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Exact Solutions for the Oscillatory Flow of Micropolar Fluid Outwith a Fluid Sphere
Using Slip

Phani Kumar Meduri1 , Vijaya Lakshmi Kunche∗2 and Parasa Naga Lakshmi Devi3

abstract: In this paper, we investigate an axisymmetric rectilinear flow over a micropolar fluid sphere
particle in an incompressible non-Newtonian fluid that oscillates with minuscule amplitudes. The fluid velocity
field and microrotation components were shown to have analytical expressions. The velocity field was studied
using modified Bessel functions and stream function under slip circumstances on the boundary. For rectilinear
oscillations, the drag force acting on the particle was calculated. Values of the slip parameter, cross viscosity
parameter, real drag, and imaginary drag for micro polarity parameters are retrieved. Both tabular and visual
representations of numerical quantities are used. It was observed that there was a direct relation between slip
parameter values, real drag and inverse relationship between slip parameter and imaginary drag for different
cross viscosity and micro polarity values. Results for the drag force are compared for some particular cases.
Which agree with values in literature.
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1. Introduction

Due to its wide applications in engineering and applied sciences, the study of oscillatory Stokes
flows has attracted a lot of attention from researchers. These themes incorporated the biomechanics of
blood flow, ultra-filtration, Brownian motion and other biological phenomena or chemical phenomena as
rendered by [1].

The micropolar fluid is one of the most basic fluid models. It shows that the traditional framework of
continuum mechanics is unable to adequately explain the motion of complicated liquids such as polymer
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solvents, polymer melts, emulsions, animal blood, liquid metals and fluid particles. The development of
ideas to represent such intricate fluids has grown substantially.

[2] considered Micropolar fluid with internal structure a well-accepted theory and [3] reported in his
work about fluid particles that can spin individually from the gyration and migration of the fluid as a
whole. The review article by [4] and monograph of [5] have reported valuability of micropolar theory
and brought in immense literature reviews on it. [6] have investigated a laminar flow of Micropolar fluid
over a liquid bubble by non-zero spin, no-slip, using the analytic method force of drag as illustrated. [7]
examined Stokes flow of a non-Newtonian liquid past an impervious sphere shielded through a narrow
foil and the drag force was computed analytically. [8] analysed a non-Newtonian liquid flow beyond a
permeable sphere via non-zero boundary for microrotation, no-slip condition and they obtained closed
form solutions for drag force. They noticed that the force of drag on the body decreased as the rotation
variable increased. [9] have considered an analytical steady of axisymmetric creeping flow of micropolar
fluid around a permeable sphere with a narrow surface that consists of an impervious sphere with no-slip
condition. They noticed that the drag of a permeable sphere is lesser compared with an impermeable
sphere.

The slip boundary condition was presented by [10], in which the fluid’s tangential velocity corre-
sponding to a location on its surface is proportional to tangential stress. He insisted through slip for
microrotation and velocity is more practically appropriate as a consequence of both conditions are acti-
vated to the coequal shallow and the slip is primarily related to the humor of the shallow and liquid. [11]
investigated the effect of slip on the torque applied on rotary oscillating over spheroids and spheres and
discovered that, in all instances, slip lessens the torque. Now-a-days there has been an enlarge significance
in using such slip conditions for microfluidic flows which are brought to attention by authors [?,?,?].

