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A Hybrid CNN–BiLSTM Framework for Heart Disease Detection
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abstract: Heart disease continues to rank among the primary causes of death globally, emphasizing the
need for precise and user-friendly prediction algorithms. We propose a novel hybrid deep learning model in this
study for forecasting heart disease from structured clinical data by combining CNNs along Bidirectional Long
Short-Term Memory networks. Second-degree polynomial feature expansion or normalization for numerical
stability is used to improve the model’s capacity to represent intricate relationships. We also use the Synthetic
Minority Oversampling Technique to handle class imbalance and reformat tabular data into a pseudo-sequential
style in order to take advantage of sequence modeling. Our CNN–BiLSTM model achieves 98% accuracy and
a 0.98 F1-score, which is a considerable improvement over the baseline machine learning classifiers, such as
Decision Trees, Naive Bayes, and Logistic Regression. These results demonstrate how beneficial it is to combine
local pattern extraction with temporal modeling to obtain more accurate disease prediction.

Key Words:Heart disease prediction, deep learning, CNN – BiLSTM, sequence modelling, SMOTE,
medical AI.
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1. Introduction

The WHO reports that CVDs account for 17.9 million fatalities annually, making them the leading
cause of mortality worldwide. [1]. The most prevalent causative agent of CVDs is heart disease, which
advances stealthily in its nascent stages until the advanced stages. Early and accurate diagnosis is
required in order to enable early interventions and reduce mortality. However, the stealthy onset of initial
symptoms and the multicausative nature of patient-specific risk factors make manual diagnosis time-
consuming and risky. In the past decade, the availability of clinical data with structure and computational
modeling advancements has enabled the creation of intelligent systems capable of being used to aid
diagnostic decisions. Traditional ML approaches such as LR, DT, & NB classifiers have been used to
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a great extent to predict heart disease based on patient features [2], [3]. They are interpretable and
inexpensive computationally, but are generally not strong enough to manage non-linear relations and
feature interactions in medical data. To surpass these limitations, researchers have used more and more
deep learning (DL), which has performed better in a wide variety of developments, ranging from medical
imaging, signal processing, and genomics. More specifically, hybrid models merging CNNs with recurrent
models such as LSTM networks have been established effective in learning local and sequential patterns
of information. Although originally intended for temporal and spatial data like images and speech, these
models can be adapted to be applied in tabular clinical data sets through structural transformations and
reshaping operations [4]. This study suggests a hybrid DL architecture for predicting heart disease using
tabular data that combines a BiLSTM network with a one-dimensional CNN. To facilitate the model
learning high-order relationships better, we employ second-degree polynomial feature expansion, through
which the interaction and nonlinear effects can be revealed. We also tackle class imbalance in medical
data using the SMOTE [5]. We convert the feature matrix into a pseudo-sequential presentation to allow
the network to take advantage of temporal-style learning of static data.

2. Related Work

Early diagnosis of heart disease using ML and DL algorithms has been a popular research area re-
cently. The motivation behind this is the increasing availability of structured clinical data and the failure
of traditional diagnostic methods to identify high-risk patients at an early stage. Several studies have
demonstrated that predictive modeling can contribute to clinical decision-making and improve diagnostic
accuracy if used on patient data in the appropriate way.
Classifying cardiac disease has been a common use of traditional machine learning algorithms. On bench-
mark data, such as the Cleveland and UCI Heart Disease datasets, it has been demonstrated that the
models of logistic regression, naive bayes, and decision trees perform well. For instance, Javeed et al.
[6] built an optimized Random Forest classifier on a metaheuristic feature selection strategy with high
prediction accuracy. Similarly, Patil and Sherekar [7] compared the performance of NB and DT classifiers
and arrived at the conclusion that rule-based trees outperformed probabilistic models for heart disease
data. Although these models are interpretable and computationally inexpensive, they are incapable of
learning higher-dimensional and nonlinear associations that occur in medical data, Table I.

Bollapalli and Challa [8] proposed a recurrent neural network–based framework for forecasting heart
disease risk, demonstrating the potential of temporal models in capturing feature dependencies over time.
Their study features the effectiveness of deep learning in clinical prediction tasks, particularly when work-
ing with sequential or structured medical data.

