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On the Existence of Optimal Binary LCD Codes Under Hierarchical Poset Metrics ∗

Rohini Baliram More and Venkatrajam Marka†

abstract: A linear code is referred to as a linear complementary dual (LCD) code when it has only a
trivial intersection with its dual. LCD codes have gained prominence in research due to their application in
cryptography, communication systems, and data storage.

”This article explores the binary LCD hierarchical poset code, wherein the dimension is determined by the
rank of the Gramian of its generator matrix. By employing the canonical systematic form of the generator
matrix of the hierarchical poset code, the corresponding Gramian matrix is specified by imposing certain
conditions on the support of basis elements. Utilizing the Griesmer bound of linear code under Hamming
metric and the canonical decomposition of the hierarchical poset code, an upper bound is established on
the maximum distance of the hierarchical poset code with any hull dimension under specified conditions.
Furthermore, the study investigates the existence of optimal binary LCD codes under a hierarchical poset
metric when n is equivalent to a mod 8 where, a ranges from 0 to 7.”
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1. Introduction

Linear complementary dual (LCD) codes are those linear codes whose intersection with its dual codes
is trivial. They are widely utilized in various fields, including data storage, communication systems,
consumer electronics, and cryptography. In 1992, Massey introduced the idea of LCD codes to pro-
vide an optimum linear coding solution for the two user binary adder channel [1]. By using the hull
dimension spectra of linear codes Sendrier [2] demonstrated that LCD codes satisfy the asymptotic
Gilbert-Varshamov bound. In [3] Carlet et al. investigated an application of binary LCD codes against
Side-Channel Attacks (SCA) and Fault Injection Attack (FIA), and presented several constructions of
LCD codes. Additionally they have been employed to construct EAQECCs codes (see [4], [5]). In order to
construct new LCD codes from existing LCD codes, several methods such as direct sum, direct product,
puncturing, shortening, extension and matrix product have been used (see [6], [7], [8], [9] ). By modifying
some typical methods Shitao Li et al. [10] have introduced some methods for constructing LCD codes over
small finite fields . Moreover they have constructed several new quaternary Hermitian LCD codes, binary
and ternary Euclidean LCD codes which are useful to modify the established lower bounds on the largest
minimum weights. Thus, conjecture proposed by Bouyuklieva [6] is disproved by two counterexamples.
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In addition, as an application of quaternary Hermitian LCD codes, they identified some binary EAQECCs
with new parameters. In Ranya D. Boulanouar et al. [11] presented first characterization of linear com-
plementary dual skew constacyclic codes and discussed various construction of LCD skew negacyclic and
skew cyclic codes [12]. In 2024, Yang Liu et al. [13] studied on the minimum distances of binary optimal
LCD codes with dimension 5. In Conghui Xie et al. [14] constructed two new families of ternary LCD
BCH codes with lengths n = pγ and 2pγ . Many researchers have investigated the construction of LCD
codes ( [15], [16], [17], [25], [26], [27]).

In this article we have worked on the existence of optimal binary LCD codes under hierarchical poset
metrics. The motivation for this work stems from the growing demand for advanced coding schemes tai-
lored to modern applications in secure communications and data integrity. While classical error-correcting
codes are traditionally designed under the Hamming metric, various practical scenarios necessitate more
flexible and application-specific distance measures. One such alternative is the poset metric, introduced
by Brualdi et al. [19] which imposes a partial order on coordinate positions and generalizes the Hamming
metric. Within this framework, hierarchical poset metrics form a particularly important subclass due to
their structured nature. They allow for the canonical decomposition of codes and facilitate the analysis
of essential parameters such as minimum distance and hull dimension. In parallel, Linear Complemen-
tary Dual (LCD) codes have attracted considerable attention in recent years because of their inherent
resistance to side-channel and fault injection attacks, making them valuable for cryptographic and secure
communication systems. Despite the individual importance of both hierarchical poset metrics and LCD
codes, the literature lacks a systematic study of binary LCD codes under hierarchical poset metrics,
particularly regarding their optimality. This observation serves as the primary motivation for the present
study, which aims to explore the existence, structure, and optimality conditions of such codes specifically
those of dimension two with respect to a Griesmer-type bound.

