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Some Equivalence Numbers and Applications of Fuzzy Automation Semi Groups

L. Parimala™ and E. Keshava Reddy

ABSTRACT: [1,2] this paper we give the proof of theorem of , Assuming that X be a finite set with n elements,
and let S(n,r) (1 < r < n) be the number of equivalences p on X such that modX/r = r, to showing the
equivalence of the relation S(n,1) = S(n,n) =1,S(n,r) = S(n—1,r—1)+rS(n—1,7) = (2<r <n-—1) and
use the information to calculate S(n,r) for (1 <r < n < 6). The numbers S(n,r) are the stirling number of
the second kind [3]. S(n,r) is a symmetric semi-group or symmetric inverse semi-group depending upon the
context. n is number of elements in base set and r is rank of elements. The study of fuzzy sub semi-groups and
fuzzy ideals within algebraic structures like S(n,r). Fuzzy sub-sets of S(n,r) treating it as set of semi-groups.
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1. Introduction

Fuzziness or uncertainty is found in all the situations of practical life. In advance of [1] presented
the conception from the fuzzy sets the original composition a presented an early hypothesis equals titled
fuzzy set hypothesis exacting than many others from the uncertainness troubles forced out equal resolved
through and through these fresh come near. He advised an early conception represents acknowledged
equally fuzzy sets [1,2,3].

Fuzzy sets force-out equal utilized to convey an easy conversion of rank to dis-member ship and the
other way around Versa. It applies a purposeful from a vague conception pressed out successful elemen-
tary terminologies. These are caused aside specifying to all factor inwards the general exercise set an
esteem corresponding it has a ground level from rank inwards the fuzzy exercise set. This ground-level
stands for to the stage to which that component represents agreeable on the conception corresponded
aside the fuzzy exercise set. These components consist of the exercise to a bigger or little academic degree
every bit a bigger or little rank ground level. And then we force out to conceive the concept from a sharp
exercise set because a detailed example from the lot of conception from a fuzzy exercise set successful
which exclusive cardinal rank evaluates cardinal zero and 1lis earmarked [1,3,4,5].

2. Definitions and Lemmas

Definition 2.1 [5,0] Let (E, <) be a lower semi-lattice. Then (E,N) is a commutative semi-group con-
sisting entirely of idempotents, and

Va,be E, a<b < aAb=a.

Conversely, suppose that (E,-) is a commutative fuzzy independent semigroup. If ab = a, then a < b
defines the relation < on E is known as Semi-Group Lattice.
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Stirling Number of
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Figure 1: Stirling Number of Second Kind

Definition 2.2 A fuzzy semi-group is an algebraic structure the operation is extended using fuzzy set
theory. A fuzzy sub-set p of a semi-group S is a function p: S = (0, 1). Fuzzy semigroups generalize
classical semigroups to allow degrees of membership, useful in modeling uncertainty and imprecision in
algebraic systems.

Relation between S(n,r) and fuzzy semi-gorups: Fuzzy sub-sets of S(n,r): A relation S(n,r)
treating it as the underlying set of a semigroup, where the degree of membership reflects how ” strongly”
an element (a transformation) belongs to a fuzzy sub semi-group.

Fuzzy sub semi-groups: If p is the sub-set of S(n,r) and for all f, g € S(n,r), it holds that:

p(f og) > min (u(f), n(g))

then g is a sub semi-group of S(n,r).

Lemma 2.1 [2,/] Suppose X bea finite set with n elements, and let S(n,r) (1 <r <n) be the number of
equivalences p on X such that modX/r =r, to showing the equivalence of the relation S(n,1) = S(n,n) =
1,S(n,r)=Sn—1,r=1)+rS(n—1,r) = (2<r <n-—1) and use the information to calculate S(n,r)
for (1 < r < n < 6) using these knowledge. [7,8] A regular divide more elements onto r non-empty
discontinuous fuzzy sub-sets (i.e., classes of equivalence of a particular equivalency relation having exactly
r classes) is known as the second kind of Stirling numerals, abbreviated S(n,r).

Proof: (a) To show that key properties: (i)S(n,1) =1 is all n elements are in a single fuzzy sub-set. (ii)
S(n,n) =1 each element is in its own singleton fuzzy sub-set.

(b) Another has the following straightforward intuition

(c) If an element x is a member of X, then either = begins its own fuzzy sub-set — S(n—1,r—1) Methods
for joining one of the existing r fuzzy sub-setstendsr, S(n —1,r) ways” or for forming r — 1 fuzzy sub-sets
from the remaining n — 1 components.