The slow fixed rotation of a sphere with micropolar fluid passing over it, about its diameter was
analysed by [15] and in continuation [16] extended the study of both rectilinear and rotatory oscillations.
A spheroid’s rectilinear oscillations in a non-Newtonian fluid was considered using spheroidal coordinates
by [17]. [18] obtained a formula for the force applied on a sphere that was oscillating longitudinally in
an incompressible non-Newtonian fluid. [19] worked on oscillating flow beyond a sphere for Reynolds
numbers from π/4 to 2π using a series truncation method. [20] considered a stationary axisymmetric body
which is placed in non-Newtonian liquid with rectilinear oscillatory flow. A widespread expression for
drag force was obtained using an analytic method. They reduced the special cases of spheroid and sphere.
[21] studied an oscillating sphere at limited Reynolds numbers using three methods. [22] examined the
oscillatory flow of non-Newtonian liquid over a constant permeable sphere and computed the pressure
field and its drag force with no-slip condition. [23] investigated the flow created in a concentric spherical
container by integrating torsional and oblique vibrations of a sphere solved analytically. [24] computed
the velocity field in terms of modified Bessel functions using the oscillatory flow generated with two
spheres having equal frequency with a similar diameter and different angular speed. [25] studied that the
Lorentz force causes a time-dependent laminar (Re 640) flow on an electrolytic fluid in the space between
two concentric spheres and various forcing frequencies, yielding oscillatory Reynolds numbers ranging
from 28 to 2820 by using no-slip static condition. [26] reported on numerical analysis of the flow and
heat conduction aspect caused by a rigid drop moving inside a cylinder containing FENE-P viscoelastic
fluids. [27] monograph of Happer and Brenner studied the low Reynolds numbers. [28] monogragh of
Abramowitz and Stegun studied the mathematical functions.

[29] investigated the unsteady thermos-viscous fluid transport between two indefinitely stretched
impermeable horizontal plates using artificial neural networks. [30] evaluated an unsteady thermo-viscous
fluid with incompressible flow in a porous slab in a semi-infinite region via a flat plate that oscillates
horizontally and has an impervious bottom byAn artificial neural network (ANN). [31]A numerical and
analytical method to examine unsteady fluid flow around an oscillating sphere. With appropriate assumed
boundary conditions, Bessel functions representing the fluid’s temperature and angular velocity around an
oscillating sphere have been used to derive analytical equations. [32] considered thermophoresis, Brownian
motion, and first-order chemical react parameters, among other factors, this research examined the effects
of heat generation of nanofluid movement over a stretching sheet. FDM with collocation polynomial
technique (bvp4c) was used to solve the equations using MATLAB software. [?] studied on the train
a machine learning technique through the historical data to distinguish the pattern of the independent
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features in the data and predict whose risk factor is unknown as potentially hazardous asteroids (PHAs).
There have also been no meta-analyses on the oscillatory Micropolar flow on a micropolar fluid sphere

with interfacial slip condition. This inspired us to add the probabilities into one research.
In this manuscript, our investigations are presented in four parts i.e.,

• Oscillatory flow of non-Newtonian beyond a non-Newtonian liquid sphere
• Oscillatory non-Newtonian liquid flow beyond a Newtonian fluid sphere
• Oscillatory flow of Newtonian fluid beyond a non-Newtonian liquid sphere
• Oscillatory Viscous liquid beyond a Viscous liquid sphere by slip over the boundary.

The numerical values and graphs are presented in the results and discussion segment, which is followed
by conclusion.

[11] studied about a non -Newtonian nanoparticles in three dimensions under the new effects of
activation power, nonlinear heat flux, and hydromagnetic characteristics.

2. Formulation and Solution of the Problems

2.1. Basic Equations of Micropolar Fluid

The momentum equation of a non-Newtonian fluid flow from [2] as

∂ρ

∂t
+ div(ρV ) = 0, (2.1)

ρ
dV

dt
= ρf −∇p+ k∇× w − (µ+ k)∇×∇× V + (λ+ 2µ+ k)∇ (div V ) , (2.2)

ρJ
dw

dt
= ρI − 2kw + k∇× V − γ∇×∇× w + (α+ β + γ)∇(div w) . (2.3)

where p represents the pressure, µ the traditional viscosity, parameters k, λ, µ vortex viscosity coefficients
and α, β, γ are gyroviscosity, ρ the density, w the microrotation field, V the velocity field, I microrotation
driving forces based on gravity, f body forces based on gravity, J the gyration parameter gratifying the
pursuing bias

3α+ β + γ ≥ 0, 2 µ+ k ≥ 0, 3λ+ 2 µ+ k ≥ 0 , γ ≥ |β| , k ≥ 0, γ ≥ 0. (2.4)

