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Hybrid Block Method to Solving First Order Initial Value Problem in Ordinary
Differential Equations

Vitala Seeta and Y. Rajashekar Reddy∗

abstract: This study examines the hybrid block method (HBM) derivation for solving first order initial
value problems (FOIVP) in ordinary differential equations (ODEs). Using the collocation and interpolation
procedure at equally spaced locations in the interval of consideration, a continuous formula is generated from
the estimated answer, which is assumed to be in the form of power series. The accuracy of the procedure is
significantly influenced by the advantage of using data off-step points. The efficacy of the suggested approach
is demonstrated by a few numerical examples that show how close the answers are to the precise solutions.
All types of FOIVP involving ODEs can be solved utilizing this method.
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1. INTRODUCTION

ODEs play a crucial role in applied sciences and engineering, as they provide a fundamental framework
for modeling the dynamic behavior of real-world systems. These equations are extensively used across
various disciplines such as chemical, electrical, and mechanical engineering, as well as in physics, chem-
istry, and mathematical biology. In these fields, ODEs help describe how physical quantities evolve over
time or space—capturing processes like chemical reaction kinetics, electrical circuit behavior, mechani-
cal vibrations, heat conduction, population dynamics, and the spread of diseases. By formulating and
solving ODEs, researchers and engineers can analyze, predict, and optimize the performance of complex
systems under different conditions, leading to improved design, control, and understanding of natural
and engineered processes.
The main focus is to construct an accurate solution of an ODEs involving a FOIVP.
The FOIVP for an ODEs as follows,

y′ = f(x, y), y(x0) = y0, x ∈ [a, b]. (1.1)

Where the function f(x, y) is continuous and also follows the Lipschitz condition. Because of this, the
existence and uniqueness of the solution for equation (1) is guaranteed by the related theorem.
Due to the limitations of the predictor-corrector approaches for solving ODEs of form (1) put out by [5],
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HBM have to be introduced. Odejide and Adeniran [1] developed ninth order hybrid linear multistep
approach to obtained FOIVP, which is consistent, zero-stable, convergent, and accurate when applied
to block form. According to Dahlquist (1956), hybrid approaches were first developed to get over the
zero-stability barrier that existed in HBM. Utilizing data off-step locations enhances the accuracy of the
approach and is another advantage of HBM, in addition to the ability to modify step size by [6]. Nathaniel
et al. [2] developed a simple and accurate method to solve first-order ODEs using shifted Legendre
polynomials. Kashkari and Syam [3] developed an optimized one-step HBM to solve math problems,
which is efficient and gives accurate results. Ortiz [4] explained Lanczos tau method in a systematic way,
linking it to polynomial solutions The classic collocation approach was introduced by [7] and is discrete
in nature. A continous multistep collocation technique, improving approximation accuracy at all interior
points and reducing absolute error is developed by [8]. The concept of a multistep collocation technique
against discrete systems was used to accomplish this. Soomro et al. [9] stated that the linear multi step
approach offers several advantages over the discrete method. These include improved error estimation,
easier approximation of solutions at interior points within the integration interval, and a simplified form
of coefficients that facilitates further analytical work at various points. Techniques utilizing Taylor series
expansion for initial values in the predictor-corrector approach have been proposed by [10, 11, 12,13] using
the Adam-type method by [16], although high implementation costs due to specialized subroutines are a
notable drawback. In order to overcome this obstacle, a technique that combines the advantages of the
HBM with the predictor-corrector approach must be proposed. The Adomain decomposition technique,
variational iteration approach, Chebyshev’s wavelet technique, fourth order Runge Kutta technique, and
homotopy perturbation technique have limitations, such as small convergence regions and inaccuracy in
[14, 15]. Fotta et al. [17] developed a one-step , HBMs to solve math problems, which gave good and
accurate results
Therefore, a self-starting continuous two-step HBM is propoesd that has a higher accuracy and a quick
rate of convergence when applied for the integration of FOIVP in ODEs. This resulted in an equal
selection of collocation spots through the consideration period. The HBM have the benefit of using data
off step points which plays an important role in the accuracy of the result.
In this study presents a novel application and refinement of the HBM by incorporating collocation and
interpolation techniques at equally spaced points within the interval, which enhances the accuracy and
stability of the solution. Unlike previous articles that primarily focused on theoretical development or
specific types of differential equations, this study emphasizes the effective use of data off-step points, which
significantly improves approximation accuracy across a broad class of first order FOIVPs. Additionally,
the proposed method demonstrates high convergence properties and zero stability, making it a reliable,
versatile tool for solving complex ODEs. Regarding practical applications, the HBM developed in this
study can be effectively employed in various scientific and engineering fields such as chemical kinetics,
electrical circuit analysis, mechanical vibrations, and population dynamics. These areas often involve
solving complex, nonlinear first order differential equations in real-world models, where the accuracy,
stability, and efficiency of the method are crucial for reliable predictions and system analysis.