Inspired by the work done in [18], we have constructed two dimensional optimal binary linear com-
plementary dual codes under hierarchical poset metrics. The structure of the paper is as follows: Section
2, reviews several basic results and properties of hierarchical poset code. In Section 3, hull of hierarchical
poset code is defined. In Section 4, construction and bound are presented. Existence of two dimensional
optimal binary linear complementary dual codes under hierarchical poset metric are given in Section 5.
In Section 6 concluding remarks are mentioned.

2. Preliminaries

Brualdi et al. introduced the idea of poset metric in 1995 [19], which is a metric defined on a vector
space Fn

q over a field Fq with a partial ordering (⪯) imposed on a finite set P, containing elements 1 to
n, i.e., P = {1, 2, , · · · , n}.

An ideal I is a subposet of P having property that whenever y ∈ I and z ⪯ y it implies that z ∈ I. The
poset weight of any vector y ∈ Fn

q is determined as the cardinality of the smallest ideal of P containing
support of y. Symbolically, ϖP (y)=|⟨supp(y)⟩| where, supp(y) = {j|yj ̸= 0}. Poset distance between any
two vectors y and z in Fn

q is defined as dP (y, z) = ϖP (y− z). This distance satisfies all the properties of
metric so it is known as Poset metric. A linear subspace C of Fn

q that possesses a poset metric having
dimension k and minimum distance dP is referred to as a Poset code, with parameters [n, k, dP ].

We mention below some concepts which are required to define hierarchical poset. The height h(b) of
an element b ∈ P is determined by the cardinality of the largest chain having b as the maximal element.
The height h(P ) of a poset P is the maximal height of its elements. i.e., h(P ) = max{h(b) : b ∈ [n]}. The
ith level Γi of a poset P is the collection of all its elements having height i i.e., Γi = {b ∈ [n] : h(b) = i}.

Definition 2.1 (Hierarchical poset [20]) Let,

[n] =
⋃̇

i=1,2,··· ,l
Γi (2.1)

be a partition with ni = |Γi| > 0. We Define n = (n1, n2, · · · , nl) and H = (Γ1, · · · ,Γl) to be hierarchical
array and hierarchical spectrum respectively. Note that n = n1 + n2 + · · ·+ nl. A hierarchical poset with
hierarchical spectrum H is the poset PH = ([n],⪯H) where,

a′ ⪯H b′ if and only if a′ ∈ Γi, b
′ ∈ Γj , and i < j. (2.2)
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Definition 2.2 (Hierarchical poset metric) Consider PH=([n],⪯H) is a hierarchical poset having
hierarchical spectrum H = (Γ1,Γ2, · · · ,Γl) and z ∈ Fn

q with z = z1+ z2+ · · ·+ zl where, supp(zi) ⊆ Γi. If

M(z) = max{i : zi ̸= 0}, (2.3)

then,

⟨supp(z)⟩ = (supp(z) ∩ ΓM(z))
⋃̇ (M(z)−1⋃

i=1

Γi

)
(2.4)

and the fact that the union is disjoint which ensures that

ϖH(z) =
∣∣supp(zM(z))

∣∣+ M(z)−1∑
i=1

ni (2.5)

where, (n1, n2, · · · , nl) is the hierarchical array of H.

Definition 2.3 (Hierarchical poset code) A linear code C ⊆ Fn
q is called an hierarchical poset code

when we consider a metric on Fn
q induced by an hierarchical poset.

Theorem 2.1 ( [21],Proposition 2) Let P = ([n],⪯H) be a hierarchical poset having l levels with ni =
|Γi|. Also, assume that {0} ̸= C ⊆ Fn

q is a linear code with P -canonical decomposition of C as C1 ⊕C2 ⊕
· · · ⊕ Cl . Then,

dP (C) =

y1−1∑
i=1

ni + dH(Cy1
) (2.6)

where, y1 = min{i ∈ [l] : Ci ̸= 0} and dH(Cy1
) is the minimum distance of Cy1

in the Hamming space
Fny1
q .

Theorem 2.2 ( [21]) Consider P = ([n],⪯) as a poset with l levels. Then, P is a hierarchical poset if
and only if every linear code C ⊆ Fn

q satisfies P -canonical decomposition.

