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Differential Systems ∗
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abstract: Singular Matrix Differential Systems (SMDS) or, alternatively, semi-state, degenerate, descrip-
tor, constrained, or differential-algebraic systems (DAEs) are key to modeling dynamic processes experiencing
abrupt structural or parametric changes. It becomes difficult to solve initial value problems (IVPs) for these
systems as classical methods are ineffective to apply owing to singularity and a lack of closed-form solu-
tions. This paper introduces an adaptive neural network solution to linear singular matrix differential systems
(LSMDS) with a semi-supervised learning framework. Singular systems, a commonplace within engineering
models and constraint-laden physical models, are extremely computationally challenging with stiffness, index
intricacy, and inconsistent initial conditions. Standard numerical solvers are afflicted by similar challenges,
especially with singular matrices. To compensate, we propose a hybrid neural structure joining (i) a systematic
search with activation functions and (ii) a two-stage optimizer sequence joining Adam’s strengths with those
of L-BFGS. The structure learns precise approximations without mesh-based discretizations. We build a task-
specific loss function comprising differential-algebraic systems (DAEs) to guide optimizer training. We also
undertake a detailed hyperparameter study, comprising network depth, width, activation function choosing,
and optimizer switching plans, to establish suitable configurations. We evaluate our approach with a num-
ber of benchmark singular systems, achieving better accuracy, robustness, and generalization beyond standard
solvers. This paper provides a flexible, data-efficient substitute to solving challenging constraint-laden systems,
with significant applications to scientific computation and real-world modeling.

Key Words: Singular systems, differential equations, neural network, activation functions and opti-
mization.
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1 Introduction

The theory of differential equations provides a broad mathematical basis to understand the problems
of arise in Social, Scientific, Biological, Engineering and Technological problems where dynamics of change
are modeled. The main objective is to analyze the various observed evolution phenomena of nature by
constructing suitable mathematical models. A large number of models have been developed to get an
insight into the latent dynamics and complexities of the problems using dynamical systems in the form
of either initial value problems or boundary value problems [27]. The differential equations of the type

E(t)X ′(t) +B(X) = F (t) (1.1)

Where X(t) is a vector valued function of the real variable t, A is a real matrix, B is a vector valued
function. When E is singular the above system is called a singular system. Singular systems are also called
semi state, degenerate, descriptor, constrained, and differential algebraic systems. Sudden changes in the
model parameters such as component failure or switching can be best described by Singular systems.
Assume that switching occurs at t = 0 and for that t > 0 the physical system is modeled by the above
equation. If X(t) is the response of the system for t < 0 ( not necessarily described by the above equation)
and X(t) → X0 as t → 0, then any t < 0 may be interpreted as an initial condition which, together with
the system equation, determines the system behavior at the time of switching and for t > 0. Since no
information is available regarding the system structure since there is no constraint on the initial value
X0. S.L Campbell [6], [5], [4], E L Yip and R F Sincovec [34] have solved certain class of singular systems
according to the initial conditions [3]. S.L Campbell [6], G.C Verghese [32], P Van Dooren [13], [12] B
Levy and T Kailath [32] have proposed certain distributions as solutions due to inconsistent solutions.
In 1982 Danial Cobb [11] established the solutions of the singular systems by using singular perturbation
theory. S.L Campbell [7] established the existence and uniqueness of a solution to the singular system
imposing the regularity. Controllability and observability of Discrete and continuous systems were studied
by [1], [2], [8], [9], [10] and analytical studies of various systems and their associated IVPs and BVPs were
done by [25, 26, 28]. Many of the real world problems are singular in nature because of their ability to
model unpredictable sudden changes. In most of the cases the sudden change scenarios are also modeled
by approximated by nonsingular models since singular systems are difficult to handle and nonavailability
of tools and theories to handle them. This really propelled many researchers [11] [13] [12] [15] [19] [20] [23]
to analyze the structure of the linear singular systems by following algebraic and geometric approaches.
In this paper we consider the Nonhomogeneous singular Matrix Differential systems(NHSMS)

