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Compatible Mappings and Their Variants in Perturbed Metric Spaces
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abstract: In this paper, we introduce the notions of compatible mappings and their variants in perturbed
metric spaces. Next, we prove common fixed point theorems for these mappings.
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1. Introduction

The measurement of the distance between two points is not always exact. During measurement, some
errors may occur. These errors may be slightly positive, slightly negative, or sometimes zero. If error
is zero, then it corresponds to the metric. To account for these, a positive error is subtracted and a
negative error is added during determining the exact value of the distance function. These errors may
play a significant role during measurement.

In order to overcome the difficulty, whenever error is added in metric, Mohamed Jleli and Bessem
Samet [7] gave the notion of a perturbed metric space. Perturbed metric spaces represent a useful and
practical improvement over the metric spaces. The significance of perturbed metric spaces lies across a
wide range of mathematical and applied disciplines.

Even though for small positive errors, the structure of these spaces still retains the properties of metric
spaces. In this way, perturbed metric spaces help to bridge the gap between the mathematical models
and real-world situations, where exact distance are not measurable.

In 2025, Mohamed Jleli and Bessem Samet [7] introduced a more general form of distance function,
known as perturbed metric space as follows:

Definition 1.1. Let D,P : X × X → [0,∞) be two given functions. The function D is called a
perturbed metric on X with respect to P , if the function

D − P : X ×X → R,

defined by the relation
(D − P )(x, y) = D(x, y)− P (x, y),

for all x, y, z ∈ X, is a exact metric on X, i.e., for all x, y, z ∈ X, it satisfies the following conditions

(i) (D − P )(x, y) ≥ 0;

(ii) (D − P )(x, y) = 0 if and only if x = y;

(iii) (D − P )(x, y) = (D − P )(y, x);

(iv) (D − P )(x, y) ≤ (D − P )(x, z) + (D − P )(z, y).
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P is called a perturbing function and D = d+ P be an perturbed metric.
The set X endowed with D and perturbed function P denoted by (X,D,P ) is known as perturbed metric
spaces.

Notice that a perturbed metric on X is not necessarily a metric on X. But a metric is always perturbed
metric when perturbed error is zero.

Example 1.1. Let D : R× R → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y4, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed mapping

P : R× R → [0,∞)

given by
P (x, y) = x2y4, x, y ∈ R.

In this case, the exact metric is the mapping d : R× R → [0,∞) defined by

d(x, y) = D(x, y)− P (x, y) , where

d(x, y) = |x− y|, x, y ∈ R.

Here we note that D is not necessarily a metric, because D(1, 1) = 1 ̸= 0 as x = y, but D is perturbed
metric on X with respect to perturbed function P .

We now introduce topological structure in perturbed metric space.

The topological structure of the perturbed metric space (X,D,P ) is induced by the exact metric
d = D − P . That is, the topology τD,P on X is defined as:

τD,P := τd = {U ⊆ X | ∀x ∈ U, ∃r > 0 such that Bd(x, r) ⊆ U} ,

where the open ball with respect to d is given by:

Bd(x, r) = {y ∈ X | d(x, y) = D(x, y)− P (x, y) < r} .

Definition 1.2. Let (X,D,P ) be a perturbed metric space with perturbed function P . A sequence {xn}
in X is said to be

(i) perturbed convergent sequence, if {xn} is convergent in the metric space (X, d), where d = D−P is
the exact metric.

(ii) perturbed Cauchy sequence, if {xn} is a Cauchy sequence in the metric space (X, d).

(iii) (X,D,P ) is a complete perturbed metric space if (X, d) is a complete metric space, i.e., every
perturbed Cauchy sequence converges in perturbed metric space.

A mapping T defined on (X,D,P ) is a perturbed continuous mapping, if T is continuous with respect to
the exact metric d.

We recall some elementary properties of perturbed metric spaces [7] .

Proposition 1.1. [7] Let D,P,Q : X ×X → [0,∞) be three given mappings and α > 0.
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(i) If (X,D,P ) and (X,D,Q) be two perturbed metric spaces, then
(
X,D, P+Q

2

)
is a perturbed metric

space.