3. Oscillatory Flow of Non-Newtonian Beyond a Non-Newtonian Liquid Sphere

3.1. Modelling

Consider a non-Newtonian liquid sphere with radius R=a at rest in an oscillating non-Newtonian
liquid flow. The oscillations are with small amplitudes. Far from the body, the flow intends to be
uniform, stable and axisymmetric. Let µi, µe represents the viscosities of the liquid’s interior (Region-2)
and exterior (Region-1) of the liquid sphere. The geometry of the solution is dual micropolar liquid
presented in Fig. 1.
Let (R, θ, ∅) represents for spherical polar locations beginning at the sphere’s center and radius a through
scale factors h1 = 1, h2 = R , h3 = Rsinθ with basis unit vectors as , (er, eθ, e∅) and along Z-axis then
flow order. Incorporate an oscillatory flow at a frequency of U∞e

iωt k along the symmetry axis θ = 0
in an infinite region of an incompressible non-Newtonian liquid sphere that is stationary. Here, ω is the
oscillation of frequency and all the flow objectives are autonomous of ∅. hen we define the acceleration
vectors and microrotation as
The velocity component and micro rotation are assumed as

V =

(
∇× Ψ eϕ

h3

)
eiωt, (3.1)

W =
C

h3
eiωteϕ . (3.2)

Substituting the above expressions (3.1), (3.2) in (2.2), (2.3) we get
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Figure 1: Geometry of oscillatory flow of Micropolar liquid beyond a Micropolar liquid sphere.

ρiωV = −∇P + k∇×W − (µ+ k) ∇×∇×W, (3.3)

iρjωW = −2kW + k∇× V − γ ∇×∇×W. (3.4)

Taking curl on (3.3) we get

(µ+ k) E4
0 Ψ+ kE2

0C = iρωE2
0Ψ, (3.5)

where E2
0 ≡ ∂2

∂R2
+

1

R2

∂2

∂θ2
− cotθ

R2

∂

∂θ
. (3.6)

Taking curl of curl to equation (3.4) we get

kE4
0Ψ = − (2k + iρjω)

(
E2

0 C
)
+ γ

(
E4

0 C
)
. (3.7)

Substituting E2
0C from equation (3.5) in equation (3.7) we get

E2
0

(
E2

0 − δ21
a2

)(
E2

0 − δ22
a2

)
Ψ = 0. (3.8)

where

δ21 + δ22 =
{k (2µ+ k) iρω (jµ+ jk + γ)}a2

γ (µ+ k)
, δ21δ

2
2 =

iρω (2k + jiρωγ) a4

γ (µ+ k)
.

}
(3.9)

From equation (3.4)

(2k + ρiωj)C = γE2
0C − k E2

0Ψ. (3.10)

Substituting equation (3.5) in equation (3.10), we get

(2k + ρiωj) c =
1

k
E2

0

((
γiρω − k2

)
Ψ− (µ+ k) γE2

0Ψ
)
. (3.11)

In the point of view the axisymmetric motion, the acceleration components represented by means of the
stream function ψ as
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ur =
1

R2sinθ

∂Ψ

∂θ
, uθ = − 1

Rsinθ

∂Ψ

∂R
.

Using non-dimensional scheme

R = ra, E2
0 = E2

a2 , Ψ = ψU∞a
2, C = CU∞, c = k

(µ+k) , σ = ρωa2(µ+ k), J = ρωja2/γ.

Eq. (3.8) changes as

E2
(
E2 − δ21

) (
E2 − δ22

)
ψ = 0, (3.12)

cC = − iσ

δ21δ
2
2

E2
(
E2 −

(
δ21 + δ22

))
ψ − E2ψ. (3.13)

The linearity and commutativity of E2,
(
E2 − δ21

)
and

(
E2 − δ22

)
of (3.12) solution acquired by the posi-

tion. The problem of

E2ψ0 = 0, (3.14)(
E2 − δ21

)
ψ1 = 0, (3.15)(

E2 − δ22
)
ψ2 = 0, (3.16)

expressing as ψ = ψ0 + ψ1 + ψ2.
Let ψe, ψi indicate the stream functions for the outer and the inner flow respectively i.e.,

