,τ1ak,τk
0 0 . . . a2,τ2ak−1,τk−1

a′2,k
...

...
...

...
0 ak−1,τk−1

a2,τ2 . . . a′k−1,k−1 a′k−1,k

ak,τka1,τ1 a′k,2 . . . a′k,k−1 a′k,k


because ai,τi ̸= 0 and a′i,j ∈ {0, 1, . . . , q − 1} are the elements below the anti-diagonal elements. These
anti-diagonal in k × k matrix are nonzero. This implies that, GG3 is non-singular and hence, C over Fq

is the LCD in the RT-metric.

Example 3.1 Let C be a [6, 4, 1] RT-conjugate code in the RT-metric over GF (2), whose generator
matrix is:

G =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 0 1


Here τ1 = 1, τ2 = 2, τ3 = 5 and τ4 = 6. Hence, C is an LCD code. This is an example to supports
theorem 3.1.

Example 3.2 Let C be a [7, 5, 1] RT-conjugate code in the RT-metric over GF (5), whose generator
matrix is:

G =


2 0 0 0 0 0 0
0 0 4 0 0 0 0
0 0 0 3 0 0 0
0 0 0 1 2 0 0
0 0 2 3 0 0 1


Here τ1 = 1, τ2 = 3, τ3 = 4, τ4 = 5 and τ5 = 7. Therefore, C is an LCD code. This is an example to
support Theorem 3.1.

Remark 3.1 As illustrated in examples 3.3, 3.4, and 3.5, although RT-conjugate code C is an LCD code
in the RT-metric, it need not be an LCD code in the Hamming metric. However, in certain cases, these
are LCD codes in the Hamming metric, as shown in Theorem 3.2.

Example 3.3 Let C be a [7, 4, 2] RT-conjugate code in the RT-metric over GF (2), whose generator
matrix is:

G =


0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 1 0 0
0 1 1 1 0 1 0


Here τ1 = 2, τ2 = 3, τ3 = 5 and τ4 = 6. Therefore, C is an LCD in Hamming metric.

Example 3.4 Let C be a [7, 3, 1] RT-conjugate code in the RT-metric over GF (2), whose generator
matrix is:

G =

1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 1


Here τ1 = 1, τ2 = 4, and τ3 = 7. Therefore, C was not an LCD code in Hamming metric.
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Example 3.5 Let C be a [6, 2, 1] RT-conjugate code in the RT-metric over GF (5), whose generator
matrix is:

G =


1 0 0 0 0 0 0
0 2 4 0 0 0 0
0 4 0 3 0 0 0
1 0 0 1 2 0 0
0 3 2 3 1 1 1


Here τ1 = 1, τ2 = 3, τ3 = 4, τ4 = 5 and τ5 = 7. Therefore, C was not an LCD in Hamming metric.

Theorem 3.2 If C is [η, k, τ ] RT-conjugate reversible code over Fq, then C is an LCD code in Hamming
metric.

Proof.

Consider C as an LCD code in the RT-metric ⇔ GG⋄ is non-singular

⇔ G(Flip(G))T is non-singular

⇔ G(PG)T is non-singular

(∵ C is RT-conjugate reversible)

⇔ GGTPT is non-singular

(∵ P is non-singular)

⇔ GGT is non-singular

⇔ C is LCD in the Hamming metric

Example 3.6 Let C be a [6, 2, 1] RT-conjugate code in the RT-metric over GF (5), whose generator
matrix is:

G =


1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1


Here τ1 = 1, τ2 = 3, τ3 = 4, τ4 = 5 and τ5 = 7. Hence, C is an LCD code in the Hamming metric. This
is an example to illustrates Theorem 3.2.

Theorem 3.3 If C is [η, k, τ ] RT-conjugate code with minimum distance τ > 1, then the covering radius
of C is η.