3. Hull Of Hierarchical Poset Code

Consider C is a hierarchical poset code over Fq having length n. Then, its dual is defined as

C⊥ = {v ∈ Fn
q : ⟨v, c⟩ = 0 ∀c ∈ C} (3.1)

where, ⟨.⟩ denotes the Euclidean inner product. The hull of hierarchical poset code is defined as
Hull(C)=C ∩ C⊥. The LCD hierarchical poset code is defined as Hull(C) = {0}.

Remark 3.1 It is easy to observe that there does not exist any optimal binary LCD hierarchical poset
codes for n = 1 and 2. Therefore, in this article, we consider binary LCD codes under hierarchical poset
metric for length n > 2.

Theorem 3.1 ( [22], Propostion 3.1) Consider C is a linear code having parameters [n, k, d] and the
corresponding generator matrix is G. Then,

dim(Hull(C)) = k − rank(GG
′
). (3.2)

Theorem 3.1 can be adapted for hierarchical poset codes as follows:

Theorem 3.2 Consider C is a hierarchical poset code having parameters [n, k, dH] with G as its generator
matrix. Then,

dim(Hull(C)) = k − rank(GG
′
). (3.3)

Proof: Proof follows similar approach to that of Theorem 3.1. 2
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4. Constructions and Bounds

In this article, we consider the hierarchical poset of l level i.e., P (n; n1, n2, · · · , nl) with n = n1 +
n2 + · · ·+ nl. Let C be a binary hierarchical poset code. Define C̄0 = {0} and C̄i = {c ∈ C : M(c) ⊂ Γi}
for all i ∈ {1, · · · , l}. Let Ci =

⋃i
j=0 C̄j which is vector subspace. Let Λ(C) = {y1, y2, · · · , ys} be the set

of levels for which C̄yj
̸= 0 and dyj

= dim(Cyj
)− dim(Cyj−1

). For a two dimensional binary hierarchical
poset code, we obtain Λ(C) = {y1} or Λ(C) = {y1, y2}.

Theorem 4.1 ( [20], [23]) Let P be a hierarchical poset of l level, i.e., P (n; n1, n2, · · · , nl) with n =
n1 +n2 + · · ·+nl. Consider C is a binary hierarchical poset code having parameters [n, k]. Then, C is P
equivalent to a code C1 having a generator matrix G1 = (G1k,j

) consisting of blocks G1k,j
of size dyk

×nj

such that G1k,j
is the zero matrix for all j ̸= yk and, for j = yk it has the form G1k,j

= [Iyk
|Ayk

] where,
Idyk

is the identity matrix of size dyk
× dyk

and Ayk
is a matrix of size dyk

× (nyk
− dyk

). i.e., G1 has
the form:

G1 =

0 · · · 0 0 0 · · · 0 [Idys
|Ays

] 0
...

...
...

...
...

...
...

0 · · · 0 [Idy1
|Ay1

] 0 · · · 0 0 0

 (4.1)

Case 1: If Λ(C) = {y1, y2}, then canonical systematic form of generator matrix is:

G1 =

[
0 · · · 0 0 0 · · · 0 [Idy2

|Ay2 ] 0
0 · · · 0 [Idy1

|Ay1
] 0 · · · 0 0 0

]
(4.2)

where, Idyk
is the identity matrix of size 1× 1 and Ayk

is a matrix of size 1× (nyk
− 1) as dyk

= 1. The
corresponding Gram matrix is

G1G
′
1 =

[
[Idy2

|Ay2
] ∗ [Idy2

|Ay2
]t 0

0 [Idy1
|Ay1

] ∗ [Idy1
|Ay1

]t

]
(4.3)

G1 can be rewritten as follows:

G1 =

[
0 · · · 0 0 0 · · · 0 βy2 0
0 · · · 0 βy1 0 · · · 0 0 0

]
(4.4)

Consider,

R1
01 = |supp(βy1)|,R1

10 = |supp(βy2)| and R1
00 =

y1−1∑
i=1

ni (4.5)

We consider the first R1
01 positions of βy1 and the first R1

10 positions of βy2 to be 1’s.