E(t)X ′(t) = A(t)X(t) + F (t) (1.2)

where A(t), B(t) and F (t) are square matrices of order n whose elements are real or complex functions
defined on R ( or C), E(t) is a singular matrix for all t in the time interval of consideration andX(t) ∈ Rnn

( or Cnn). DAEs are great for describing systems where some variables don’t change independently but
are tied together through algebraic relations [14]. Now, solving these systems, especially when we are
dealing with 1-index DAEs, is a real challenge for standard numerical methods [4,5]. You run into issues
like stiffness, the need for ridiculously small-time steps, loss of numerical accuracy (order reduction), and
singular Jacobian that just refuse to cooperate [18]. Sure, we’ve tried speeding things up with parallel
solvers and better preconditioner, but the core issue remains: small time steps are often unavoidable,
which drives up the computational cost pretty fast [16,31].

Despite a rich body of theoretical work on singular matrix differential systems, practical numerical
solutions are still difficult to compute. Classical numerical solvers often face limitations when applied
to SMDS, particularly when the index of the system is high or when the Jacobian becomes singular.
These kinds of solvers might need very small time steps, which can make them very expensive to run
and make them less accurate [16, 18]. Implicit methods can work well for stiff systems, but they are
less effective for SMDS and can become unstable. Physics-Informed Neural Networks (PINNs) are of
immense utility in solving differential equations, and also can be used for Differential equations with stiff
or complex structures, in the last few years [17, 29]. These models directly include the laws of physics
in the loss function and give approximations that do not use meshes. Extensions of PINNs have been
proposed for differential-algebraic systems and higher-index DAEs, including hybrid schemes using Radau
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IIA integration or attention mechanisms [22, 33]. However, the performance of PINNs depends on the
selection of hyperparameters.

Much of the research until now has been focused on the design of PINNs, rather than exploring
architecture depth, activation functions, optimizer settings, or training schedules. The strategies proposed
by [21,40] work well for a class of problems but will not work for SMDS problems. It is observed that many
authors come up with neural networks to solve the differential equations for a particular stiffness and
constraint structure, and these cannot be applied to solve SMDS. If small changes in the initial condition
causes erratic changes in the trajectories of the dynamical system of consideration, the validity of the
computed solution is itself a major issue [22] to be addressed. Hence, it is of utmost importance to design
and develop flexible and effective training methods for neural solvers in the SMDS framework. Therefore,
it is required to design the structure of the network by selecting suitable optimizer for achieving stability,
and rapid convergence [36, 37]. In this paper, we tried to fill this gap by constructing a semi-supervised
PINN framework exclusively for linear SMDS.

In view of these challenges, this paper focuses on developing an adaptive neural network framework for
solving linear singular matrix differential systems (LSMDS) using a semi-supervised learning approach.
The objective of this paper is to construct a solution scheme that is not only mesh-free but also robust
to stiffness and inconsistent initial conditions We investigate how various combinations of activation
functions, optimizer scheduling, and network depth-width configurations can influence the quality and
stability of solutions [30, 40]. We have made an attempt to improve the accuracy and convergence of
solutions of SMDS by minimizing the loss function with a balanced approach of amalgamation of DAE
residuals, initial conditions, and regularization

The following are the significant contributions of this study:

• We introduce a two-stage optimization framework that combines the global optimization power of
Adam with the local fine-tuning capability of L-BFGS, exclusively designed for SMDS [35].

• Our approach is verified and validated by experiments and comparative study of several activation
functions viz., Tanh, Sigmoid, ReLU, Swish with different widths and depths of the network [30,36].

• We develop a physics-informed loss that respects differential-algebraic constraints and initial con-
ditions, even allowing for mesh-free training without the need for labeled solution data [22,24,29].

• Our investigations identified the architectural and training conditions that provide accurate and
stable output for SMDS with reasonably good accuracy.