Since the introduction of deep learning, researchers have examined the application of NN to medical
diagnosis. MLPs and FNNs have been applied to the binary classification of heart disease, which performs
better than traditional methods in some cases. Recently, CNNs and RNNs, in the form of LSTM-based
architectures, have been examined for structured health data by adapting them to operate on reshaped
tabular inputs. Pal and Mitra [9] proposed a CNN–BiLSTM hybrid architecture for health monitoring,
which has the potential for simultaneous extraction of spatial and temporal features. Although these
models have achieved encouraging performance, they tend to be susceptible to meticulous preprocessing
and regularization since most medical datasets are relatively small.

Recent research has proven the efficiency of hybrid deep learning and ensemble-based models in
the detection of heart disease. These methods tend to have convolutional neural networks combined
with classical classifiers, use synthetic data augmentation, and involve explainable AI (XAI) methods
in enhancing the accuracy of prediction as well as interpretability. Addisu et al. [10] propose a hybrid
model with VGG16 (deep CNN) to extract patient data features that are used as an input to conventional
classifiers such as Random Forest and SVM. A conditional tabular GAN (CTGAN) is used for synthetic
data generation, and SHAP values are used for interpretability of the model, resulting in a model with
approximately 92% accuracy and 91.75% F1-score on heart disease datasets. Shah et al. [11] present
an ensemble stacking strategy that integrates LightGBM, CatBoost, XGBoost, and neural networks as
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a meta-learner for XGBoost. Their model integrated with SMOTE for balancing classes has an AUC-
ROC value of around 0.82, precision and recall of around 0.81 and 0.83 respectively, proving how the
application of ensemble learning in conjunction with XAI (SHAP/PCA) can lead to strong and explainable
predictions. In the same vein, Rohan et al. [12] perform a wide comparison of 21 classifiers from logistic
regression and SVM to CNNs and RNNs, and 11 feature selection methods. Their results indicate that
XGBoost performs best among all other models, achieving approximately 97% accuracy and 0.98 AUC.
Together, these recent studies emphasize that hybrid architectures, ensemble methods with boost, and
data augmentation approaches greatly improve the performance and reliability of heart disease prediction
models and also enhance the transparency with explainability tools.

Table 1: Comparative Analysis of Different ML Models
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC Dataset Used Key Features

Logistic Regression 80.5 81.2 79.3 80.2 0.82 Cleveland, UCI Heart Disease Simple, interpretable, linear model
Naive Bayes 77.1 75.3 80.1 77.6 0.75 Cleveland, UCI Heart Disease Probabilistic classifier, assumes feature independence
Decision Tree 83.3 84.0 82.7 83.3 0.85 Cleveland, UCI Heart Disease Tree-based, interpretable, prone to overfitting

3. Methodology

The entire pipeline for predicting heart disease using a hybrid deep model is explained in this subsec-
tion. The proposed method consists of convolutional and recurrent models along with the most recent
data transformation and preprocessing techniques to handle structured clinical data in an optimal way.
The pipeline is divided into five steps: dataset preparation, feature engineering and preprocessing, data
reshaping, deep model architecture design, and training configuration with evaluation.

3.1. Dataset Description and Preparation:

The study’s dataset is 1026 patient records, with each of them characterized by 13 clinical features and
a binary target label of heart disease or not. The most significant demographic variables like age and sex,
physiological measurements like maximal heart rate acquired, blood pressure at rest, serum cholesterol,
and categorical variables like type of chest pain, fasting blood sugar, and thalassemia diagnosis are some
of the features. The target label is 1 for heart-disease-diagnosed subjects and 0 for the rest. All the
features were preserved in the dataset after passing through a quality check that confirmed the absence
of missing values or outliers that needed imputation. Since the data was tabular, structured in nature,
and the dataset was of moderate size, the preprocessing approach was to find the most significant patterns
with the assurance of being neural network model-compatible.

3.2. Data Preprocessing and Feature Engineering:

Before feeding the model training, the attributes had to be transformed into a deep learning format.
Numerical features were standardized beforehand using the StandardScaler function to scale each of them
by scaling its mean from it and by unit variance dividing. The step has the overall effect of setting all
the inputs to contribute equally to the loss function of the model, and hindering high-value features from
overwhelming. It is especially necessary within deep networks as variations in scale would cause the
gradients to become unstable or their learning behavior become unstable.