Case 2: If Λ(C) = {y1} then canonical systematic form of generator matrix is given by,

G2 =
[
0 · · · 0 [Idy1

|Ay1
] 0

]
(4.6)

where, Idy1
is the identity matrix of size 2× 2 and Ay1

is a matrix of size 2× (ny1
− 2) as dy1

= 2. The
corresponding Gramian matrix is

G2G
′
2 =

[
[Idy1

|Ay1
] ∗ [Idy1

|Ay1
]t
]
. (4.7)

G2 can be rewritten as follows:

G2 =

[
0 · · · 0 β2y1

0
0 · · · 0 β1y1

0

]
. (4.8)

Consider,

R2
01 = |supp(β1y1

)|,R2
10 = |supp(β2y1

)| and R2
00 =

y1−1∑
i=1

ni (4.9)

We consider the first R2
01 positions of βy1 and the first R2

10 positions of βy2 to be 1’s.
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Theorem 4.2 (Griesmer bound [24]) Consider q is a prime power. If there exist a linear code having
parameters [n, k, dH ] then,

n ≥
k−1∑
i=0

⌈
dH
qi

⌉
. (4.10)

Using 2.1, we can deduce C̄y1 as a linear code over Fny1
q . Therefore,

ny1 ≥
k−1∑
i=0

⌈
dH
qi

⌉
. (4.11)

Definition 4.1 For prime power q, hdim ∈ Z+ and positive integers n, k, consider,

Aq(n, k, hdim) = max
{
dP | ∃ a hierarchical poset code having hull dimension

hdim under stated condition
}
.

(4.12)

Lemma 4.1 Consider q is a prime power, hdim is a non-negative integer and n, k ∈ Z+ such that
1 ≤ k ≤ n. Then,

Aq(n, k, hdim) ≤
⌊
(q − 1)qk−1ny1

(qk − 1)

⌋
+

y1−1∑
i=1

ni (4.13)

Proof: By applying Griesmer bound as in 4.10, we have,

ny1
≥

k−1∑
i=0

⌈
dH
qi

⌉
≥ dH

k−1∑
i=0

1

qi
=

dH(qk − 1)

(q − 1)qk−1
(4.14)

It follows that

dH ≤
⌊
(q − 1)qk−1ny1

(qk − 1)

⌋
(4.15)

y1−1∑
i=1

ni + dH ≤
⌊
(q − 1)qk−1ny1

(qk − 1)

⌋
+

y1−1∑
i=1

nidP (C) ≤
⌊
(q − 1)qk−1ny1

(qk − 1)

⌋
+

y1−1∑
i=1

ni. (4.16)

This implies

Aq(n, k, hdim) ≤
⌊
(q − 1)qk−1ny1

(qk − 1)

⌋
+

y1−1∑
i=1

ni (4.17)

2

Remark 4.1 For binary LCD hierarchical poset code, the upper bound in Lemma 4.1 can be written as

A2(n, 2, 0) ≤
⌊
2ny1

3

⌋
+

y1−1∑
i=1

ni. (4.18)

5. Existence of Optimal [n, 2, dP ]2 LCD Hierarchical Poset Codes

This section, presents existence of some two dimensional optimal binary LCD hierarchical poset codes
with n > 2 under stated conditions.
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5.1. Existence of optimal binary LCD hierarchical poset codes for the Λ(C) = {y1, y2}.

Theorem 5.1 If n ≡ 0 (mod 8),
y1−1∑
i=1

ni = R1
00 = v, ny1 = 3v + 2 and

l∑
i=y1+1

ni = 4v − 2, then

A2(n, 2, 0) = ⌊3v + 1⌋.

