Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) 4 : 1-10.
©SPM - E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm d0i:10.5269/bspm.78591

A Feedforward Neural Network Approach to Solving Systems of Linear Equations

Rashad A. Al-Jawfi

ABSTRACT: This paper proposes a neural network-based framework for solving systems of linear equations of
the form Ax = b. The method reformulates the problem as a residual minimization task and employs a feed-
forward neural network to learn the mapping from input matrix-vector pairs to solution vectors. The network
is trained using synthetic data and optimized via gradient descent using residual-based loss. Experimental
results demonstrate that the model achieves high accuracy for well-conditioned systems with dimensions up to
n = 20, producing residual errors below 10~% in most cases. Comparative analysis against classical numerical
solvers shows that while traditional methods remain superior for ill-conditioned systems, the neural approach
offers notable advantages in inference speed, generalization, and suitability for parallel or real-time deploy-
ment. Limitations and future enhancements—including scalability, noise robustness, and hybridization—are
also discussed.

Key Words: Feedforward neural networks, linear systems of equations, residual minimization, nu-
merical linear algebra

Contents
1 Introduction 2
2 Literature Review 2
3 Mathematical Background 3
3.1 Direct and Iterative Solvers e e 3
3.2 Conditioning and Stability 4
3.3 Residual Formulation e 4
4 Neural Network Methodology 4
4.1 Network Architecture e e 5
4.2 Loss Function e e e 5
4.3 Training Procedure oL 5
4.4 Generalization and Inference e 6
5 Implementation and Experiments 6
5.1 Data Generation e e e e e e e e e 6
5.2 Network Configuration L e 6
5.3 Evaluation Metrics e e e e e e 6
5.4 System Sizes and Scalabilityo 6
6 Results and Discussion 6
6.1 Accuracy and Residual Analysis L oL e 7
6.2 Comparison with Traditional Solvers 7
6.3 Scalability and Computation Time 9
6.4 Sensitivity to Perturbations L 9
7 Conclusion and Future Work 9

2010 Mathematics Subject Classification: 65F10, 68T07.
Submitted August 23, 2025. Published November 01, 2025

Typeset by 857/31 style.
1 © Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.78591

2 RASHAD A. AL-JAWFI

1. Introduction

Systems of linear equations appear ubiquitously in scientific computing, engineering, optimization,
and data analysis. Formally, a system of n linear equations in n variables can be represented as:

Ax = b, (1.1)

where A € R™*" is a coefficient matrix, x € R" is the solution vector, and b € R™ is the right-hand side
vector.

Traditional solution methods such as Gaussian elimination, LU decomposition, and iterative meth-
ods like Jacobi and Gauss-Seidel have been widely adopted due to their determinism and mathemat-
ical rigor [1,2]. However, these methods often face challenges in terms of scalability, robustness to
ill-conditioned matrices, and adaptability to real-time or parallel environments [3].

Artificial neural networks (ANNS), inspired by biological neural systems, have demonstrated promise
in addressing computational problems involving function approximation, regression, and classification [4,
5]. Their intrinsic parallelism and data-driven nature make them attractive candidates for solving alge-
braic systems, particularly when dealing with dynamic or high-dimensional settings [6].

This paper proposes a computational approach using feedforward neural networks to approximate
solutions of systems of linear equations. The method formulates the problem as a residual minimization
task and trains the network to map matrix-vector pairs (A, b) to their respective solution vectors x.
Emphasis is placed on convergence behavior, generalization, and performance comparison with traditional
solvers. The remainder of this paper is organized as follows: Section 2 presents a literature review; Section
3 outlines mathematical preliminaries; Section 4 describes the neural network methodology; Section 5
details experimental design; and Section 6 discusses results and implications.

2. Literature Review

The application of artificial neural networks (ANNs) to the solution of systems of linear equations
has gained significant momentum since the development of the backpropagation algorithm [6]. Early
investigations established the theoretical capability of multilayer perceptrons (MLPs) to approximate
linear mappings, laying the groundwork for supervised neural solvers.

One of the first practical models addressing linear systems through neural computation involved re-
current neural networks (RNNs). Gao and Wang [7] developed an RNN-based approach with provable
convergence under mild assumptions. Later, Zhang and Wang [8] extended this work by demonstrat-
ing global exponential convergence through Lyapunov stability analysis. These recurrent schemes were
particularly appealing for their dynamic equilibrium-seeking behavior.

Hopfield-type networks also contributed to the field by modeling the solution as the global minimum
of a quadratic energy function. However, their practical applicability was often hindered by issues such
as slow convergence and sensitivity to initial conditions [9].