Step-by-Step Calculation Table for (1 < r < n < 6) we will build the values using recurrence relation
table:
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Stirling Numbers of the Second Kind (S(n, r))
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Figure 2: Above graph showing striling number of second king S(n,r)

n\r | One | Two | Three | Four | Five | Six
5 1 1 3 3 1 1
4 1 7 6 1 1
3 1 7 6 1
2 1 15 25 1 1
1 1 31 90 65 15 | 15
0 1 1

n\r|1 2 3 4 5 6 7
511 1 3 3 1 1
4 |11 7 6 1 1
3 |1 7 6 1
2 11 15 25 1 1
1 |1 31 90 65 15 15 1

Table 1: Above tables shows that equivalence table and graph of fuzzy finite set .

Definition 2.3 [9,10] Assume therefore S is a collection of one-one maps and that X is a measurable
infinite collection. S is referred to as a Baer-Levi F' S-G if it has a F'S S-G of x¢ does not include any
idempotent elements.

Lemma 2.2 Assuming that I, J be ideals of a fuzzy semi-group of S such that I C J.Showthattherelation
S ~ S/I
J = J/T*

Proof:

1. Fuzzy Semi-Group: [11,12,13] Suppose S be a fuzzy semi-group meaning of S is a set with an
associative binary operation. Each element x € S has an associated degree of membership u(x) € [0, 1]
and ideals I and J are fuzzy sub-sets satisfying specific fuzzy ideal conditions of the relation puy(a -

S); wi(S-a) = pi(a).
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Also focus primarily on quotient structures based on fuzzy ideals and treat the algebraic relationships
abstractly that is in classical fuzzy semi-groups, because the fuzzy aspects behave analogously under
these quotient operations.

Figure 3: Assuming that I,J be ideals of a fuzzy semi-group S such that If I O J, then % = %
2. Quotient Structures
(i) £ the set of equivalence classes
a~pb <= ab ' €l
Then the equivalence class of a under this relation is denoted by
lal; ={be G |ab ' € I}.

or a similar fuzzy relation. In fuzzy semi-groups, this is often interpreted via a fuzzy congruence derived
from I.

(ii) £ is similarly defined.

J
(ili) Z is the image of J in 2, treated as a sub-structure of 2.

(iv) ‘j—ﬁ of the quotient of 2 by the ideal J/I.

Isomorphism: We aim to show that
S/J = (5/1)/(J/1)
the construction of the isomorphism define a map on
@:S/J—(S/1)/(J/T)

be the map defined by
o([sls) = [[sli]y1-

That is, you map an element’s equivalence class mod J in S to its equivalence class mod J/I in S/I.

4. Well-definedness and Properties:
(i) A well defined relation [s]; = [t];, then s ~; t, meaning s~!t € J. Since I C J, this implies
(sl ~uy1 [t]r = [ls]z] = [[t]z].

(ii) Homomorphism operation on S/J and (S/I)/(J/I) is inherited from S, so the map respects the
fuzzy semi-group operation:

o[y - [t].r) = e(lstls) = [[st]ilsyr = [ls]r - [tlrloyr = (ls]s) - @([t])-
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(iii) Bijective is the combination of injective and surjective. Suppose the injective relation,

(sli)yyr = [[tli)yyr mod J/I = [s];-[t;' € J/I= st €J=[s]; =[t],.

This mirrors the third isomorphism theorem for fuzzy groups or rings and extends naturally to fuzzy
semi-groups and fuzzy algebraic structures under appropriate definitions of fuzzy ideals and quotients.
O

Definition 2.4 [10,11,12,15,14,15] Suppose X is a fuzzy semi-group and I and J are the elements of
S\I, S\J. In the product of two elements S\ I; otherwise the product is I. The element of I of S,r
1s known as ideals of fuzzy semi-group.

Lemma 2.3 [10,11] Consider (I, J) be ideals of a fuzzy semi-group S. Show that
InJg, 1uJ

are ideals of S. Notice that IJ C INJ, and so INJ # @. Also, we can show that:

uJ I
J T InJ

Proof:
1. Suppose S be a fuzzy semi-group and (I ,J) be fuzzy ideals . The F-ideal I of S is a fuzzy sub-set
I:5S —0,1] be a function such that for all z,y € S:

I(xy) > min(I(x), I(y))

and Usually, a fuzzy ideal is lower semi-continuous and closed under the fuzzy semi-group operation in a
fuzzy sense.

Consider I, | be the ideals of a fuzzy semi-group 5

Ic]. I nJandI U J are ideal of S
'
I=1c]
4
Fung=iing

Figure 4: Fuzzy Ideals of semi-group of S
2. I and J be fuzzy ideals of a semigroup S.
Case 1: Consider I N J.

Assume that z,y € S. Then,
(I N J)(zy) = min(I(zy), J(zy))
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> min(min(I(z), I(y)), min(J(z), J(y))) = min((I N J)(z), (L N J)(y))-
Hence, I union and intersection J is a fuzzy ideal of S.
Case 2: Consider T U J.