(ii) If (X,D,P ) is a perturbed metric space, then (X,αD,αP ) is a perturbed metric space.

Here for the convenience of readers, we provide the proof of the proposition 1.1.

Proof.

(i) Since D − P and D −Q are two metrics on X, then

1

2
[(D − P ) + (D −Q)] = D − P +Q

2

is a metric on X, which proves (i).

(ii) Since D − P is a metric on X and α > 0, then

α(D − P ) = αD − αP

is a metric on X, which proves (ii).

2. Relationships and Properties of Compatible Mappings and their Variants

Now we introduce the notions of compatible mappings and their variants in the setting of perturbed
metric spaces as follows:
In 1986, Jungck [2] introduced the notion of compatible mappings in metric spaces as follows:
Definition 2.1. Let S and T be two mappings of a metric space (X, d) into itself. Then S and T are
called compatible if and only if

lim
n→∞

d(STxn, TSxn) = 0,

whenever {xn}∞n=1 is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X.

In 1993, Jungck et al. [3] introduced the notion of compatible mappings of type (A) in metric spaces as
follows:
Definition 2.2. A pair (S, T ) of self-mappings of a metric space (X, d) is said to be compatible
mappings of type (A) if and only if

lim
n→∞

d(SSxn, TSxn) = 0, and lim
n→∞

d(STxn, TTxn) = 0,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

In 1994, Pathak, Pant and Singh [6] introduced the notion of compatible mappings of type (P ) in metric
spaces as follows:

Definition 2.3. A pair (S, T ) of self-mappings of a metric space (X, d) is said to be compatible
mappings of type (P ) if and only if

lim
n→∞

d(SSxn, TTxn) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X.
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In 1995, Pathak and Khan [4] introduced the notion of compatible mappings of type (B) in metric spaces
as follows:

Definition 2.4. A pair (S, T ) of self-mappings of a metric space (X, d) is said to be compatible
mappings of type (B) if and only if

lim
n→∞

d(TSxn, SSxn) ≤
1

2

[
lim

n→∞
d(TSxn, T z) + lim

n→∞
d(Tz, TTxn)

]
,

and

lim
n→∞

d(STxn, TTxn) ≤
1

2

[
lim
n→∞

d(STxn, Sz) + lim
n→∞

d(Sz, SSxn)
]
,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

In 1998, Pathak, Cho and Kang [5] introduced the notion of compatible mappings of type (C) in metric
spaces as follows:
Definition 2.5. A pair (S, T ) of self-mappings of a metric space (X, d) is said to be compatible
mappings of type (C) if and only if

lim
n→∞

d(STxn, TTxn) ≤
1

3

[
lim
n→∞

d(STxn, Sz) + lim
n→∞

d(Sz, SSxn) + lim
n→∞

d(Sz, TTxn)
]
,

and

lim
n→∞

d(TSxn, SSxn) ≤
1

3

[
lim
n→∞

d(TSxn, T z) + lim
n→∞

d(Tz, SSxn) + lim
n→∞

d(Tz, TTxn)
]
,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

Now we introduce the analogues notions of compatible mappings and their variants in setting of perturbed
metric spaces.

Definition 2.6. Let S and T be two mappings of a perturbed metric space (X,D,P ) into itself. Then
S and T are called compatible if and only if

lim
n→∞

D(STxn, TSxn) = 0,

whenever {xn}∞n=1 is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X.

Example 2.1. Let D : R× R → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y4, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed function

P : R× R → [0,∞)

given by
P (x, y) = x2y4, x, y ∈ R.

Let S, T : X → X be defined by Sx = x
2 and Tx = x

3 , for all x ∈ X, where X = [0,∞). Taking the
sequence {xn} as xn = 1

n , n > 0, such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X,

then S and T are said to be compatible

lim
n→∞

D(STxn, TSxn) = 0.
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Remark 2.1. Weakly compatible maps need not be compatible.