With the advent of modern hardware accelerators and optimization techniques, attention has shifted
back to feedforward networks. These models, while structurally simpler, benefit from rapid training and
scalability. In particular, they have been used to learn the mapping between system inputs and outputs
by minimizing the residual ||Ax — bl|2, providing a data-driven alternative to direct matrix inversion or
iterative updates.

Recent reviews, such as the one by Hussain et al. [9], have outlined both the strengths and limitations
of ANN-based solvers. Notably, these methods offer strong potential in settings involving repeated
computation, online adaptation, or integration into hardware systems.

In contrast to traditional solvers—such as LU decomposition and conjugate gradient methods—mneural
approaches offer generalization capabilities and parallelism at inference time. A conceptual comparison
between the two paradigms is presented in Figure 2, emphasizing their algorithmic and computational
differences.

Despite these advantages, current ANN-based solvers face challenges in stability, scalability, and
sensitivity to matrix conditioning. These limitations have motivated hybrid architectures that combine
neural networks with classical numerical techniques to leverage the strengths of both.

A FEEDFORWARD NEURAL NETWORK APPROACH TO SOLVING SYSTEMS OF LINEAR EQUATIONS 3

Evolution of Neural Network Models

Multi-Layer Solver

Perceptron
Perceptron Network

A4

Y

Linear System
of Equations

Figure 1: Evolution of neural network models for solving systems of linear equations: from Hopfield
networks and RNNs to modern feedforward architectures.

[Numerical Solver]

l

[Iterative Refinement]

Neural Network Traditional Numerical Methods

Approximate Solution [Exact Solution]

Figure 2: Comparison between classical numerical solvers and neural network-based methods in terms of
flow, training, and execution.

3. Mathematical Background
Solving systems of linear equations is a foundational task in numerical linear algebra. A general
system with n equations and n unknowns can be written compactly as:

Ax=b (3.1)

where A € R™*" is a known coefficient matrix, x € R" is the unknown solution vector, and b € R" is
the known right-hand side vector.

3.1. Direct and Iterative Solvers

Classical methods for solving such systems fall into two categories: direct methods and iterative
methods. Direct methods, such as Gaussian elimination and LU decomposition, aim to compute the
exact solution in a finite number of steps under exact arithmetic [10]. However, for large-scale systems,
these methods can become computationally expensive or numerically unstable.

4 RASHAD A. AL-JAWFI

Iterative methods—such as Jacobi, Gauss-Seidel, and Conjugate Gradient (CG)—start from an initial
guess and produce a sequence of approximations that converge to the true solution under suitable condi-
tions [2]. These are often preferred for sparse or structured systems due to lower memory requirements
and the potential for parallelization.

3.2. Conditioning and Stability

The numerical stability of any solver is closely tied to the conditioning of the matrix A. The condition
number, defined as:
K(A) =||A]- AT, (3.2)

quantifies the sensitivity of the solution x to perturbations in b. A high condition number indicates an
ill-conditioned system, where small input errors may lead to large output deviations [11].

3.3. Residual Formulation

Instead of computing the inverse of A, many modern approaches—including neural network-based
methods—reformulate the problem as minimizing the residual:

£(%) = [A% - b]}3. (3.3)

This form aligns naturally with machine learning frameworks, where x is treated as the output of a
parametric model trained to minimize the loss £ over a dataset of systems.

Residual Geometry

YA
b

.
-*" Residual

.
.
.

.
.

Ax*

8y

Figure 3: Geometric interpretation of residual minimization for linear systems: the goal is to project b
onto the column space of A.

Figure 3 illustrates the geometric intuition behind residual minimization, where the predicted solution
corresponds to the orthogonal projection of b onto the range of A.

This formulation is particularly advantageous for data-driven solvers, as it avoids explicit matrix
inversion and leverages gradient-based optimization to approximate solutions.

4. Neural Network Methodology

In this section, we outline the neural framework adopted to solve systems of linear equations using
feedforward neural networks. The objective is to train a model that learns the mapping x = f(A,b),
where x is the solution vector satisfying Ax = b.

A FEEDFORWARD NEURAL NETWORK APPROACH TO SOLVING SYSTEMS OF LINEAR EQUATIONS 5

4.1. Network Architecture

The proposed architecture consists of a feedforward neural network comprising three main compo-
nents: an input layer, multiple hidden layers with nonlinear activations, and a linear output layer. The
input vector is a flattened representation of the matrix-vector pair (A,b), concatenated into a single
vector of dimension n? + n.