ψ (r, x) =

{
ψe for R > a,
ψi for R < a,

The stream functions ψe, ψi and the microrotation components Ce, Ci satisfies the equation (3.12)
and (3.13) these must be determined to the proper boundary and regularity constraints.at infinity.
The external stream function is obtained as

ψe =

(
r2 +

l1
r
+m1

√
rK 3

2
(δ1er) + n1

√
rK 3

2
(δ2er)

)
G2 (x) , (3.17)

The internal stream function is

ψi =
(
(l2r

2 +m2

√
rI 3

2
(δ1ir) + n2

√
rI 3

2
(δ2ir))

)
G2 (x) , (3.18)

where I 3
2
, K 3

2
are Bessel’s function and G2(x) is a Gegenbauer functions [28].

The parameters l1,m1, n1, l2,m2, n2 from (3.17), (3.17) are computed through boundary conditions as:
(i) Regularity conditions:

lim
r→∞

ψe =
1

2
Ur2sin2θ (Region – 1)

lim
r→0

ψi = finite (Region – 2).
(3.19)

(ii) Normal velocity is zero on the boundary

ψe = ψi = 0 on r = 1. (3.20)

(iii) Slip condition: Tangential velocity is proportional to the tangential shear stress along the clear
surface [27].

τrθ = β (vθe − vθi) on r = 1. (3.21)

(iv) Shear Stress is continuous across the surface i.e.,

τrθe = τrθi on r = 1. (3.22)
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(v) The angular velocity zero on the boundary

C = 0 on r = 1 i.e., Ce = Ci = 0. (3.23)

Microrotation Components C in Equation (3.13) for external and internal flow reduces to

cCe =
√
r
(
m1

(
iσ − δ21

)
K 3

2
(δ1enr) + n1

(
iσ − δ22

)
K 3

2
(δ2er)

)
G2 (x) , (3.24)

cCi =
√
r
(
m2

(
iσ − δ21

)
I 3

2
(δ1ir) + n2

(
iσ − δ22

)
I 3

2
(δ2ir)

)
G2 (x) . (3.25)

By the boundary condition (3.19) - (3.25), we get six equations with six unknowns as

l1 +m′
1 + n′

1 = −1, l2 +m′
2 + n′

2 = 0,

−6l1 −m′
1

(
z2δ

2
1e + 4 + 2∆1 (δ1e)

)
−n′1

(
z2δ

2
2e + 4 + 2∆1 (δ2e)

)
+m′

2

(
δ21iz + 4 + 2∆3 (δ1i)

)
+n′

2

(
δ22iz + 4 + 2∆2 (δ2i)

)
= 0,

l1 (−6− sz1) +m′
1

(
−z2δ21e − 4− 2∆1 (δ1e)− sz1∆1 (δ1e)

)
+n′

1

(
−z2δ22e − 4− 2∆1 (δ2e)− sz1∆1 (δ2e)

)
+m′

2sz1∆2 (δ1i)− 2l2sz1 + n
′
2
∆2 (δ2i) sz1 = (−2z1) s,

m′
1

(
iσ−δ21e

)
+ n′

1

(
iσ−δ22e

)
= 0.

m′
2

(
iσ−δ21i

)
+ n′

2

(
iσ−δ22i

)
= 0.

}
(3.26)

where
m′

1 = m1K 3
2
(δ1e), n′

1 = n1K 3
2
(δ1e), ),

m′
2 = m2I 3

2
(δ2i), n

′
2 = n2I 3

2
(δ2i)

slip parameter(s) = βa
µ , µ = µi

µe
,

∆1 (δ1e) = 1 +
δ1e K 1

2
(δ

1e
)

K 3
2
(δ

1e
)

,

∆1 (δ2e) = 1 +
δ2e K 1

2
(δ

2e
)

K 3
2
(δ

2e
)

,

∆2 (δ1i) = 1 +
δ1iI 1

2
(δ

1i
)

I 3
2
(δ

1i
)
,∆2 (δ2i) = 1 +

δ2iI 1
2
(δ

2i
)