2. DERIVATION OF THE METHOD

Let the solution of (1) is given in the form of a power series. The numerical results in the interval
[xn, xn+1] with step length h = xn+1 − xn,

y(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 (2.1)

⇒ y(x) ≈
5∑

j=0

ajx
j

differentiating (2) with respect to x

y′(x) = a1 + 2a2x+ 3a3x
2 + 4a4x

3 + 5a5x
4 (2.2)
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Let us consider from equations (2) and (3) as

yn+j =

5∑
j=0

ajx
j
n+j (2.3)

fn+j =

5∑
j=0

jajx
j−1
n+j (2.4)

where yn+j = yn + jhfn and fn = f(xn, yn)

Equation (2) is interpolated at x = xn and

Equation (3) is collocated at x = 0, 1/2, 1, 3/2, 2 that leads to the system of equations

yn = a0 + a1xn + a2x
2
n + a3x

3
n + a4x

4
n + a5x

5
n (2.5)

fn = a1 + 2a2xn + 3a3x
2
n + 4a4x

3
n + 5a5x

4
n (2.6)

fn+1/2 = a1 + 2a2xn+1/2 + 3a3x
2
n+1/2 + 4a4x

3
n+1/2 + 5a5x

4
n+1/2 (2.7)

fn+1 = a1 + 2a2xn+1 + 3a3x
2
n+1 + 4a4x

3
n+1 + 5a5x

4
n+1 (2.8)

fn+3/2 = a1 + 2a2xn+3/2 + 3a3x
2
n+3/2 + 4a4x

3
n+3/2 + 5a5x

4
n+3/2 (2.9)

fn+2 = a1 + a2xn+2 + 3a2n+2 + 4x3
n+2 + 5x4

n+2 (2.10)

The six equations (6), (7), (8), (9), (10), (11) are written in a matrix form as
1 0 0 0 0 0
0 1 0 0 0 0
0 1 2× 1

2 3× 1
4 4× 1

8 5× 1
16

0 1 2× 1 3× 1 4× 1 5× 1
0 1 2× 3

2 3× 9
4 4× 27

8 5× 81
16

0 1 2× 2 3× 4 4× 8 5× 16




a0
a1
a2
a3
a4
a5

 =



yn
fn

fn+ 1
2

fn+1

fn+ 3
2

fn+2


which is simplified as 

1 0 0 0 0 0
0 1 0 0 0 0
0 1 3

4
1
2

5
16 0

0 1 2 3 4 5
0 1 3 27

4
27
2

405
16

0 1 4 12 32 80




a0
a1
a2
a3
a4
a5

 =



yn
fn

fn+ 1
2

fn+1

fn+ 3
2

fn+2


Using Guass elimination method we get the values of a′js as follows,

a0 = yn, (2.11)

a1 = fn, (2.12)

a2 = −25

12
fn + 4fn+ 1

2
− 3fn+1 +

4

3
fn+ 3

2
− 1

4
fn+2, (2.13)

a3 =
35

18
fn − 52

9
fn+ 1

2
+

57

9
fn+1 +

4

3
fn+ 3

2
− 1

4
fn+2, (2.14)

a4 = −5

6
fn + 3fn+ 1

2
− 4fn+1 +

1

2
fn+ 3

2
− 7

4
fn+2, (2.15)
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a5 =
2

15
fn − 8

15
fn+ 1

2
+

4

5
fn+1 −

8

15
fn+ 3

2
+

2

15
fn+2, (2.16)

Substituting the values of a0, a1, a2, a3, a4, a5 in equation (4) by replacing the variable with x = xn+th
gives the continuous formulation written in the following form as,

y(x) = α0yn + h[β0fn + β1/2fn+1/2 + β1fn+1 + β3/2fn+3/2 + β2fn+2], (2.17)

where from the equations (12), (13), (14), (15), (16), (17).