Example 2.2. Let X = [2, 20] and D : R× R → [2, 20] be the mapping defined by

D(x, y) = |x− y|+ x2y2, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed function

P : R× R → [2, 20]

given by
P (x, y) = x2y2, x, y ∈ R.

Defining S, T : X → X as below:

Sx =

{
2 if x = 2 or > 5

6 if 2 < x ≤ 5.
Tx =


12, if 2 < x ≤ 5

x− 3, if x > 5

x, if x = 2.

The mappings S and T are non-compatible since sequence {xn} defined by
{xn} = 5 + ( 1n ), n ≥ 1. Then Txn → 2, Sxn → 2. But they are weakly compatible since they commute
at coincidence point x = 2. But they are not compatible at that point.

Definition 2.7. A pair (S, T ) of self-mappings of a perturbed metric space (X,D,P ) is said to be
compatible mappings of type (A) if and only if

lim
n→∞

D(SSxn, TSxn) = 0, and lim
n→∞

D(STxn, TTxn) = 0,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

Proposition 2.1. Let S and T be compatible mappings of type (A). If one of S or T is continuous, then
S and T are compatible.

Proof: Since (S, T ) be compatible of type (A), we have

lim
n→∞

D(S(Txn), T (Txn)) → 0 and lim
n→∞

D(T (Sxn), S(Sxn)) → 0,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

Suppose that S is continuous. Then limn→∞ SSxn = limn→∞ STxn = Sz for some z ∈ X. Now we get
limn→∞ D(S(Txn), T (Sxn)) = 0, i.e., S and T be compatible mappings.
Similarly, if T is continuous, the S and T be compatible mappings.

Proposition 2.2. Let S and T be continuous mappings. If S and T are compatible, then they are
compatible mappings of type (A).

The direct consequence of propositions 2.1 and 2.2 is in the form of following :

Proposition 2.3. Let S and T be continuous mappings. Then S and T are compatible if and only if
they are compatible mappings of type (A).

Proposition 2.4. Let S and T be compatible mappings of type (A) of a perturbed metric space (X,D,P )
into itself. If Sz = Tz for some z ∈ X, then

STz = SSz = TTz = TSz.
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Proof. Let {xn} is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X

and suppose Sz = Tz. Then we have

TSxn → Tz and TTxn → Tz as n → ∞.

Since S and T are compatible of type (A), we have

lim
n→∞

D(TSxn, SSxn) = 0,

and
lim
n→∞

D(STxn, TTxn) = 0,

Hence STz = TTz. Now, since Sz = Tz, we also have

SSz = TSz and TSz = TTz.

Therefore,
STz = SSz = TTz = TSz.

This completes the proof. 2

Proposition 2.5. Let S and T be compatible mappings of type (A) of a perturbed metric space
(X,D,P ) into itself. Suppose that

lim
n→∞

Txn = z and lim
n→∞

Sxn = z for some z ∈ X.

Then

(a) limn→∞ STxn = Tz if T is continuous at z.

(b) STz = TSz and Sz = Tz if S and T are continuous at z.

Proof: (a) Suppose that T is continuous at z. Since

lim
n→∞

Sxn = lim
n→∞

Txn = z

for some z ∈ X, we have TTxn, TSxn → Tz as n → ∞.
Since S and T are compatible of type (A), we have

lim
n→∞

D(TSxn, SSxn) = 0,

and
lim
n→∞

D(STxn, TTxn) = 0,

Therefore, limn→∞ STxn = Tz. This completes the proof of (a).

(b) Suppose that S and T are continuous at z. Since Txn → z as n → ∞ and S is continuous at z, by
(a), TTxn → Sz as n → ∞. On the other hand, T is also continuous at z, so TTxn → Tz. Thus, we
have Sz = Tz by the uniqueness of limits, and by Proposition 2.4, STz = TSz. This completes the proof.

Definition 2.8. A pair (S, T ) of self-mappings of a perturbed metric space (X,D,P ) is said to be weak
compatible of type (A) if

lim
n→∞

D(TSxn, SSxn) ≤ lim
n→∞

D(STxn, SSxn) and lim
n→∞

D(STxn, TTxn) ≤ lim
n→∞

D(TSxn, TTxn),
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whenever, {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

Proposition 2.6. Every pair of compatible mappings of type (A) is weak compatible of type (A).
Proof. Suppose that S and T are compatible mappings of type (A),
i.e.