I 3
2
(δ

2i
)
,

Cross viscosity parameter

ce =
ke

µe + ke
, ci =

ki
µi + ki

.
The case of oscillatory Newtonian fluid can be obtained by taking δ2 −→ ∞. The system of equations

solving analytically gives parameter values as

l1 = −1 + n′
1(ϵe − 1), l2 = −1 + n′

2(ϵec − 1),

m′
1 = −n′1ϵ, m′

2 = −n′2ϵ,

n′1 =
(−3z1s− 6)N4 + 6N2

η
, n′

2 =
−6N1 + (3sz1 + 6)N3

η
,

}
(3.27)

Here η = N1N4 −N2N3,

N1 = 2 (1− ϵ) + z2
(
δ21eϵ− δ22e

)
+ 2∆3 + sz1 (1− ϵ+∆3) ,
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N2 = −sz1 (2 (1− ϵin) + ∆4) ,

N3 = 2 (1− ϵ) + z2
(
δ21eϵ− δ22e

)
+ 2∆3

N4 = 2 (1− ϵ) + z2
(
δ21iϵ− δ22i

)
+ 2∆3

∆3 = (∆1 (δ1e) ϵ−∆1 (δ2e)), ∆4 = (∆2 (δ1i) ϵ−∆2 (δ2i))

z =
(2− Ci)

2
k0 + CiC0(2− Ce)

(2− Ce)Co(2− Ci)
, ϵ =

iσ − δ22
iσ − δ21

[z1 =
2(1− ce)

2− ce
z2 =

2

2− ce

Thus, the stream function values (3.17) and (3.18) are obtained.

4. Drag force

The force dragFz of an flow of oscillatory of the liquid beyond a body is given as [20].

Fz = iρωUV0 + 4πiρω lim
r→∞

r (ψe − ψ∞)

sin2θ
, (4.1)

Substituting (3.17), (3.18), we get

Fz = iρωUV0 + 2πiρω lim
r→∞

(
l1 +m1r

3
2K 3

2
(δ1er) + n1r

3
2K 3

2
(δ2er)

)
As r −→ ∞ , m1 = n1 = 0 (3.19), V0 = volume of the spherical body = 4

3πr
3.

Fz =
4

3
πiρωU∞a

2

(
−z0 +

3

2
l1a

)
eiωt, where z0 = l1 +m′

1 + n′
1 (4.2)

Fz = 2πiρωU∞a
3l1e

iωt

Now (4.2) is expressed in the form

Fz =MωU∞(−T1− iT )l1e
iωt.

Where M is the mass of the fluid laid-out by the sphere (M) = 2πρωU∞a
3l1,

Real drag(T) =2πρωU∞a
3l1sinωt Imaginary drag (T1) = −2πρωU∞a

3l1cosωt, ω = σ(µ+k)
ρa2 .

For various quantities of the frequency factor σ, microrotation factor δ, and cross viscosity factor c, the
drag indices T and T1 are computed.

As δ2 −→ ∞, µ −→ ∞ ,s −→ ∞ then it turns to a no-slip solid sphere with oscillating viscous liquid,
which corresponds to the drag force calculated by [16].

5. Oscillatory Non-Newtonian Fluid Flow Beyond a Newtonian Fluid Sphere

In this section, we considered a non-Newtonian oscillating fluid flow across a viscous fluid sphere that is
kept stationary. The previously estimated momentum equations (3.12) and (3.13) hold good here also.

The stream functions for equation (3.12) are

ψe =

(
r2 +

l1
r
+m1

√
rK 3

2
(δ1er) + n1

√
rK 3

2
(δ2er)

)
G2 (x) , (5.1)

ψ′
i = (l2r

2 +m2

√
rI 3

2
(δ1ir))G2 (x) , (5.2)
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6. Modelling

The parameters of (5.1) and (5.2) are computed through (3.19) - (3.25). We get

l1 +m′
1 + n′

1 = −1, l2 +m′
2 = 0,

6l1 +m′
1

(
z2δ

2
1e + 4 + 2∆1 (δ1e)