This paper is organized as follows: Section 2 presents the structure of solutions for homogeneous
and nonhomogeneous singular matrix systems based on the fundamental matrix formulation. Section
3 describes the neural network architecture, activation functions, loss construction, and two-stage opti-
mization process. Section 4 provides numerical examples that validate the proposed method. Section 5
concludes with observations and insights. Future directions are outlined in Section 6.

2 Singular Matrix Differential systems

This section describes the structure of solution of Singular Matrix System in terms of fundamental
matrix solutions and also variation of parameters formula for the solution of the NHSMS (1.2).

Theorem 2.1. If Φ(t, t0) is the fundamental matrix solutions of EX ′(t) = A(t)X(t) then any solution
X(t) of the homogeneous Singular Matrix System

E(t)X ′(t) = A(t)X(t) (2.1)

is of the form Φ(t, t0)C , where C is an arbitrary constant square matrix of order n.

Proof: We desire a solution of (2.1) in the form X(t) = Φ(t, t0)K(t) where K(t) is a square matrix
of order n, whose elements are functions defined on R. Then E(Φ(t, t0)K(t))

′
= A(t)Φ(t, t0)K(t) i.e.,

EΦ
′
((t, t0)K(t) + EΦ((t, t0)K

′
(t) = A(t)Φ((t, t0)K(t)) i.e., . EΦ((t, t0)K

′
(t) = 0 i.e., K

′
(t) = 0 i.e.,

K(t) = C.
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Theorem 2.2. Every solution X(t) of the NHSMS (1.2) is of the form Φ(t, t0)C +X(t) where X(t) is
a particular solution of (1.2).

Proof: By simple substitution one can verify that Φ(t, t0)C + X(t) is a solution of the NHSMS (1.2).
Now we would like to show that every solution is of this form. Let X(t) be any solution of (2.1) and
X(t) be a particular solution of (2.1). Then it is obvious that X(t) −X(t) is a solution of (2.1). From
theorem 2.1 it follows that X(t)−X(t) = Φ(t, t0)C i.e., X(t) = Φ(t, t0)C +X(t).

Theorem 2.3. Every solution of the NHSMS (1.2) is of the form Φ(t, t0)C +X where X is a particular

solution of (1.2) and is given by
∫ t

t0
Φ(t, s)E+F (s)ds.

Proof: The general solution of the homogeneous Singular Matrix System (1.2) is of the form Φ(t, t0)C.
Let C be a function of t defined on R .Let us impose the condition that X(t) satisfies NHSMS (1.2). Then
we have E(Φ(t, t0)C(t))

′
= A(t)Φ(t, t0)C(t) + F (t) i.e., EΦ

′
((t, t0)C(t) + EΦ((t, t0)C

′
(t)

= A(t)Φ((t, t0)C(t)) + F (t) i.e. EΦ((t, t0)C
′
(t) = F (t). Consider EY = F set of all square matrices

of order n such that the columns of F (t) is the column space of E. i.e., ℜ(E). With the assumption of
solvability of NHSMS (1.2) the solution space of (1.2) is non empty. The set Ω is indeed guaranteed to
be non empty if ℜ(E) ⊇ ℜ(F ). However, this condition is not necessary. Therefore Y = E+F , where E+

is the pseudo inverse of E. Now C
′
(t) = Φ((t0, t)E

+F (t) i.e., C(t) = C1 +
∫ t

t0
Φ(t0, s)E

+F (s)ds. Thus

X(t) = Φ(t, t0)[C1 +
∫ t

t0
Φ(t0, s)E

+F (s)ds]. Hence the theorem.

Theorem 2.4. Every solution X(t) of the initial value problem associated with the NHSMS (1.2) with
the initial condition X(t0) = X0 where X0 is a given square matrix of order n is of the form

X(t) = Φ(t, t0)X0 +

∫ t

t0

Φ(t, s)E+F (s)ds (2.2)

3 Neural Network Approach to NHSMS

The previous section 2 gives the theoretical base of the existence of solution of singular Matrix systems
subject to the existence of the fundamental matrix solution for the homogeneous Singular Matrix System
(2.1). Computation of fundamental matrix solution is always not straightforward and possible, there
by bringing a limitation on the computation of closed from solution of the singular matrix system. To
over come this difficulty we construct neural networks to compute the reasonably accurate solutions of
singular matrix system by optimizing hyper parameters.