0 = lim
n→∞

D(TSxn, SSxn) ≤ lim
n→∞

D(STxn, SSxn)

and
0 = lim

n→∞
D(STxn, TTxn) ≤ lim

n→∞
D(TSxn, TTxn).

Which shows that pair (S, T ) is weak compatible of type (A).

Proposition 2.7. Let S and T are continuous mappings of a perturbed metric space (X,D,P ) into
itself. If S and T are weak compatible of type (A), then they are compatible of type (A).

Proof : Suppose that S and T are weak compatible of type (A). Let {xn} be a sequence in X such that
limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X. Since S and T are continuous mappings, then we have

lim
n→∞

D(TSxn, SSxn) ≤ lim
n→∞

D(STxn, SSxn) = D(Sz, Sz) = 0

and
lim
n→∞

D(STxn, TTxn) ≤ lim
n→∞

D(TSxn, TTxn) = D(Tz, Tz) = 0.

Therefore, S and T are compatible mappings of type (A). This completes the proof.

Proposition 2.8. Let S and T be weak compatible mappings of type (A) from a perturbed metric space
(X,D,P ) into itself. If one of S and T is continuous, then S and T are compatible.

Proof. Without loss of generality, suppose that T is continuous. Let {xn} be a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X.

Since T is continuous, we have
lim
n→∞

TSxn = Tt = lim
n→∞

TTxn.

Now
lim

n→∞
D(TSxn, STxn) ≤ lim

n→∞
D(TSxn, TTxn) + lim

n→∞
D(TTxn, STxn)

≤ 0 + lim
n→∞

D(TTxn, STxn).

Since (S, T ) are weak compatible of type (A), therefore, we have

lim
n→∞

D(TSxn, STxn) ≤ lim
n→∞

D(STxn, TTxn)

≤ lim
n→∞

D(TSxn, TTxn) ≤ 0.

Therefore, S and T are compatible.

Proposition 2.9. Let S and T be weak compatible mappings of type (A) from perturbed metric space
(X,D,P ) into itself and let

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X,

then we have the following :



8 Kajal Kharb and Sanjay Kumar

1. limn→∞ STxn = Sz if T is continuous at z .

2. limn→∞ TSxn = Tz if S is continuous at z .

3. TSz = STZ and Sz = Tz if S and T are continuous at z.

Definition 2.9. A pair (S, T ) of self-mappings of a perturbed metric space (X,D,P ) is said to be
compatible mappings of type (B) if and only if

lim
n→∞

D(TSxn, SSxn) ≤
1

2

[
lim
n→∞

D(TSxn, T z) + lim
n→∞

D(Tz, TTxn)
]
,

and

lim
n→∞

D(STxn, TTxn) ≤
1

2

[
lim
n→∞

D(STxn, Sz) + lim
n→∞

D(Sz, SSxn)
]
,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

Definition 2.10. A pair (S, T ) of self-mappings of a perturbed metric space (X,D,P ) is said to be
compatible mappings of type (C) if and only if

lim
n→∞

D(STxn, TTxn) ≤
1

3

[
lim

n→∞
D(STxn, Sz) + lim

n→∞
D(Sz, SSxn) + lim

n→∞
D(Sz, TTxn)

]
,

and

lim
n→∞

D(TSxn, SSxn) ≤
1

3

[
lim

n→∞
D(TSxn, T z) + lim

n→∞
D(Tz, SSxn) + lim

n→∞
D(Tz, TTxn)

]
,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

Remark 2.2. Compatible mappings of type (A) =⇒ compatible mappings of type (B) =⇒ compatible
mappings of type (C), but the converse is not true in general.

Example 2.3. : Let D : R× R → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y2, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed mapping

P : R× R → [0,∞)

given by
P (x, y) = x2y2, x, y ∈ R.