To enhance the model’s capacity to generalize higher-order relationships within the data, we employed
polynomial feature expansion to the second order. This technique includes higher-order interaction terms
and squared variables such that the network can take advantage of nonlinear interactions between vari-
ables, such as blood pressure and cholesterol, or chest pain type and age. Although deep models can
represent such interactions internally theoretically, representing them in explicit polynomial form helps
in faster convergence and more interpretable learned representations [13].
The data set was slightly unbalanced, with the instances of heart disease being slightly fewer than the
non-instances. To solve this, we employed SMOTE to create fictitious minority class samples around
existing instances. SMOTE is unlike naive oversampling in that it maintains the artificial data examples
to be diverse and does not trigger overfitting to the duplicated instances. The SMOTE improved bal-
anced data enhanced model sensitivity and averted the classification metrics from being skewed towards
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the majority class. The data was split between learning and test subsets using an 80:20 ratio. Strati-
fied sampling was used to ensure the original class distribution was maintained in the two subsets. The
learning subset was used to train model weights, while the test subset was kept unseen for assessment of
generalization performance.

3.3. Restructuring Structured Data for Sequence Modeling:

Deep networks like CNNs and LSTMs are usually optimized for temporally or spatially ordered data
like images or time series. Clinical data like the data we have worked with here, however, is tabular,
where each feature is one dimension and not a time step. In order for such data to be accommodated
within sequential models, the feature vector was pseudo-sequenced using the feature indices as time
steps. In the 1026 patient sample for each, the 13-feature input vector was converted to a 2D array
of size (13 timesteps, 1 feature per timestep) to yield a final input shape of (1026, 13, 1). Artificial
as this conversion was, it allowed both convolutional as well as recurrent layers to learn local as well
as long-distance patterns between features as ordered inputs. This pseudo-sequential modeling would
allow 1D convolutional filters to be used in trying to pick up local feature interactions, and the BiLSTM
layer would be able to gather information from the entire sequence in both directions. It was established
that these types of transformations allow the neural networks to learn feature dependencies even in the
absence of natural temporal structure better [15].

3.4. CNN-BiLSTM Architecture Design:

The architecture utilized here takes advantage of the power of convolutional and recurrent neural
layers. The CNN part is a local feature detector, whereas the Bidirectional LSTM (BiLSTM) part is
tasked with extracting global contextual relationships among the reshaped feature sequence.
The overall format is the following Figure.1

• Input Layer: Accepts reshaped input of size (13, 1) per sample.

• 1D Convolutional Layer: This layer convolves the feature sequence with 32 filters of size 3 to capture
short-range dependencies and local structures.

• Batch Normalization: Used to normalize the convolutional layer output to speed up training and
enhance generalization.

• MaxPooling1D: Downsamples the feature map by taking the max across each pool, reducing the
spatial dimension but keeping the strongest signals.

• Dropout (rate = 0.4): Used to randomly drop out neurons so that overfitting is avoided. It is used
to make the learned representation stronger.

• Bidirectional LSTM Layer: Utilizes 64 LSTM units to read the input sequence forward as well as
backward. This aids in the model’s learning of the feature dependencies, which are present in both
forward and reverse directions.

• Second Dropout (rate = 0.4): Adds a second dropout after the BiLSTM layer.

• Dense Layer: 32 neurons arranged densely with ReLU activation that converts the BiLSTM outputs
into a more condensed informative representation.

• Output Layer: One neuron with sigmoid activation that yields an output between 0 and 1, which
is the probability of heart disease.
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Figure 1: Proposed CNN–BiLSTM architecture for heart disease prediction, combining convolutional and
bidirectional recurrent layers with regularization and dense output

All the trainability layers (LSTM, Dense, and Conv1D) were also L2-regularized to avoid overfitting
by adding penalties to large weights. This is especially important in the case of small-data-trained models,
where 4 overparameterization can quickly lead to memorization rather than generalization [14].

Figure 2: Normalized confusion matrix for the proposed CNN–BiLSTM model showing balanced classi-
fication performance across both classes

3.5. Model Compilation and Training Process:

The trained model employed as Binary cross-entropy, the loss function, is suitable for binary clas-
sification. The problem of how to tell whether heart disease exists or not. The Adam optimizer was
employed because it benefits from adaptive learning rate and momentum-like properties that optimize
training speed and stability in deep models. To avoid overfitting, an EarlyStopping callback terminated
training after tracking validation loss. After a gain did not happen while observing 10 consecutive epochs
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in a row. Using a 25% validation split, with a batch size of 16, the model was trained for a maximum of
100 epochs. Training was conducted using Google Colab and an NVIDIA Tesla T4 GPU.. The imple-
mentation utilized TensorFlow 2.x (Keras API), Scikit-learn, and imbalanced-learn The model with the
lowest validation loss has been kept for the final assessment on the test dataset.