α0 = coefficient of yn , β0 = coefficient of fn, β 1
2
= coefficient of fn+ 1

2

β1 = coefficient of fn+1, β 3
2
= coefficient of fn+ 3

2
, β2 = coefficient of fn+2.

Therefore,
α0(t) = 1

β0(t) = −25

12
t2 +

35

18
t3 − 5

6
t4 +

2

15
t5

β 1
2
(t) = 4t2 − 52

9
t3 + 3t4 − 8

15
t5

β1(t) = −3t2 +
57

9
t3 − 4t4 +

4

5
t5

β 3
2
(t) =

4

3
t2 − 28

9
t3 +

7

3
t4 − 8

15
t5

β2(t) = −1

4
t2 +

11

18
t3 − 7

4
t4 +

2

15
t5

Substituting the values t = 0, 1/2, 1, 3/2, 2.

α0(0) = 1, β0(0) = 0, β 1
2
(0) = 0, β1(0) = 0, β 3

2
(0) = 0, β2(0) = 0

α0

(
1

2

)
= 1, β0

(
1

2

)
=

251

1440
, β 1

2

(
1

2

)
=

323

720
, β1

(
1

2

)
= −11

60
, β 3

2

(
1

2

)
=

53

720
, β2

(
1

2

)
= − 19

1440

α0(1) = 1, β0(1) =
29

180
, β 1

2
(1) =

31

45
, β1(1) =

2

15
, β 3

2
(1) =

1

45
, β2(1) = − 1

180

α0

(
3

2

)
= 1, β0

(
3

2

)
=

27

160
, β 1

2

(
3

2

)
=

51

80
, β1

(
3

2

)
=

9

20
, β 3

2

(
3

2

)
=

21

80
, β2

(
3

2

)
= − 3

160

α0(2) = 1, β0(2) =
7

45
, β 1

2
(2) =

32

45
, β1(2) =

4

15
, β 3

2
(2) =

32

45
, β2(2) =

7

45

Therefore HBM is constructed as follows

yn+ 1
2
= yn + h

[
251

1440
fn +

323

720
fn+ 1

2
− 11

60
fn+1 +

53

720
fn+ 3

2
− 19

1440
fn+2

]
(2.18)

yn+1 = yn + h

[
29

180
fn +

31

45
fn+ 1

2
+

2

15
fn+1 +

1

45
fn+ 3

2
− 1

180
fn+2

]
(2.19)
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yn+ 3
2
= yn + h

[
27

160
fn +

51

80
fn+ 1

2
+

9

20
fn+1 +

21

80
fn+ 3

2
− 3

160
fn+2

]
(2.20)

yn+2 = yn + h

[
7

45
fn +

32

45
fn+ 1

2
+

4

15
fn+1 +

32

45
fn+ 3

2
+

7

45
fn+2

]
(2.21)

The points n+ 1
2 and n+ 3

2 are called data off step points which are helpful in the accurate of the solution
at n+ 1 and n+ 2.

3. ANALYSIS OF THE METHOD

The fundamental properties such as order, zero stability, and consistency are discussed.

3.1. ORDER:

Operating with linear operator L on both sides of (18) we get,

L[y(xn);h] = α0y(xn + h) + h

[
β0y

′(xn) + β 1
2
y′

(
xn +

h

2

)
+ β1y

′(xn + h) + β 3
2
y′

(
xn +

3h

2

)
+ β2y

′(xn + 2h)

]
,

(3.1)
where y(x) is an arbitrary function that is continuously differentiable on [a, b].
Expanding about xn in y(xn + h), y′(xn), y

′ (xn + h
2

)
, y′(xn + h), y′

(
xn + 3h

2

)
, y′(xn + 2h) by Taylor’s

series and collecting the coefficients.
L[y(xn);h] = c0y(xn) + c1hy

′(xn) + c2h
2y′′(xn) + c3h

3y(3)(xn) + · · ·+ cqh
qy(q)(xn)

Evaluating, y
(
x = xn + 1

2
h
)
we get C0 = C1 = C2 = C3 = C4 = C5 = 0 and C6 =

3h6

10240

y(x = xn+1) we get C0 = C1 = C2 = C3 = C4 = C5 = 0 and C6 =
h6

5760

y
(
x = xn + 3

2
h
)
we get C0 = C1 = C2 = C3 = C4 = C5 = 0 and C6 =

3h6

10240

y(x = xn+2) we get C0 = C1 = C2 = C3 = C4 = C5 = C6 = 0 and C7 =
−h7

15120

Therefore the error constants are

(
3

10240
,

1

5760
,

3

10240
,

−1

15120

)T

and the orders are (5, 5, 5, 6)T

3.2. CONSISTENCY

The HBM is consistent [18], as all the orders are greater than 1.