Proof. Based on this hypothesis, the minimum distance is τ = τ1 > 1. It follows that 1 < τ1 = η− τk +1,
which implies 1 < τ1 < η and 1 < τ1 = η − τk + 1 < η. Consequently, 0 < η − τk; therefore, at least one
coordinate exists in all codewords that are zero, and the maximum distance τk of C is less than η. Thus,
the last η − τk coordinates of all codewords in C are zero, which implies that the partition number of C
is zero. Hence, the covering radius of C is η.

Example 3.7 Let C be a [7, 4, 2] RT-conjugate code in the RT-metric over GF (3), whose generator
matrix is:

G =


0 2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 2 0 0
0 1 2 0 1 1 0


Here τ1 = 2, τ2 = 3, τ3 = 5 and τ4 = 6. Hence, the covering radius of C is 7. This is an example to
support Theorem 3.3.

Theorem 3.4 If C is an [η, k, τ ] RT-metric linear code of type (τ1, τ2, . . . , τk), and if at least one pair
of τi’s are pairwise conjugates with η > k, then C cannot be an MDS code.
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Proof. Theorem 3.4 can be easily proven using the definition of RT-conjugate codes, notations, and
simple algebraic manipulations.

Example 3.8 Let C be a [5, 4, 1] RT-conjugate code in the RT-metric over GF (3), whose generator
matrix is:

G =


1 0 0 0 0
0 1 2 0 0
0 0 1 2 0
0 2 1 0 1


Here τ1 = 1, τ2 = 3, τ3 = 4 and τ4 = 5. Hence, C is not an MDS code. This is an example to support
Theorem 3.4.

4. On duality of RT-conjugate codes in the RT-metric

To establish MacWilliams-type identities for codes in the RT-metric, a specialized inner product in
space Matm×η(Fq) was introduced in [13]. This inner product is crucial for studying codes in the RT-
metric, as it leads to significant results such as the fact that the dual MDS code under this inner product
is also an MDS. This inner product plays a central role in shaping the properties and duality of codes
within the RT-metric framework.

Theorem 4.1 Let C be an [η, k, τ ] RT-conjugate code of type (τ1, τ2, . . . , τk) over Fq: The dual code
C⊥ is also an [η, η − k, τ⊥]q RT-conjugate code for Fq. Additionally, the relationship between the sets
of RT-weights of C and C⊥ is such that the RT-weights of C⊥, {τ⊥1 , τ⊥2 , . . . , τ⊥η−k}, are precisely the
complement of the RT-weights of C , i.e., [η] \ {τ1, τ2, . . . , τk}.

Proof. From Theorem 2 in [30], “ the dual C⊥ of C is a [η, η−k, τ⊥]q linear code of type (τ
⊥
1 , τ⊥2 , . . . , τ⊥η−k)

such that {τ⊥1 , τ⊥2 , . . . , τ⊥η−k} = [η] \ {η − τ1 + 1, η − τ2 + 1, . . . , η − τk + 1}”. As C is an RT conjugate,

{τ⊥1 , τ⊥2 , . . . , τ⊥η−k} = [η] \ {τ1, τ2, . . . , τk}.

Example 4.1 Let C be a [7, 4, 2] RT-conjugate code in the RT-metric over GF (3), whose generator
matrix is:

G =


0 2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 2 0 0
0 0 2 0 1 1 0

 and G⊥ =

1 0 0 0 0 0 0
0 1 2 2 0 0 0
0 0 0 0 0 0 1


Here τ1 = 2, τ2 = 3, τ3 = 5 and τ4 = 6. Hence, {τ⊥1 , τ⊥2 , τ⊥3 } = [7] \ {2, 3, 5, 6} = {1, 4, 7}. This is an
example to support Theorem 4.1.