Proof: We have, n ≡ 0 (mod 8) then n = 8v for any v ∈ N and⌊
2ny1

3

⌋
+

y1−1∑
i=1

ni = (2v + 1) +R1
00 = 3v + 1

(
∵

y1−1∑
i=1

ni = R1
00 = v, ny1

= 3v + 2
)

According to (4.18), the existence of an [n, 2] binary LCD hierarchical poset code for n ≡ 0 (mod 8) can
be proven by showing that there exists hierarchical poset code having parameters [n, 2, 3v + 1]2 and hull
dimension zero. Assume that C is a [n, 2] binary hierarchical poset code having a generator matrix G1

specified in (4.2) such that (R1
01, R

1
10)=(2v + 1, 2v + 1) then C has parameters [n, 2, dP ]2 where,

dP (C) =

y1−1∑
i=1

ni + dH(C̄y1
) = R1

00 +R1
01 = v + (2v + 1) = 3v + 1 (5.1)

From (4.3), we have,

G1G
′

1 =

[
1 0
0 1

]
. (5.2)

Therefore, by Theorem 3.2, the dimension of Hull(C) is zero as rank(G1G
′
1) = 2. 2

Example: Let v = 2. Then:

n = v + (3v + 2) + (4v − 2) = 2 + 8 + 6 = 16, so n ≡ 0 (mod 8).

Let the poset levels be:

Γ1 = {1, 2}, Γ2 = {3, . . . , 10}, Γ3 = {11, . . . , 16}.

Let the code C ⊆ F16
2 be a hierarchical poset code with Λ(C) = {2, 3} and generator matrix:

G1 =

[
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

]
This satisfies:

R1
00 = 2, R1

01 = R1
10 = 5, dP (C) = 2 + 5 = 7.

The Gram matrix is:

G1G
T
1 =

[
1 0
0 1

]
⇒ rank(G1G

T
1 ) = 2.

So dim(Hull(C)) = 0. Hence, C is an LCD hierarchical poset code with optimal distance 7.

Theorem 5.2 If n ≡ 1(mod 8),
y1−1∑
i=1

ni = R1
00 = v + 1, ny1

= 3v + 2 and
l∑

i=y1+1

ni = 4v − 2, then

A2(n, 2, 0) = ⌊3v + 2⌋.

Proof: Given that, n ≡ 1 (mod 8) then n = 8v + 1 for any v ∈ N and⌊
2ny1

3

⌋
+

y1−1∑
i=1

ni = (2v + 1) +R1
00 = 3v + 2

(
∵

y1−1∑
i=1

ni = R1
00 = v + 1, ny1 = 3v + 2

)
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By (4.18), in order to prove the existence of an [n, 2] binary LCD hierarchical poset code for n ≡ 1 (mod 8),
it is sufficient to prove that there exist a [n, 2, 3v + 2]2 code having hull dimension zero. Consider C
is a [n, 2] binary hierarchical poset code having a generator matrix G1 specified in (4.2) such that
(R1

01, R
1
10)=(2v + 1, 2v + 1). Then C has parameters [n, 2, dP ]2 where,

dP (C) =

y1−1∑
i=1

ni + dH(C̄y1) = R1
00 +R1

01 = (v + 1) + (2v + 1) = 3v + 2 (5.3)

From (4.3), we have,

G1G
′

1 =

[
1 0
0 1

]
(5.4)

Therefore, by Theorem 3.2, the dimension of Hull(C) is 0 as rank(G1G
′
1) = 2. 2

Theorem 5.3 If n ≡ 2 (mod 8),
y1−1∑
i=1

ni = R1
00 = v+1,

l∑
i=y1+1

ni = 5v, ny1
= 2v+1, then A2(n, 2, 0) =

⌊3v + 2⌋.

Proof: The proof follows a similar approach to that of Theorem 5.2 with the choices of (R1
01, R

1
10)=(2v+

1, 2v + 1). 2

Theorem 5.4 If n ≡ 3 (mod 8),

y1−1∑
i=1

ni = R1
00 = 2v,

l∑
i=y1+1

ni = 5v and ny1
= v + 3,

then A2(n, 2, 1) = ⌊4v + 1⌋.

Proof: The proof is analogous to that of Theorem 5.2 with the choices of (R1
01, R

1
10)=(2v+1, 2v+3). 2

Theorem 5.5 If n ≡ 4 (mod 8),

y1−1∑
i=1

ni = R1
00 = v,

l∑
i=y1+1

ni = 6v + 4 and ny1 = v,

then A2(n, 2, 0) = ⌊3v + 1⌋.