3.3. ZERO STABILITY:

The equations (19), (20), (21), (22) are put in the form of


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



yn+ 1

2

yn+1

yn+ 3
2

yn+2

 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1



yn+2

yn+ 3
2

yn+1

yn

+h


323
720

− 11
60

53
720

− 19
1440

31
45

2
15

1
45

− 1
180

51
80

9
20

21
80

− 3
160

32
45

4
15

32
45

7
45



fn+ 1

2

fn+1

fn+ 3
2

fn+2

+h


0 0 7

45
0 0 45

27
0 0 160

29
0 0 251

1440



fn+2

fn+ 3
2

fn+1

fn+ 1
2


(17)

The characteristic polynomial of the HBMs is given by

P(R) =
∣∣RA0 −A1

∣∣ where A1 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1


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Therefore P(R) = R


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 =


R 0 0 −1
0 R 0 −1
0 0 R −1
0 0 0 R− 1


Implies P(R) = R4 −R3 → ρ(R) = 0 → R4 −R3 = 0

Therefore the roots of the first characteristic polynomial are R1 = R2 = R3 = 0 and R4 = 1

Since |R| ≤ 1 and |R| = 1 HBMs is zero stable.

3.4. CONVERGENCE:

The HBM is convergent because it satisfies the conditions of consistency and zero stability.

4. IMPLEMENTATION OF THE METHOD

The effectiveness and validity of the HBM is tested by some non-linear first ODEs. The error formula
as follows, E(x) = |y(x)− y(xn)| where y(x) is the exact solution and y(xn) is the approximate solution
obtained by the HBM.
Steps for the proposed method:

• Find the values of xn, xn+ 1
2
, xn+1, xn+ 3

2
, xn+2

• Find the corresponding values of yn, yn+ 1
2
, yn+1, yn+ 3

2
, yn+2 using

yn+j = yn + jhfn and fn = f(xn, yn)

• Substitute the values in equations (19), (20), (21), (22) to get the most accurate solutions.

4.1. NUMERICAL EXPERIMENTS

4.1.1 Example 1:

The following non-linear ODEs:

y′ = 2x4y, y(0) = 1 with h = 0.1

The exact solution is y = e
2
5x

5

Table 1: Table 1: Comparison of HBM Solutions (Proposed Method) with exact solutions and corre-
sponding errors at Various X values.

X values Initial values of y Initial values of f Values of y by proposed method Exact solution Error
x0 = 0 y0 = 1 f0 = 0 y0 = 1 y0 = 1 0.0000000

x 1
2

= 0.05 y 1
2

= 1 f 1
2

= 0.00000125 y 1
2

= 1.000000125 y 1
2

= 1.000000125 0.0000000

x1 = 0.1 y1 = 1 f1 = 0.0002 y1 = 1.0000004 y1 = 1.0000004 0.0000000
x 3

2
= 0.15 y 3

2
= 1 f3 = 0.0010125 y 3

2
= 1.000020375 y 3

2
= 1.000030375 0.00001

x2 = 0.2 y2 = 1 f2 = 0.0032 y2 = 1.0000272 y2 = 1.000128008 0.000143992
x 5

2
= 0.25 y 5

2
= 1.000432044 f 5

2
= 0.0078158753 y 5

2
= 1.0002982722 y 5

2
= 1.000390701 0.000092429

x3 = 0.3 y3 = 1.000592087 f3 = 0.0162095181 y3 = 1.001116399 y3 = 1.000972473 0.000143926
x 7

2
= 0.35 y 7

2
= 1.000752131 f 7

2
= 0.0300350733 y 7

2
= 1.00233252 y 7

2
= 1.00213083 0.000229437

x4 = 0.4 y4 = 1.000912174 f4 = 0.0512467033 y4 = 1.003525387 y4 = 1.0041044 0.000057013
x 9