3.1 Architecture Design

Let the neural network be denoted as:

xθ(t) = NNθ(t) (3.1)

where θ represents all trainable parameters of the neural network.
The network consists of L layers and is defined as follows:

h(0) = t (Input layer)

h(l) = A
(
(Wm)(l)h(l−1) + (bv)(l)

)
, for l = 1, 2, . . . , L− 1

xθ(t) = (Wm)(L)h(L−1) + (bv)(L) (Output layer)

where:

• (Wm)(l) and (bv)(l) are the weight matrix and bias vector for layer l,

• A(·) is a activation function,
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• h(l) ∈ Rdl is the output of the l-th layer,

• The final output xθ(t) ∈ Rn approximates the true solution x(t).

The architecture we propose is a configurable, fully connected feedforward neural network. It’s
straightforward in structure but flexible in capacity. Each model consists of an input layer (taking
in time values), several hidden layers, and an output layer that predicts the system’s state variables at
each time step. We can adjust the model complexity as required by varying the numbers of hidden layers
(depth) and neurons per layer (width). Hidden layers are stacked using linear transformations followed
by nonlinear activations, except for the final layer, which is purely linear. As a result, the network can
estimate smooth time-dependent functions that describe differential system solutions [29]. The model
can gradually acquire either coarse approximations or highly detailed behavior, depending on the width
and depth. It is simpler to explore and determine which configuration performs best in terms of accuracy,
convergence speed, and training stability thanks to its adaptable architecture.

3.2 Selection of Activation Functions

Activation functions are what give neural networks their nonlinearity, and let’s be honest, without
them, we’d just stack a bunch of linear functions and get nowhere. The choice of activation function
can significantly impact how well and how fast the network learns [17]. In this study, we consider four
types of activation functions.Tanh, Sigmoid, ReLU and Swish, [30] Each of these has its own pros and
cons. For instance, Tanh works great with smaller networks and smoother functions, while ReLU can be
better in deeper networks but sometimes causes dead neurons. So, we don’t make assumptions, we test
them all across various configurations. This kind of comparative exploration is necessary because the
best activation can vary depending on the nature of the differential system and the architecture [36].

3.3 Two-Stage Optimization Strategy

Now, training the our model is where things get innovative. We do not stick with just single optimizer.
Instead, we use a two-stage optimization strategy, To combine the strengths of different way approaches.
Here’s the idea: First, we use the Adam optimizer for a number of initial epochs. Adam is quick, adaptive,
and great at jumping through the complex terrain of the loss landscape. Then, once the model reaches a
decent neighborhood of the solution, we switch to L-BFGS, a quasi-Newton method that’s more precise
and ideal for fine-tuning [40]. This switching point is referred to as the changing point, and we experiment
with several values (e.g., 10%, 20%, up to 50% of total epochs). The idea is that Adam gets us close,
but L-BFGS cleans it up. The reason for doing this is pretty practical, Adam might converge faster early
on but often stops improving before hitting a really low loss. L-BFGS, while slower at the beginning,
is extremely effective at local optimization once we’re near the minimum. So, we get the best of both
worlds by combining them [37].

3.4 Loss Function Formulation

The total loss enforces the DAE dynamics, initialconditions, and regularization. Let x̂(t; θx) and
ẑ(t; θz) be the neural network predictions for differential and algebraic variables, respectively.

Composite Loss

L(θx, θz) = LDAE + LIC + LReg (3.2)

DAE Residual Loss (Physics-Informed) Evaluated at Radau collocation points {tk}5k=1:

LDAE =
1

N

N∑
k=1

(
∥ ˙̂x(tk)− f(x̂(tk), tk)∥2 + ∥g(x̂(tk), tk)∥2

)
(3.3)

• Automatic Differentiation: Compute ˙̂x(tk) via backpropagation.