)
+n′

1

(
z2δ

2
2e + 4 + 2∆1 (δ2e)

)
−µm′

2

(
δ21i + 4 + 2∆2 (δ1i)

)
= 0,

l1 (6 + sz1) +m′
1

(
z2δ

2
1e + 4 + 2∆1 (δ1e) + sz1∆1 (δ1e)

)
+n′

1

(
z2δ

2
2e + 4 + 2∆1 (δ2e) + sz1∆1 (δ2e)

)
−m′

2sz1∆2 (δ1i) + 2l2sz1 = (2z1) s,

m′
1

(
iσ−δ21e

)
+ n′

1

(
iσ−δ22e

)
= 0.

solving above equations we get

n′1 =
(3z1s+ 6) a4 − 6a2

a5
, m′

2 =
−6a1 + (3sz1 + 6)a3

a5
,

}
(6.1)

where a5 = a1a4 − a2a3,

a1 = (sz1 + 2)
(
(1− ϵ−∆3)− z2

(
δ21eϵ− δ22e

))
,

a2 = −sz1 (2 + ∆2 (δ1i)) ,

a3 = 2 (ϵ− 1−∆3)− z2
(
δ21eϵ− δ22e

)
a4 = −µ

(
δ21i + 4 + 2∆1i

)
Thus, the stream functions values (5.1) and (5.2) are obtained.

7. Oscillatory Flow of Viscous Fluid Outwith a Non-Newtonian Fluid Sphere

In this section, we studied at a non-Newtonian liquid oscillating across a viscous fluid sphere that was
stationary. The previously estimated equations (3.12) and (3.13) hold good here also.
The solutions of equation (3.12) and (3.13) here are

ψ′
e =

(
r2 +

l1
r
+m1

√
rK 3

2
(δ1er)

)
G2 (x) , (7.1)

ψi = (l2r
2 +m2

√
rI 3

2
(δ1ir) + n2

√
rI 3

2
(δ2ir))G2 (x) , (7.2)

solution By the boundary condition (3.19) - (3.25), we get five equations with five unknowns as

l1 +m′
1 = −1, l2 +m′

2 + n′
2 = 0,

−6l1 +m′
1

(
δ21e + 4 + 2∆1 (δ1e)

)
+m′

2

(
zδ21e + 4 + 2∆2 (δ1i)

)
+n′2

(
zδ22i + 4 + 2∆2 (δ1i)

)
= 0,

l1 (4 + s)+m′
1

(
2 + δ21e + 4 + 2∆1 (δ1e) + sz1∆1 (δ1e)

)
+2l2s−n′2∆2 (δ2i) s−m′

2sz1∆2 (δ1i) = 2s+2,

m′
2

(
iσ−δ21i

)
+ n′

2

(
iσ−δ22i

)
= 0.

Solving analytically, we get

l1 = −1−m′, m′
2 = −n′2ϵ, l2 = n′2 (ϵ− 1) , m′

1 =
(3s+ 6)w4 + 6w2

w5
, n′

2 =
−(3s+ 6)w3 + 6w1

w5
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w5 = w1w4 − w2w3

w1 = δ21e + (2 + s)(∆1(δ1e − 1)),

w2 = s(2(ϵ− 1) + ∆4),

w1 = δ21e + 2(∆1(δ1e − 1)),

w4 = (ϵδ21i − δ22i)z + (ϵ− 1) + 2∆4).

Thus, the stream functions values (7.1) and (7.2) are obtained.

8. Oscillatory Viscous Fluid Outwith a Viscous Fluid Sphere

An oscillatory viscous fluid flow over a Newtonian fluid sphere which is stationary in the stream is
assumed. The geometry of the dual flow of viscous fluid problem is given in Figure 2.