Proof: The proof closely resembles the method used for Theorem 5.2 with the choices of (R1
01, R

1
10) =

(2v + 1, 2v + 1). 2

Theorem 5.6 If n ≡ 5 (mod 8),

y1−1∑
i=1

ni = v,

l∑
i=y1+1

ni = 3v + 2 and ny1
= 4v + 3,

then A2(n, 2, 0) = ⌊5v + 1⌋.

Proof: This proof employs a methodology comparable to the one presented in Theorem 5.2 with the
choices of (R1

01, R
1
10) = (4v + 1, 2v + 1). 2
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Theorem 5.7 If n ≡ 6 (mod 8),

y1−1∑
i=1

ni = R1
00 = v + 1,

l∑
i=y1+1

ni = 6v + 2 and ny1 = v + 3,

then A2(n, 2, 0) = ⌊3v + 2⌋.

Proof: The proof adopts a strategy similar to the one in Theorem 5.2 with the choices of (R1
01, R

1
10)

= (2v + 1, 2v + 1). 2

Theorem 5.8 If n ≡ 7 (mod 8),

y1−1∑
i=1

ni = R1
00 = v + 1,

l∑
i=y1+1

ni = 3v + 6 and ny1 = 4v,

then A2(n, 2, 0) = ⌊3v + 2⌋.

Proof: The proof closely resembles the method used for Theorem 5.2 with the choices of (R1
10, R

1
01) =

(4v − 1, 2v + 1). 2

5.2. Existence of optimal binary LCD hierarchical poset codes for the Λ(C) = {y1}.

Theorem 5.9 If n ≡ 0 (mod 8),

y1−1∑
i=1

ni = R2
00 = v,

l∑
i=y1+1

ni = 4v − 2 and ny1
= 3v + 2,

then A2(n, 2, 0) = ⌊3v + 1⌋.

Proof: Given that n ≡ 0 (mod 8) then n = 8v for any v ∈ N and⌊
2ny1

3

⌋
+

y1−1∑
i=1

ni = 2v + 1 +R2
00 = 3v

(
∵

y1−1∑
i=1

ni = R2
00 = v, ny1 = 3v + 2

)
By (4.18), in order to prove the existence of an [n, 2] binary LCD hierarchical poset code for n ≡ 0 (mod 8),
it is sufficient to prove that there exists an [n, 2, 3v + 1]2 code having hull dimension zero. Consider, C
is a [n, 2] binary hierarchical poset code having a generator matrix G2 specified in (4.6) such that
(R2

01, R
2
10)=(2v + 1, 2v + 1). Then C has parameters [n, 2, dP ]2 where,

dP (C) =

y1−1∑
i=1

ni + dH(C̄y1) = R2
00 +min{R2

01, R2
10} = v + 2v + 1 = 3v + 1 (5.5)

From (4.3), we have,

G2G
′

2 =

[
1 0
0 1

]
(5.6)

Therefore, by Theorem 3.2, the dimension of Hull(C) is 0 as rank(G2G
′
2) = 2. 2

Theorem 5.10 If n ≡ 1 (mod 8),

y1−1∑
i=1

ni = R2
00 = v + 1,

l∑
i=y1+1

ni = 4v − 2 and ny1 = 3v + 2,

then A2(n, 2, 0) = ⌊3v + 2⌋.
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Proof: We have, n ≡ 1 (mod 8). Then n = 8v + 1 for some v ∈ N and⌊
2ny1

3

⌋
+

y1−1∑
i=1

ni = 2v + 1 +R2
00 = 3v + 2

(
∵

y1−1∑
i=1

ni = R2
00 = v + 1, ny1

= 3v + 2
)

By (4.18), in order to prove the existence of an [n, 2] binary LCD hierarchical poset code for n ≡ 1 (mod 8),
it is sufficient to prove that there exists an [n, 2, 3v + 2]2 code having hull dimension zero. Consider C
is a [n, 2] binary hierarchical poset code having a generator matrix G2 specified in (4.6) such that
(R2

01, R
2
10)=(2v + 1, 2v + 1). Then C has parameters [n, 2, dP ]2 where,

dP (C) =

y1−1∑
i=1

ni + dH(C̄y1) = R2
00 +min{R2

01, R2
10} = v + 1 + 2v + 1 = 3v + 2 (5.7)

From (4.3), we have,

G2G
′

2 =

[
1 0
0 1

]
(5.8)

Therefore, by Theorem 3.2, the dimension of Hull(C) is 0 as rank(G2G
′
2) = 2. 2

Example: Let v = 2. Then:

n = 3 + 8 + 6 = 17, so n ≡ 1 (mod 8).