3.6. Performance Measures:

The classification’s performance was statistically assessed using a set of parameters.

Precision: It estimates the general prediction accuracy.

Precision =
TP

TP + FP
(3.1)

Accuracy: Refers to the proportion of correct predictions that were successful.

Accuracy =
TP + TN

TP+ TN+ FP + FN
(3.2)

TP = True Positives TN = True Negatives FP = False Positives FN = False Negatives

Recall (Sensitivity): Bases the rate of true positive instances that are predicted correctly.

Recall =
TP

TP + FN
(3.3)

F1-Score: For unbalanced datasets, the harmonic mean of recall and precision

F1-Score =
2 · Precision · Recall
Precision + Recall

(3.4)

Confusion Matrix: gives a table-formatted overview of true positives, true negatives, false positives,
and false negatives.
They were computed based on Scikit-learn’s metrics and on the held-out test set. They provide a total
view of how reliable the model is and if it is suited for clinical decision support.

Table 2: Classification Report of the Final Proposed Model

Class Precision Recall F1-Score Support

0 (No Heart Disease) 0.96 0.99 0.98 106

1 (Heart Disease) 0.99 0.96 0.98 105

Accuracy – – 0.98 211

Macro Average 0.98 0.98 0.98 211
Weighted Average 0.98 0.98 0.98 211

4. Results & Discussion

The predictive accuracy of the proposed CNN–BiLSTM hybrid DL model in heart disease prediction
was rigorously evaluated on a held-out test set of 211 patient records. The test set was randomly sampled
from the original dataset using a random 80:20 stratified split, thus ensuring class balance. This was
intended to ensure the model’s ability to generalize the patterns discovered on the training dataset,
especially its sensitivity and specificity between the heart disease class and the non-disease class.
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Figure 3: Normalized confusion matrix of the CNN–BiLSTM model for heart disease classification, illus-
trating high true positive and true negative rates with minimal misclassifications

The model achieved a total accuracy of 98%, that is, it accurately classified a vast majority of the test
samples. The evaluation metrics were calculated from the model outputs using Scikit-learn’s classification
metrics. These comprised confusion matrix analysis, F1-score, recall, and precision, all of which offer
subtle information about the model’s classification behavior, particularly useful in high-stakes medical
applications.

4.1. Quantitative Analysis

Table II indicates the classification report based on the test results. For class 0 (healthy patients), the
model had a 0.98 F1-score, with a precision of 0.96 and a recall of 0.99. Class 1 (heart disease patients)
showed an F1-score of 0.98, precision of 0.99, and recall of 0.96. Macro and weighted averages of all
three measures were equal to 0.98, which means balanced performance across both classes despite a slight
imbalance in class distribution.

To plot the prediction distribution, a confusion matrix was plotted, as demonstrated in Fig. 2. Out
of 106 healthy subjects, 105 were identified correctly, and 1 was a false positive. Out of 105 cases of heart
disease, 101 were identified correctly, and 4 were classified incorrectly as negative (false negatives).

The low rate of false negatives is especially important in the clinical environment. False negatives
mean that patients with heart disease are returned as healthy, and this is potentially lethal with regard
to delaying treatment. This kind of error is an extremely high priority when it comes to any diagnostic
framework, and the provided model works well in a scenario like that. In addition to the confusion
matrix, the ROC curve has been plotted so as to further assess the discriminative power of the model.
The model’s AUC score was nearly 1.0, as illustrated in Fig. 3, demonstrating its exceptional capacity to
differentiate between people in good health and those suffering from heart disease across various threshold
settings. The high AUC reinforces the robustness of the classifier, particularly in handling the trade-off
between sensitivity and specificity, an essential consideration in medical diagnosis.

4.2. Model Behavior and Strengths:

The improved performance is a result of the CNN–BiLSTMmodel’s construction. And a preprocessing
approach. The Conv1D layer was able to capture short-span dependency among neighbor features—e.g.,
age and cholesterol, or blood pressure and ECG reports. The Bidirectional LSTM layer, however, enabled
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the network to see through the whole sequence, bidirectionally, and retain context-sensitive relationships
that a unidirectional network could possibly overlook.