Example 4.2 Let C be a [6, 4, 3] MDS code in the RT-metric over GF (2), whose generator matrix is:

G =


0 0 1 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 1 1 0 0 1

 and G⊥ =

[
1 0 0 0 1 0
0 0 0 0 0 1

]

Here τ1 = 3, τ2 = 4, τ3 = 5 and τ4 = 6. Hence, {τ⊥1 , τ⊥2 } = [7] \ {3, 4, 5, 6} ̸= {5, 6}. This is an example
to support Theorem 4.1.

Theorem 4.2 If C is [η, k, τ ] RT-conjugate code of type (τ1, τ2, . . . , τk) with minimum distance τ = 1,
then the covering radius of C⊥ is η − k.

Proof. Theorem 4.2 can be easily proven using notations and simple algebraic techniques.
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Example 4.3 Let C be a [7, 4, 2] code in the RT-metric over GF (3), whose generator matrix is

G =

[
1 0 0 0 0
0 0 1 1 1

]
and G⊥ =

1 1 0 0 0
1 0 1 0 0
0 0 0 1 0


Here τ1 = 1, and τ2 = 5. Hence, the covering radius of C⊥ is η − k = 2. This is an example to support
Theorem 3.3.

5. Construction of RT-conjugate codes in the RT-metric

Theorem 5.1 Let C be an [η, k, τ ] RT-conjugate code over Fq. If η′ ≤ η and k′ ≤ k, then the restriction

of π : Fη
q → Fη′

q to C is injective and π(C ) is an [η′, k′, τ ′] RT-conjugate code over Fη′

q .

Example 5.1 Here is an example of an RT-conjugate code that was created with this method. Let us
assume a [7, 4, 2] binary RT-conjugate code C , whose generator matrix G, given as follows:

G =


0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 1 0 1 1 0


It is simple to determine that these codes, C is RT-conjugates. Consider the generator matrix of code
π(C ), which is given by

π(G) =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


From π(G), we observe that code π(C ) is a [5, 3, 2] RT-conjugate.

Theorem 5.2 Let G1 and G2 be the generator matrices of RT-conjugate codes C1 and C2 over Fn
q

respectively. Then, the code C generated by G = G1 ⊕G2 ⊕G1 is also an RT conjugate.

Example 5.2 Here is an example of an RT-conjugate code that was constructed using this method. Let
us assume that a [4, 2, 1] binary RT-conjugate code C1 and a [5, 3, 2] binary RT-conjugate code C2, whose
generator matrix G1 and G2, respectively, are given as follows:

G1 =

[
1 0 0 0
0 1 1 1

]
and G2 =

1 1 0 0 0
1 0 1 0 0
0 0 0 1 0


It is simple to determine that these two codes, C1 and C2, are RT-conjugates. Consider code C ’s generator
matrix, which is given by

G =



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1


From G, we observe that code C is an [13, 7, 1] RT-conjugate.

Theorem 5.3 Let G′ be a generator matrix of RT-conjugate code C ′. Then, the code C generated by
G = G′ ⊕G′ ⊕ · · · ⊕G′ is also an RT-conjugate code.
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Example 5.3 Here is an example of an RT-conjugate code that was created using this method. Let us
assume a [5, 3, 1] ternary RT-conjugate code C ′, whose generator matrix G′, given as follows:

G′ =

2 0 0 0 0
0 1 1 0 0
0 1 0 1 1


It is simple to determine that this code, C ′ is RT-conjugate. Consider a generator matrix of the code C ,
which is given by

G =



2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1


From G, we observe that code C is an [15, 9, 1] RT-conjugate.

6. Conclusion

In this study, a specific subclass of Linear Complementary Dual (LCD) codes in the Rosenbloom-
Tsfasman metric (RT-metric) was developed, focusing on their conjugate structures. Through this anal-
ysis, we identified the sufficient conditions for a linear code to be an LCD code in this metric. Further,
we analyzed the weight distribution of their duals, and proposed methods to construct RT-conjugate
codes of larger length and dimension using those with smaller length and dimension. This results can be
extended to NRT codes.
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