Figure 2: Geometry of oscillatory flow of viscous fluid beyond a viscous fluid sphere.

when k −→ 0, the oscillatory viscous fluid’s momentum equation is accomplished in (3.3) and further
simplification as

E2
(
E2 − δ21

)
ψ = 0, δ21 =

ρiω

µ
(8.1)

The external and internal stream functions satisfying (7.1) are given by ψe, ψi respectively.
By separation of variables method, we get stream functions as

ψ′
e =

(
r2 +

l1
r
+m1

√
rK 3

2
(δ1er)

)
G2 (x) , (8.2)

ψ′
i = (l2r

2 +m2

√
rI 3

2
(δ1ir))G2 (x) , (8.3)

The arbitrary constants in (8.2), (8.3) are computed through boundary conditions (3.19) – (3.23): With
(3.19) - (3.23) we get four equations with four unknowns as

l1 +m′
1 = −1, l2 +m′

2 = 0,

−6l1 +m′
1

(
δ21e + 4 + 2∆1 (δ1e)

)
+m′

2

(
zδ21e + 4 + 2∆2 (δ1i)

)
+n′2

(
zδ22i + 4 + 2∆2 (δ1i)

)
= 0,

l1 (4 + s) + 2l2 +m′
1

(
δ21e + 2 +∆1 (δ1e) + (s+ 2)

)
− sm′

2∆2(δ1i) = 2s+ 2,
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where m′
1 = m1k 3

2
(δ1), m′

2 = m1I 3
2
(δ1), slipparameter (s)=βa

µ , µ = µi

µe

∆1 (δ1e) = 1 +
δ1e K 1

2
(δ

1e
)

K 3
2
(δ

1e
)

,

∆2 (δ1i) = 1 +
δ2e I 1

2
(δ

1i
)

I 3
2
(δ

1i
)

,

Cross viscosity parameter

ce =
ke

µe + ke
, ci =

ki
µi + ki

.
Solving equations we get

l1 = −1−m′
1, l2 = −m′

2,

l1µ(δ
2
1i + 4 + 2∆2(δ1i))

+

l2µ(δ
2
1i + 4 + 2∆2(δ1i)) = 2(2 + ∆1(δ1e)) + δ21e,

l1(s+ 2− δ21e −∆1(δ1e(s+ 2)) + l2s(2 + ∆2(δ1i)) = (s+ 2)(2 + ∆1(δ1e)) + δ21e,

here m′
1 = (3s+6)B4−6B2

B5
, m′

2 = 6B1−(3S+6)
B3

B5 = B1B4 −B2B3,
where B1 = (s + 2)(∆1(δ1e) − 1) + δ21e B2 = s(−2 − ∆2(δ1i)), B3 = −2 + 2∆1(δ1e) + δ21e, B4 =

−µ(δ21i + 4 + 2∆2(δ1i))

9. Drag force on oscillatory Newtonian Fluid Flow Beyond a Newtonian Fluid Sphere

The drag force Fz of oscillatory flow of fluid past a body is [20]

Fz = iρωUV0 + 4πiρω lim
r→∞

r (ψe − ψ∞)

sin2θ
, (9.1)

Fz = iρωUV0a+ 2πiρaωU∞ lim
r→∞

(
l1 +m1r

3
2K 3

2
(δ1er)

)
As r −→ ∞ , m1 = 0 (3.19), V0 = volume of the body = 4

3πr
3.

Fz =
4

3
πiρωU∞a

2

(
−h0 +

3

2
l1a

)
eiωt, where h0 = 1 + l1 +m′

1 (9.2)

The expression for the drag then becomes

Fz = 2πiρωU∞a
3l1e

iωt (9.3)

here (9.3) can be expressed as

Fz =MωU∞(−T1− iT )l1e
iωt.

Here M is the mass of the fluid laid-out sphere (M) = 2πρωU∞a
3l1, Real drag(T) =2πρωU∞a

3l1sinωt

Imaginary drag (T1) = −2πρωU∞a
3l1cosωt, ω = σ(µ+k)

ρa2 .
where M is the mass of the fluid laid-out sphere In this instance, T and T1 values are calculated for

various values of the frequency factor σ, microrotation factor s, and cross viscosity factor c.
As µ −→ ∞, s −→ ∞, it converts to the no-slip rigid sphere case, which matches the force of the drag

computed by [16]
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Table 1: Slip (s) vs Real Drag (T) at vary of cross viscosity (c) points at fixed values to frequency
parameters µ=10, k=0.1, ρ=0.6, ω=0.6, t=0.6.