Assume that z,y € S. Similarly Union Property satisfied.
Hence, I U J is a fuzzy ideal of S.

3. In fuzzy ideals, the product IJ is typically defined point wise as

(IJ)(x) = sup min(I(a), J(b)).

r=ab
Then clearly, (I J)(x) is less than or equal to the mininmum of I(x) and J(x) is equals to (I and J)(x) so,
(I J) subset or equal I an J is not equals to phi.

4. Consider the isomorphism:
g I
J InJ

This relation serves as a fuzzy analogue of the lattice-theoretic modular law in ideal theory.
Let us define the following quotient fuzzy semigroups:
1UJ . .
° T: fuzzy elements from I U J modulo equivalence with J.

1
° N7 fuzzy elements from I modulo equivalence with I N J.

Homomorphism

To show that ¢ is a homomorphism, note that the operations in both quotients are induced from the
original fuzzy semigroup operation. That is,

d((a+J)+ b+ ) = o((a+b)+J) = (a+b)+(INJ) = (a+(INJ))+ (b+INJ)) = ¢pla+J)+d(b+J)
Hence, ¢ preserves the semigroup structure.
Injectivity
Suppose ¢(a+ J) = ¢(b+ J). Then:
a+(INJ)y=b+{INJ)=a-belInNJCJ=a+J=b+J
Thus, ¢ is injective.
Surjectivity
Let a+(INJ)eI/(INJ)withaeI CIUJ. Thena+J € (IUJ)/J, and:
dpla+J)=a+(INJ)

So every element in I/(I N .J) is the image of some element in (I U J)/J, proving surjectivity.
Therefore, ¢ is an isomorphism:
uJg I
J InJ
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Lemma 2.4 [10,15] Assuming that X = {x1,x2,x3,...}, with |X| > 5. Consider o, 8 and ~ are the

equivalences on X with classes as follows: o = {{x1, z2}, {xs, 24}, {a5}, {m6}, ... }; B = {{z1, 23}, {2, x5}, {za}, {26}, - ..

and v = {{x1, 22}, {23, 24,25}, {x6},...}. Show that o C v but that (aV B) Ny # aV (BN7) and deduce
that E(X) is not modular.

Proof: 1. Understand the given equivalence relations :
X = {x1, 29, x3,...} with at least 5 elements.
« partitions S as:

o = {{xl? $2}, {1’3, fE4}, {$5}a {xG}a .. }
also defined as the partition of 3 as of X:

5 = {{1‘1,:1:3}, {£E2,$5}, {x4}» {$6}7 e }

similarly the partition along with gamma.

2. Show that alpha subset or equal to gamma.
An equivalence relation Ry C Ry if every pair related by R; is also related by Rs.
To check the blocks of « versus ~:

o {x1,22} C {x1,22} in ;

o {x3,24} C {x3,24,25} in 7y

e {x5},{x6},... are all singleton blocks, and are also in 7
Since every pair related in « is also related in ~,

a C .

3. Show that (o C 7) but that ((aV B)Ny£aV(LN7)):

Initially, we compute (o V ), the join of two equivalence relations. This is the smallest equivalence
relation containing all pairs in o and 3. To obtain this, we take the Tr.closure or « and 3.

Given the equivalence relation a:

T1 ~a T2, T3 ~q T4, T3 ~q T5.

And the equivalence relation 3:
T ~g T3, T2 ~BTs.

Now we consider the union (aU /) and compute its transitive closure:
® IT1 ~ X3 andx3~x4, Weget X1~ T3~ Ty = T1~ Ty

e 1 ~ X9 and xy ~ 5, We get 1 ~ Tg ~ T5 = X1 ~ Ts.

e Since x1 ~ x3 ~ x5 and x3 ~ x4, and x1 ~ 9, we conclude that all of x1,zs, 3, x4, x5 are related.

Next we compute (aV 3) N+, which is the intersection with 7 to take only the pairs that are in both.

a V B has the big class. So, the intersection will only keep the pairs that both relations agree on.
Thus,

(aVvVpB)Ny={x1 ~ a9, T3 ~ x4~ T5}.

There are no connections between {x1,z2} and {x3, x4, x5}, so the resulting blocks are:
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{xlaxQ}v {$3,$4,ZL’5}, {1'6}7"'

which is exactly . Therefore,

(aVpB)Ny=r.

Now we compute (8 N+). The intersection SN+ is defined as:

B = {{xlvxfﬁ}a {x2,1'5}, {(E4}, {wﬁ}a .- '}7 Y= {{$1,$2}7 {1’3’ 5U4,.’£5}, {xﬁ}v .- }

To check out the elements appear in the same block in both:
{4}, {x6} are in singleton blocks in both = preserved.

BNy ={{xs},{z6},...}.

which is essentially a trivial relation.
Therefore,

\/(ﬂ N7v) = a V (trivial relation) = «a.

we conclude that
(aVB)Ny#aV(BN9y).