• Algebraic Constraint: The term ∥g(x̂, t)∥2 ensures manifold adherence.
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Initial
LIC = ∥x̂(t0)− x0∥2 (3.4)

Regularization Loss
LReg = ∥θx∥22 + ∥θz∥22 (L2 penalty) (3.5)

For the loss function, we stick with L2 penalty, but it’s more than just a standard we took. In
our method, L2 penalty is used to compare the PINNs predicted solution with a reference solution
obtained from solving the SMD system using Neural Network. [38, 39]. We now present the design and
implementation of neural network model to solve the singular matrix differential system.

3.5 Training Process

The model is trained in two stages. Initially, the Adam optimizer helps the network converge quickly.
After a fixed number of epochs, training switches to L-BFGS to fine-tune the weights. This hybrid
approach gave more stable and accurate results compared to using either optimizer alone.

3.6 Parameter Tuning

A grid search was used to test different combinations of model width, depth, activation functions, and
optimizer switching points. Every setup was trained for a fixed number of epochs, and the performance
was recorded based on loss values.

3.6.1 Changing Point We need to choose when to switch optimizers during training. To do this, we use
a setting called Changing Point, which is a number between 0 and 1. It tells us what portion of the total
training time will use the Adam optimizer. For example, if we train for 5000 epochs and the Changing
Point is 0.4, that means we will use Adam for 2000 epochs (5000 × 0.4), and then switch to L-BFGS for
the remaining 3000 epochs. Instead of testing every possible value, we only try five specific options: 0.1,
0.2, 0.3, 0.4, 0.5.

4 Examples

In this section three examples that demonstrates the developed optimized hyperparameter neural
networks are presented.

Example 4.1. Consider the NHSMS (1.2) with

E =

[
1 0
0 0

]
, A =

[
0 1
−2 3

]
, F (t) =

[
t 1 + t
1 t2

]
, X(t) =

[
x11(t) x12(t)
x21(t) x22(t)

]
,

satisfying the initial condition(IC) X(0) =

[
0.5 1
0 1

]
.

Final loss by activation function, architecture, and changing point

Figure 1: Example 4.1: Heat Map

• Swish tends to perform better, especially at higher widths like 128 or 512, final losses stay really
low.



Singular Matrix Differential Systems - Neural Networks 7

• Tanh starts off well, but with depth 8, it gets unstable. The loss jumps a lot in some cases

The comparison of the solution obtained by the numerical Radau method and PINN is shown in
Figure 2.

Figure 2: Example 4.1: Numerical method vs. PINN

Example 4.2. Consider the NHSMS (1.2) with

E =

[
1 0
0 0

]
, A(t) =

[
sin t cos t
cos t sin t

]
, F (t) =

[
t 1 + t
1 t2

]
, X(t) =

[
x11(t) x12(t)
x21(t) x22(t)

]
,

satisfying the IC X(0) =

[
−1 0
0 −1

]
.

Final loss by activation function, architecture, and changing point

Figure 3: Example 4.2: Heat Map

• activations show low losses across all configurations, but Sigmoid becomes unstable at higher depths.

• ReLU and Swish maintain consistently low loss values, especially with moderate changing points.

The comparison of the solution obtained by the numerical Radau method and PINN is shown in Figure 4.
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Figure 4: Example 4.2: Numerical method vs. PINN

Example 4.3. Consider the NHSMS:

E =

[
1 0
0 0

]
, A(t) =

[
e−t 0
et e−2t

]
, F (t) =

[
sin(t) t
0 cos(t)

]
, X(t) =

[
x11(t) x12(t)
x21(t) x22(t)

]
,

satisfying the IC X(0) =

[
1 0
−1 1

]
.

Final loss by activation function, architecture, and changing point

Figure 5: Example 4.3: Heat Map

• ReLU and Swish show strong results, very low losses at wider settings, especially 512.