2
= 0.45 y 9

2
= 1.006094412 f 9

2
= 0.08251231796 y 9

2
= 1.009395662 y 9

2
= 1.007408433 0.001987229

x5 = 0.5 y5 = 1.008663437 f5 = 0.1260830463 y5 = 1.014552773 y5 = 1.012578452 0.005782565
x 11

2
= 0.55 y 11

2
= 1.011232462 f 11

2
= 0.1856818 y 11

2
= 1.022260687 y 11

2
= 1.020335378 0.001925349

x6 = 0.6 y6 = 1.013801487 f6 = 0.2627773454 y6 = 1.033371473 y6 = 1.031592784 0.001778689
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Table 1 presents a comparison of numerical results obtained by a HBM comparision with exact solu-
tion to the Examople 1, likely a differential equation, at various X values, and it also shows the initial
values used for the calculation. The table has different columns, including X values that represent the
independent variable’s values at which the solution is being evaluated, starting from x0 = 0 and increasing
in increments. The initial values of y are the starting or initial conditions for the dependent variable ′y′

at each corresponding X value, often starting with 1.0 for initial X values and calculated from previous
steps for later X values. The initial values of f is represent the initial values of a function f , possibly
the derivative dy/dx or a related function, used in the numerical method, and these values increase as
x increases. The values of y by HBM column shows the numerical solutions for ′y′ calculated using
the HBM at each corresponding X value. The exact solution column provides the true or analytical
solution for ′y′ at each X value, used as a benchmark to assess the accuracy of the HBM. The error
column quantifies the difference between the Values of y by HBM and the exact solution for each X
value, with a smaller error indicating higher accuracy of the HBM. The error values generally increase
as xincreases, which is a common characteristic of numerical methods where errors accumulate over steps.

Example 2: One of the most prevalent types of nonlinear ODEs for simulating real-world usage in a
variety of domains is the Riccati ODEs.
Consider the Riccati’s differential equation (RDE) of the form,

dv

dt
= 1− t2 + v(t), (4.1)

subject to v(0) = 0 with h = 0.1.
The exact solution of equation (24) is

y = 1 +
√
2 tanh

(
√
2t+ 0.5 ln

∣∣∣∣∣
√
2− 1√
2 + 1

∣∣∣∣∣
)
.

The RDE is a nonlinear ODE with numerous applications across engineering and scientific domains.
In control systems, it plays a crucial role in solving optimal control problems, such as the Linear Quadratic
Regulator (LQR) and Linear Quadratic Gaussian (LQG) control, contributing to the stability and per-
formance of dynamic systems. In fluid dynamics, it is used to model the transient settling velocity of
non-spherical particles in viscous fluids, which inherently involves nonlinear behavior. Additionally, in
mathematical biology, the RDE is employed in constructing models like the SIR model to describe the
dynamics of infectious disease transmission over time

Table 2: Table 2: Evaluation of the proposed numerical method: Comparison of Calculated ’v’ Values
with exact solutions and absolute errors at various time t values.

t values Initial values of v Initial values of f Values of v by proposed method Exact solution Error
t0 = 0 v0 = 0 f0 = 1 v0 = 0 v0 = 0 0.000000

t 1
2

= 0.05 v 1
2

= 0.05 f 1
2

= 1.0975 v 1
2

= 0.052458333 v 1
2

= 0.05253943521 0.00008

t1 = 0.1 v1 = 0.1 f1 = 1.19 v1 = 0.109666667 v1 = 0.1102951969 0.0006
t 3
2

= 0.15 v 3
2

= 0.15 f 3
2

= 1.2775 v 3
2

= 0.171375 v 3
2

= 0.173419388 0.00282

t2 = 0.2 v2 = 0.2 f2 = 1.36 v2 = 0.237333333 v2 = 0.2419767996 0.004
t 5
2

= 0.25 v 5
2

= 0.313246841 f 5
2

= 1.528370099 v 5
2

= 0.3158634013 v 5
2

= 0.3159264087 0.00006

t3 = 0.3 v3 = 0.3845168824 f3 = 1.621180532 v3 = 0.3946444955 v3 = 0.3951048487 0.00005
t 7
2