Each hidden layer applies a nonlinear transformation to its input:

h® = og(WOR-D 4 p®), (4.1)

where o is an activation function such as ReLU, W) and b denote the weight matrix and bias vector
at layer I, and h(® is the input vector.

ReLU activations are used for their computational efficiency and favorable gradient properties [12].
The final layer outputs a vector x € R", representing the predicted solution.

4.2. Loss Function

To train the network, we define a residual-based loss function that measures the discrepancy between
the predicted solution x and the ground-truth system:

£(x) = | A% - b|}3. (4.2)
This formulation encourages the network to produce outputs that satisfy the linear system as closely as
possible.
4.3. Training Procedure

Training is conducted using mini-batch stochastic gradient descent (SGD) or its adaptive variants
such as Adam [13]. The network is optimized over a synthetic dataset of systems (A, b, x), where each
system is generated such that A is full-rank and well-conditioned, and b is computed from a known
solution Xirue via b = AX¢ ue.

The input data is normalized to stabilize training, and early stopping is applied to prevent overfitting.

Input Layer Hidden Layer 1 (RELU)

Input Layer Output Layer

x13x2 = ey,

Figure 4: Schematic architecture of the feedforward neural network used to approximate the solution to
Ax =b.

6 RASHAD A. AL-JAWFI

4.4. Generalization and Inference

Once trained, the model can generalize to unseen systems drawn from the same distribution. At
inference time, the forward pass through the network is computationally efficient and highly parallelizable,
enabling deployment in real-time or hardware-constrained environments [5].

5. Implementation and Experiments

To evaluate the effectiveness of the proposed neural network framework, we conducted a series of
computational experiments implemented in Python using the TensorFlow library [14]. The experiments
assess the model’s ability to approximate solutions to randomly generated systems of linear equations of
varying sizes and conditions.

5.1. Data Generation

The training and testing data consist of synthetic linear systems of the form Ax = b. Each matrix

A € R™" ig generated to be full-rank and well-conditioned by sampling from a uniform distribution and

applying orthonormalization if necessary. For each A, a random solution vector Xt,,e is sampled, and b
is computed via:

b = Axtruc' (51)

The dataset is then split into training and test subsets with appropriate normalization applied to each.
5.2. Network Configuration

The neural network comprises:

e An input layer with n? 4+ n neurons,

e Two hidden layers with 64 and 32 neurons respectively, using ReLLU activation,

e An output layer of size n, producing the predicted solution vector.

Training is performed using the Adam optimizer with a learning rate of 0.001 and batch size of 32.
Early stopping is used based on validation loss to prevent overfitting.

5.3. Evaluation Metrics
To quantitatively assess the model, we report the following metrics:
e Residual Error: ||[Ax — bl|o,
e Relative Error: ||X — Xtruell2/||Xtruel|2s
e Training Time: total wall-clock time until convergence.

Figure 5 shows a typical training loss curve indicating stable convergence behavior for well-conditioned
systems.

5.4. System Sizes and Scalability

Experiments were conducted for system sizes n = 5,10,20,50. As expected, residual error increases
with system size due to the greater complexity of the solution space. However, the model retains an
acceptable accuracy for n < 20 with moderate training effort.

Figure 6 summarizes the average residuals obtained for each system size tested.

6. Results and Discussion

The results of the experimental evaluation demonstrate that the proposed feedforward neural net-
work is capable of approximating solutions to systems of linear equations with high accuracy for small-
to-medium-sized problems. This section summarizes key observations regarding accuracy, efficiency,
scalability, and robustness.

A FEEDFORWARD NEURAL NETWORK APPROACH TO SOLVING SYSTEMS OF LINEAR EQUATIONS 7

Loss Convergence

1073

10—1 L

scal)

s (log

21072 |

Lo

107 ¢

1 1 L

0 20 40 60 100
Epoch

Figure 5: Training loss convergence over epochs for systems of size n = 20.

6.1. Accuracy and Residual Analysis

For systems with dimensions up to n = 20, the residual error ||A%x — b|| was consistently below 107,
and the relative error remained below 1% in most test cases. These values indicate that the neural model

can successfully learn the solution mapping, particularly when the training data covers the expected
distribution of system parameters.

6.2. Comparison with Traditional Solvers

Figure 7 compares the relative error achieved by the neural network against classical numerical solvers
such as LU decomposition and the Conjugate Gradient (CG) method. While traditional methods still
outperform the network in solving ill-conditioned systems, the neural approach shows competitive results
in well-conditioned scenarios and offers the additional benefit of inference reusability once trained.