• Sigmoid doesn’t improve much. The loss hangs around 9.76 most of the time, barely changes, even
with different setups.

The comparison of the solution obtained by the numerical Radau method and PINN is shown in
Figure 6.
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Figure 6: Example 4.3: Numerical method vs. PINN

4.1 Heatmap Analysis

Based on the Heat Maps corresponding to the above three examples the following are the observations
are made:

• ReLU and Swish give the lowest losses across all three problems
These activations work best, especially with wider networks like width = 128 or 512. Their perfor-
mance stays steady even as the changing point increases, showing they are reliable across settings.
Tanh and Sigmoid, on the other hand, are more affected by their non-linear nature.

• Sigmoid often causes high or even exploding losses, especially in deeper networks:
For example, with width = 128 or 512 and depth = 4 or 8, the loss often goes above 9.76. This
points to possible numerical issues or poor gradient flow when using Sigmoid.

• Swish activation shines with larger widths and shallow depths, especially for Problem
3:
Notably, for width 128, depth 4, Swish at changing point 0.1 or 0.2 loss values as low as 5.02×10−5.
This suggests Swish’s capacity for better generalization in nonlinear systems.

• Tanh performs well in limited conditions small depth and moderate width but degrades
with scale:
the non-linear Tanh performs best when depth = 4 and width = 32, such as at shifting Adam
to L-BFGS and 0.4 or 0.5. However, when scaling up to depth 8 and width 128 or 512, it either
diverges or delivers high final losses.

• ReLU shows remarkably consistent behavior across problems, even in large models:
For both depth 4 and 8, and width up to 512, ReLU is low and stable high losses. No sudden spikes.
Clear behavior.

• Some Tanh is seem unstable only at some changing point values: For example, width 512,
depth 8, changing point 0.1 or 0.2 causes loss is nearly 9.7 for Problem 1. Suggests a tipping point
where gradient flow breaks down.

5 Conclusions

In this study, we explored adaptive Physics Informed neural network approach to tackle Linear Singu-
lar Matrix Differential Systems (LSMDS) from a semi-supervised point of view. The solutions obtained
by our developed approach defined by Optimization algorithms, network structure, activation, and train-
ing strategies, could combat computational challenges posed by singular systems. The three examples of
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our consideration are divergent in nature and our experiments with various combinations of activation
functions, depths, widths, and optimizer change points (optimizer switching) clearly demonstrated the
improvement of model accuracy.

The result, across trials, was consistent, with lowest final loss achieved by ReLU and Swish activa-
tion, especially with broader architectures. Tanh activation represented inconsistent patterns at times
reasonable but with a general tendency to be unstable with deeper configurations. Sigmoid was very
likely to converge, especially with higher width, and depth.From the observations, it is established that
wider and deeper models are not necessarily better. In fact, our experiments established that a depth 4
and width 128 network (i.e., 4 hidden layers with 128 neurons per layer) achieved a balanced trade-off
between generalization and model complexity suitable for LSMDS. Another important observation is that
changing point values between 0.4 to 0.5 during the two-stage optimization protocol (Adam followed by
L-BFGS) yielded a stable and accurate convergence across problems.The primary contribution of the
our research lies in integrating adaptive architecture selection and hybrid optimization methods, neural
solvers developed exclusively for singular systems. The proposed loss function successfully enforces the
DAE dynamics and initial constraints without mesh-based methods.

These findings provide practical design methodologies to build effective neural solvers within a con-
strained dynamical system framework. They also provide opportunities for future work towards au-
tomated hyperparameter optimization, parallel computation structures, and extensions to large-index
DAEs and large-index physical models.

6 Future Work

Characterization and classification of efficient neural networks with corresponding bounds on hyper
parameters is to be explored. We try to explore the tradeoff of the hyper parameters on the parallel
computation setup and HPC setup. We are planning to investigate the time complexity of the developed
methodology and try to arrive at an effective and efficient hyperparameter portfolio.
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