= 0.35 v 7
2

= 0.4557869238 f7 = 1.703832128 v 7
2

= 0.4778121405 v 7
2

= 0.4792136573 0.0014

t4 = 0.4 v4 = 0.5270569652 f4 = 1.776324883 v4 = 0.5648583943 v4 = 0.5678121663 0.002954
t 9
2

= 0.45 v 9
2

= 0.6382027746 f9 = 1.435702775 v 9
2

= 0.6389208725 v 9
2

= 0.6389208425 0.00004

t5 = 0.5 v5 = 0.7085933829 f5 = 1.458593383 v5 = 0.7097348747 v5 = 0.7097345547 0.00003
t 11

2
= 0.55 v 11

2
= 0.778989912 f11 = 1.476483991 v 11

2
= 0.7846968781 v 11

2
= 0.7846578781 0.000256

t6 = 0.6 v6 = 0.8493745995 f6 = 1.4893746 v6 = 0.8588641762 v6 = 0.8588644762 0.000003

Table 2 presents a detailed evaluation of a HBM for solving a problem, likely a ODEs or similar
numerical task, by comparing its results against an exact solution. This table uses t values as the inde-
pendent variable, suggesting a time-dependent problem, with values starting from t0 = 0 and increasing
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(a) Proposed Method vs Exact Solution x = 0 to 1. (b) Absolute Error between Proposed and Exact Solution.

Figure 1: Comparison of HBMs and exact solution of Example 1.

in increments, including intermediate entries for specific time points of interest. The table has several
columns, including initial values of v, which are the starting conditions for the dependent variable ′v′

at each corresponding value of ′t′, with v0 starting at 0. The initial values of f probably represent the
initial values of a function f , possibly related to the derivative dv/dt, used in the calculation, and these
values generally increase as tincreases. The column of values of v shows the numerical solutions for
v calculated using the HBM at each t value, while the column of exact solutions provides the true or
analytical solution for v at each v value, serving as a reference to gauge the accuracy of the HBM. The
error column quantifies the absolute difference between the HBM values and the exact solution for each
t value, with smaller errors indicating higher accuracy. The error values show fluctuations, sometimes
very small, suggesting that the HBM is quite accurate for this specific problem.

Figure 1 illustrates the comparison between the HBM and exact solution for Example Problem 1 over
the interval x = 0 to x = 1, along with the corresponding absolute error. In subfigure (a), the approx-
imate results obtained using the HBM are represented by red circles, while the exact solution is shown
using blue stars. The two curves closely overlap across the entire domain, indicating an excellent agree-
ment between the proposed method and the exact analytical solution. This visual match demonstrates
the high accuracy and reliability of the proposed approach. Subfigure (b) presents the absolute error
between the HBM and exact solutions, which remains very small throughout the interval. The maximum
error observed is approximately 2 × 10−3 near x = 0.45, after which it gradually decreases. Overall,
Figure 1 confirms that the proposed numerical method provides an accurate and effective approximation
of the exact solution for the given problem.

(a) Proposed Method vs Exact Solution for v(t) at
t ∈ [0, 1].

(b) Absolute Error between Proposed and Exact
Solution.

Figure 2: Comparison of HBM and exact solution of Example 2.

Figure 2 shows the comparison between the HBM and exact solution for Example Problem 2 over
the time interval t = 0 to t = 1, along with the absolute error. In part (a), the HBM solution is shown
using red circles, while the exact solution is marked with blue stars. Both curves are almost overlapping,
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which means that the proposed method gives solutions that are very closed to the exact solution for
the function v(t). This indicates that the numerical approach is accurate and reliable. In part (b), the
absolute error between the approximate and exact solutions is shown. The maximum error is around
4.5 × 10−3, observed near t = 0.2 and again slightly near t = 0.4, but for the rest of the interval, the
error remains very small and nearly zero. This confirms that the HBM gives a very good approximation
of the exact solution for the governing equation.

5. CONCLUSION

This study describes a HBM that has been demonstrated to be consistent, zero stable, and convergent
for solving FOIVP of ODEs. When compared to exact solutions, the numerical results of the approach
when applied to a few nonlinear ODEs turned out to be accurate. The error between the HBM (proposed
technique) and the exact solution are observed to be decreased as the values of the independent variable
are increased. The HBM is applicable to all forms of FOIVP of ODEs, both linear and nonlinear, which
appear in various kinds of physical environments and in mathematical models.
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