8 RASHAD A. AL-JAWFI

Residual vs. System Size

100

10_8 -

Residual
-~y
C)I
(o))

=

<
EN
T

=

S
(o]
T

10 20 30 40 50 60 70 80
System Size

Figure 6: Residual error as a function of system size. Performance degrades gracefully with increasing n.

Comparison of Solution Time

=
o
=]
H
—
c

Solution Time (s)

10 30 60 80
System Size

Figure 7: Comparison of relative error across methods: neural network vs. LU decomposition and CG
method.

A FEEDFORWARD NEURAL NETWORK APPROACH TO SOLVING SYSTEMS OF LINEAR EQUATIONS 9

6.3. Scalability and Computation Time

Training time increased with system size, as shown in Figure 8. While inference remains efficient after
training, larger systems require deeper architectures and more training samples to maintain low residuals.
This highlights the trade-off between accuracy and computational resources.

Training Time vs. System Size

0 1 /| 1 1 Il L
0 20 40 60 80 100

System Size n

Figure 8: Training time (in seconds) as a function of system size.

6.4. Sensitivity to Perturbations

To assess robustness, small Gaussian noise was added to the right-hand side vector b. The neural
model maintained reasonable performance under low-noise conditions but exhibited degradation at higher
noise levels. This behavior reflects the sensitivity of data-driven models to input perturbations, especially
in the absence of regularization [15].

Future improvements may involve training with noisy data, incorporating regularization terms in the
loss function, or using denoising architectures.

7. Conclusion and Future Work

This paper presented a computational framework for solving systems of linear equations using feedfor-
ward neural networks. By reformulating the problem as a residual minimization task, the proposed model
successfully learned to approximate solutions for a variety of randomly generated systems. Experimental
results showed that the network achieves high accuracy for well-conditioned systems of moderate size
(n < 20), with residual errors typically below 10~%.

Compared to traditional solvers, the neural model offers key advantages in terms of inference speed,
reusability, and compatibility with parallel and hardware-accelerated environments. However, it also
exhibits limitations, particularly in handling large-scale or ill-conditioned systems and in sensitivity to
noisy data.

Future work will focus on several directions:

e Extending the framework to nonlinear systems and underdetermined or overdetermined systems.
e Incorporating regularization strategies and noise-aware training to improve robustness.

e Exploring hybrid architectures that combine neural solvers with classical numerical methods.

10

RASHAD A. AL-JAWFI

e Investigating theoretical guarantees for convergence and generalization.

Overall, neural solvers for algebraic systems remain a promising area of research that bridges machine

learning with numerical computation, especially in real-time and embedded applications.

10.
11.
12.

13.
14.

15.

References

. Strang, G. (2006). Linear Algebra and Its Applications (4th ed.). Thomson, Brooks/Cole.
. Saad, Y. (2003). Iterative Methods for Sparse Linear Systems (2nd ed.). STAM.

. Benzi, M. (2002). Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics,

182(2), 418-477.

. Haykin, S. (2009). Neural Networks and Learning Machines (3rd ed.). Pearson Education.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436—444.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature,
323(6088), 533-536.

Gao, X., & Wang, J. (2003). A recurrent neural network for solving linear equations. Neural Processing Letters, 17(1),
59-T1.

Zhang, X., & Wang, J. (2004). Global exponential convergence of neural networks for solving linear equations. IEEE
Transactions on Circuits and Systems I: Regular Papers, 51(9), 1783-1790.

Hussain, A., Zhu, Q., & Nandi, A. K. (2020). A survey on neural network-based numerical solvers for systems of
equations. Neural Computing and Applications, 32(8), 4423-4444.

Trefethen, L. N., & Bau, D. (1997). Numerical Linear Algebra. STAM.
Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms (2nd ed.). STAM.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), 807-814.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Abadi, M., et al. (2016). TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 265-283.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Rashad A. Al-Jawfi,
Department of Mathematics,

Faculty of Sciences and Arts,

Nagran University, Najran 55461, Saudi Arabia

Department of Mathematics and computer science,

Faculty of Sciences, Ibb University, Yemen.

E-mail address: raaljawfi@nu.edu.sa

	Introduction
	Literature Review
	Mathematical Background
	Direct and Iterative Solvers
	Conditioning and Stability
	Residual Formulation

	Neural Network Methodology
	Network Architecture
	Loss Function
	Training Procedure
	Generalization and Inference

	Implementation and Experiments
	Data Generation
	Network Configuration
	Evaluation Metrics
	System Sizes and Scalability

	Results and Discussion
	Accuracy and Residual Analysis
	Comparison with Traditional Solvers
	Scalability and Computation Time
	Sensitivity to Perturbations

	Conclusion and Future Work