Besides, polynomial feature expansion allowed the model to take into account nonlinear interactions,
introducing higher-order relationships among original features to the data. For example, interaction
effects of chest pain type and serum cholesterol might not be apparent in raw input space, but their
second-degree interactions could be of clinical importance.

Regularization methods, like dropout and L2 regularizer, helped the model to be robust through the
prevention of overfitting, a factor that played an important role considering the dataset was moderately
sized. High test accuracy and essentially the same training and validation performance (tracked through
EarlyStopping) are evidence towards this fact. To evaluate the learning behavior of the model even more,
the training and validation performance was monitored throughout the training process. As illustrated in
Figure 4, Accuracy in training and validation showed a consistent upward trend, while the corresponding
loss curves declined smoothly. The close alignment between the two suggests that the model was able to
learn effectively without overfitting. This observation reinforces the effectiveness of the applied regular-
ization strategies—namely dropout, L2 regularization, and EarlyStopping—in supporting generalization,
particularly given the moderate size of the dataset.

Table 3: Comparison of Model Accuracies
Model Accuracy (%)

Logistic Regression 87.80
Näıve Bayes 85.37
Decision Tree 96.09
CNN–BiLSTM (Proposed) 98.00

4.3. Comparison to Baseline Models:

Standard ML models, LR, NB, DT, and K-NN were trained and tested using the same data set for
comparison purposes as a model performance baseline. The models performed quite well but were beaten
by the deep learning model, as shown in Table III. Among the classic models, DT and KNN were close
to performance of the CNN-BiLSTM model, but were not as precise or consistent. LR & NB, although
interpretable and effective, could not learn nonlinear interactions and intricate relationships well and
therefore had lower F1-scores and higher misclassification rates, especially for minority classes.

4.4. Interpretability and Error Analysis

One of the most significant factors to consider in model assessment in healthcare is accuracy, inter-
pretability, and diagnostic reliability. While deep neural networks are inherently ”black boxes,” techniques
such as feature attribution, SHAP values, and attention visualization can be applied to models such as
BiLSTM to identify what features are most accountable for prediction.
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Figure 4: Training and validation accuracy and loss curves of the CNN–BiLSTM model, indicating stable
convergence and minimal overfitting throughout the training process

Although not employed in the present scope, future work can explore these interpretability methods
so that the model becomes transparently examinable by doctors. Initial experience showed that the
test set cases that were misclassified often had borderline or inconsistent values of clinical features,
and this suggested that additional feature disambiguation would allow for a reduction of remaining
misclassification.

4.5. Clinical Utility

The well-balanced performance of the model, particularly its ability to maintain low false negative and
false positive rates, suggests the clinical decision support value of the model. In practice, such a model
can be incorporated into hospital information systems or used in remote diagnosis scenarios to warn high-
risk patients to seek additional testing. Compared to less sophisticated rule-based systems, the proposed
CNN–BiLSTM model can be adaptive to a certain extent to accommodate minor variations in patient
data without compromising accuracy. Also, the capability of reforming table data into pseudo-sequences
and learning useful patterns from such converted inputs is a new application of sequence modeling for
structured medical data. This method can potentially be applied to other diagnostic conditions like
diabetes prediction or kidney disease classification.

5. Conclusion & Future Work

This study presents a DL approach for rapidly detecting heart disease utilizing a hybrid CNN–BiLSTM
model designed for structured clinical information. The input data was transformed into a pseudo-
sequential format, allowing the model to utilize convolutional layers for detecting spatial feature patterns
and bidirectional LSTM layers to uncover long-range dependencies between features. Second-degree
polynomial feature expansion was utilized to enhance the model’s ability to identify nonlinear relation-
ships. The Synthetic Minority Oversampling Technique addressed class imbalance, whereas normalization
ensured consistency across features. Dropout & L2 regularization were also employed to enhance gener-
alization to unknown data and lessen overfitting. The model’s F1-score was 0.98, and its classification
accuracy was 98 percent. On the test dataset, demonstrating significant improvements compared to tradi-
tional ML models like LR, NB, and DT. Possible improvements might include integrating interpretability



10 B. Nikhil Sri Harsha and P. S. Geethanjali, S. Siri Sandarshini, Bollapalli Althaph

methods such as SHAP or LIME, extending to multi-class classification problems, and performing exten-
sive validation on real-time or multi-institutional datasets to support clinical use.
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