4. E(X) is not modular:
A lattice L is modular if for all a < ¢, we have:

aV({bAc)=(aVbd)Ac.

We found « C v, but

(aVB)Ay#aV (BAY)

= Modular law fails in E(X).
Thus, E(X), the lattice of equivalence relations on X, is not modular.

3. Conclusion

In this paper, we study the number of equivalence relations on a finite set X such that | X/p| = r,
where 1 <7 < n and n = |X|. The number of such equivalence relations is denoted by S(n,r), known
as the Stirling numbers of the second kind. We examine their recurrence relations and compute explicit
values for 1 <7 < n < 6. The numbers S(n,r) are the strirling number is another type.

Acknowledgments

I would offer my gratitude towards my research supervisor Prof. E. Keshava Reddy for his concern
and esteemed guidance during my Ph.D.



10.

11.

12.

13.

14.

15.

SOME EQUIVALENCE NUMBERS AND APPLICATIONS OF FUZzZY AUTOMATION SEMI GROUPS 9

References

. A. Dawar. The nature and power of fixed point logic with counting. ACM SIGLOG News, pages 8-21, 2015.

. C. J. Gittelson, R. Andrev, and C. Schwab. Optimally adaptive Galerkin methods for random partial differential

equations. Journal of Computational and Applied Mathematics, 263:189-201, 2014.

. E. Lughofer, E. Weigl, W. Heidl, C. Eitzinger, and T. Radauer. Integrating new classes on the fly in evolving fuzzy

classifier designs and their application in visual inspection. Applications of Soft Computing, 35:558-582, 2015.

F. Abu Zaid, E. Gradel, M. Grohe, and W. Pakusa. Choiceless polynomial time on structures with small abelian color
classes. In Mathematical Foundations of Computer Science 201/, pages 50—62. Springer, 2014.

F. Meng and X. Chen. A new method for a triangular fuzzy compare wise judgment matrix process based on consistency
analysis. International Journal of Fuzzy Systems, pages 1-20, 2016.

H. T. Banks, J. A. Burns, and E. M. CIiff. Parameter estimation and identification for systems with delays. SIAM
Journal on Control and Optimization, 19(6), November 1981.

H. T. Banks and K. Ito. A unified framework for approximation and inverse problems for distributed parameter systems.
Citric - Theory and Adv. Tech., 4:73-90, 1988.

H. T. Banks and C. Thompson. Least squares estimation of probability measures in the Prohorov metric frameworks.
Technical report, CRSC-TR12-21, N. C. State University, Raleigh, NC, November 2012.

I. G. Rosen, S. E. Luczak, and J. Weiss. Blind deconvolution for distributed parameter systems with unbounded input
and output and determining blood alcohol concentration from transdermal biosensor data. Applied Mathematics and
Computation, 213:357-376, 2014.

S. Shelke and S. Apte. A fuzzy-based classification scheme for unconstrained handwritten Devanagari character recog-
nition. In 2015 International Conference on Communication, Information & Computing Technology (ICCICT), 2015.

S. Kubler, J. Robert, W. Derigent, A. Voisin, and Y. Le Traon. A state-of-the-art survey & testbed of fuzzy AHP
(F-AHP) applications. Expert Systems with Applications, 65:398-422, 2016.

P. Tufekci. Prediction of a full load electrical power output of a baseload operated combined cycle power plant using
machine learning methods. International Journal of Electrical Power & Energy Systems, 60:126—140, 2014.

W. Pakusa. Linear equation systems and the search for a logical characterisation of polynomial time. Ph.D. thesis,
RWTH Aachen University, 2016.

Y. L. He, X.-Z. Wang, and J. Z. Huang. Fuzzy nonlinear regression analysis using a random weight network. Information
Sciences, 364:222-240, 2016.

Z. Dai, I. G. Rosen, C. Wang, N. J. Barnett, and S. E. Luczak. Identifying drinking diary based pharmacokinetic
models to calibrate transdermal alcohol biosensor data analysis software. Mathematical Biosciences and Engineering,
to appear, 2016.

L. Parimala,

Research Scholar,

JNTUA, Ananthapuramu, Andhra Pradesh, India.

Assistant Professor,

Raghavendra Institute of Pharmaceutical Education and Research (RIPER),
Ananthapuramu, Andhra Pradesh, India.

ORCID: hitps://orcid.org/0009-0009-5096-4020

E-mail address: lparimala9@gmail.com

and

E.Keshava Reddy,

Professor,

Department of Mathematics,
JNTUA, Anathapuramu, Andhra Pradesh, India.
ORICD:http://orcid.org/0000-0003-3880-0989

E-mail address: keshava.maths@jntua.ac.in



	Introduction
	Definitions and Lemmas
	Conclusion