Define levels:
Γ1 = {1, 2, 3}, Γ2 = {4, . . . , 11}, Γ3 = {12, . . . , 17}.

Let code C ⊆ F17
2 with Λ(C) = {2} and generator matrix:

G2 =

[
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

]
So:

R2
00 = 3, R2

01 = R2
10 = 5, dP (C) = 3 +min(5, 5) = 8.

And the Gram matrix:

G2G
T
2 =

[
1 0
0 1

]
⇒ dim(Hull(C)) = 0.

Hence, C is a binary LCD hierarchical poset code of parameters [17, 2, 8]2.

Theorem 5.11 If n ≡ 2 (mod 8),

y1−1∑
i=1

ni = R2
00 = v + 1,

l∑
i=y1+1

ni = 5v and ny1
= 2v + 1,

then A2(n, 2, 0) = ⌊3v + 2⌋.

Proof: The proof is similar to demonstrated in Theorem 5.10 with the choices of (R2
01, R

2
10)=(2v+1, 2v+

1). 2

Theorem 5.12 If n ≡ 3 (mod 8),

y1−1∑
i=1

ni = R2
00 = 2v,

l∑
i=y1+1

ni = 5v and ny1
= v + 3,

then A2(n, 2, 0) = ⌊4v + 3⌋.
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Proof: The proof follows similar approach to that of Theorem 5.10 with the choices of (R2
01, R

2
10)=(2v+

3, 2v + 3). 2

Theorem 5.13 Consider a natural number n > 4. If n ≡ 4 (mod 8),

y1−1∑
i=1

ni = R2
00 = v,

l∑
i=y1+1

ni = 6v + 4 and ny1
= v,

then A2(n, 2, 0) = ⌊3v + 1⌋.

Proof: The proof adopts a strategy similar to the one in Theorem 5.10 with the choices of (R2
01, R

2
10)=(2v+

1, 2v + 1).

2

Theorem 5.14 If n ≡ 5 (mod 8),

y1−1∑
i=1

ni = R2
00 = v,

l∑
i=y1+1

ni = 3v + 2 and ny1
= 4v + 3,

then A2(n, 2, 0) = ⌊5v + 3⌋.

Proof: The proof aligns with the methodology used in Theorem 5.10 with the choices of (R2
01, R

2
10)=(4v+

3, 4v + 3).

2

Theorem 5.15 If n ≡ 6 (mod 8),

y1−1∑
i=1

ni = R2
00 = v + 1,

l∑
i=y1+1

ni = 6v + 2 and ny1 = v + 3,

then A2(n, 2, 0) = ⌊3v + 2⌋.

Proof: The proof follows the same reasoning as that of Theorem 5.10 with the choices of (R2
01, R

2
10)=(2v+

1, 2v + 1).

2

Theorem 5.16 If n ≡ 7 (mod 8),

y1−1∑
i=1

ni = R2
00 = v + 1,

l∑
i=y1+1

ni = 3v + 6 and ny1 = 4v,

where, v ∈ N then A2(n, 2, 0) = ⌊5v + 2⌋.

Proof: The proof adopts a similar strategy to that of Theorem 5.10 with the choices of (R2
01, R

2
10)=(4v+

1, 4v + 1) for some v ∈ N.
2
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6. Conclusion

Optimal binary LCD code under hierarchical poset metric have been systematically constructed for
all n ∈ N \ {1, 2} subject to specific conditions. Correspondingly, the precise value of A2(n, 2, 0) has
been established under stated condition. This study can be expanded in several ways, one of which is to
construct optimal LCD codes using hierarchical poset metrics over other finite fields. Another approach
is to construct optimal LCD codes by using other poset metrics, such as the NRT metric and crown poset
metric.
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