T \s 4 8 12 16
2 -0.2483 -0.2483 -0.2483 -0.2483
4 -0.2851 -0.2851 -0.2851 -0.2851
6 -0.2969 -0.2969 -0.2969 -0.2969
8 -0.3027 -0.3027 -0.3027 -0.3027
10 -0.3062 -0.3062 -0.3062 -0.3062
12 -0.3085 -0.3085 -0.3085 -0.3085
14 -0.3101 -0.3101 -0.3101 -0.3101
16 -0.3113 -0.3113 -0.3113 -0.31133

10. Results and Discussions

For an oscillatory flow of micropolar beyond a micropolar fluid sphere, the real (T ) and imaginary
part (T1) of drag force variations for slip parameters (s) with varying micro polarity e (ϵ values with

cap and no-cap zones) i.e., ϵ =
(iσ−δ22)

(iσ−δ21)
at fixed values to frequency parameters µ =10,k=0.1,ρ =0.6,

ω=0.6,t=0.6 are presented numerically and are shown in Fig. 3 and Fig. 4.
Fig. 3 shows the relationship between real drag (T) and the slip parameter (s) for various cross

viscosity(c) values. Real drag (T) was shown to decrease simultaneously with an increase in slip parameter
(s) values, whereas cross viscosity (c) variations had no effect on real drag (T) values. Table 1 displays
the numerical values.

Figure 3: Slip (s) vs Real Drag (T) at vary of cross viscosity (c) points at fixed to frequency parameters
µ=10, k=0.1, ρ=0.6, ω=0.6, t=0.6.

Fig. 4 shows the relationship between imaginary drag (T1) and the slip parameter (s) for various cross
viscosity(c) values. It is found that an rise in slip (s) values causes an fall in Imaginary drag (T1) values,
whereas cross viscosity (c) variations had no effect on imaginary drag (T1) values. Table 2 displays the
numerical values.

11. Conclusion:

In this paper, we aimed to find an analytic solution for the following
1. Oscillatory flow of micropolar outwith a micropolar fluid sphere,
2. Oscillatory micropolar fluid flow outwith a viscous liquid sphere,
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Figure 4: Slip (s) vs Imaginary Drag(T1) at vary of cross viscosity (c) points at fixed to frequency
parameters µ=10, k=0.1, ρ=0.6, ω=0.6, t=0.6.

Table 2: Slip parameter (s) vs Imaginary Drag(T1) at vary of cross viscosity (c) points at fixed values to
frequency parameters µ=10, k=0.1, ω=0.6,t=0.6 ρ=0.6.

T ′ \s 4 8 12 16
2 0.6598 0.6598 0.6598 0.6598
4 0.7574 0.7574 0.7574 0.7574
6 0.7887 0.7887 0.7887 0.7887
8 0.8042 0.8042 0.8042 0.8042
10 0.8134 0.8134 0.8134 0.8134
12 0.8195 0.8195 0.8195 0.8195
14 0.8238 0.8238 0.8238 0.8238
16 0.8271 0.8271 0.8271 0.8271

3. Oscillatory flow of Newtonian fluid outwith a non-Newtonian fluid sphere,
4. Oscillatory Newtonian fluid outwith a Newtonian fluid sphere,

The axisymmetric rectilinear of a liquid sphere in an incompressible non-Newtonian medium is based
on the idea of micro amplitude fluctuations.

The fluid sector and microrotation elements were found to have precise outcomes.A few specific sit-
uations are minimised in order to estimate the drag force application on the particle for rectilinear
oscillations, which is consistent with the data that is currently accessible in the literature.Results are
inferred by extracting and graphically displaying differences in real drag (T), imaginary drag (T1) with
respect to micro polarity (e), slip parameter(s), and cross viscosity (c).At different cross viscosity (c)
values, it is seen that true drag (T) values decrease as slip parameter values increase.Additionally, for a
range of cross viscosity (c) values, an increase in slip values results in an increase in imaginary drag (T1).
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