Let S, T : X → X be defined by Sx = x
2 and Tx = x

3 , for all x ∈ X, where X = [0,∞). Taking the
sequence {xn} as xn = 1

n , n > 0. Then, S and T are compatible of type (A), compatible of type (B) and
compatible of type (C) also. But the converse is not true in general.

Let X = [1, 20], and D : R× R → [1, 20] be the mapping defined by

D(x, y) = |x− y|+ x2y2, for all x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed mapping

P : R× R → [1, 20]

given by
P (x, y) = x2y2, x, y ∈ R.

Defining S, T : X → X as below:



Compatible Mappings and Their Variants in Perturbed Metric Spaces 9

Sx =


1, if x = 1,

3, if 1 < x ≤ 7,

x− 6, if 7 < x ≤ 20.

and Tx =

{
1, if x = 1 or x ∈ (7, 20],

2, if 1 < x ≤ 7.

Taking sequence {xn} as xn = 7 + 1
n , n > 0. Then, S and T are compatible of type (C), but neither

compatible nor compatible of type (A) nor compatible of type (B).

Definition 2.11. A pair (S, T ) of self-mappings of a metric space (X,D,P ) is said to be compatible
mappings of type (P ) if and only if

lim
n→∞

D(SSxn, TTxn) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X.

Proposition 2.10. Every pair of compatible mappings of type (A) is compatible of type (B).

Proof : Suppose that S and T are compatible of type (A). Then we have

0 = lim
n→∞

D(TSxn, SSxn) ≤
1

2

[
lim
n→∞

D(TSxn, T z) + lim
n→∞

D(Tz, TTxn)
]

and

0 = lim
n→∞

D(STxn, TTxn) ≤
1

2

[
lim
n→∞

D(STxn, Sz) + lim
n→∞

D(Sz, SSxn)
]
,

as derived.

Proposition 2.11. Let S and T be continuous mappings of a perturbed metric space (X,D,P ) into
itself. If S and T are compatible mappings of type (B), then they are compatible of type (A).

Proof : Let {xn} is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X.

Since S and T are continuous, we have

lim
n→∞

D(TSxn, SSxn) ≤
1

2

[
lim

n→∞
D(TSxn, T z) + lim

n→∞
D(Tz, TTxn)

]
= 0,

and

lim
n→∞

D(STxn, TTxn) ≤
1

2

[
lim
n→∞

D(STxn, Sz) + lim
n→∞

D(Sz, SSxn)
]
= 0,

Therefore, S and T compatible of type (A). This completes the proof.

Proposition 2.12. Let S and T be continuous mappings of a perturbed metric space (X,D,P ) into
itself. If S and T are compatible of type (B), then they are compatible.

Proof. Let {xn} be a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X.

Since S and T are continuous, we have

lim
n→∞

SSxn = St = lim
n→∞

STxn
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and
lim
n→∞

TSxn = Tt = lim
n→∞

TTxn.

By triangle inequality, we have

D(STxn, TSxn) ≤ D(STxn, TTxn) +D(TTxn, TSxn).

Letting n → ∞ and taking S and T are compatible of type (B), we have

lim
n→∞

D(STxn, TSxn) ≤ lim
n→∞

D(STxn, TTxn) +D(TTxn, TSxn)

≤ 1

2

[
lim

n→∞
D(STxn, Sz) + lim

n→∞
D(Sz, SSxn)

]
+ lim

n→∞
D(TTxn, TSxn)

= 0.

Therefore, S and T are compatible. This completes the proof. □

Proposition 2.13. Let S and T be continuous mappings of a perturbed metric space (X,D,P ) into
itself. If S and T are compatible, then they are compatible of type (B).

Proof: One can easily prove it using Propositions 2.2 and 2.10.

Proposition 2.14. Let S and T be continuous mappings of a perturbed metric space (X,D,P ) into
itself. Then

(1) S and T are compatible if and only if they are compatible of type (B);

(2) S and T are compatible of type (A) if and only if they are compatible of type (B).

Proposition 2.15. Let S and T be compatible mappings of a perturbed metric space (X,D,P ) into
itself. If Sz = Tz for some z ∈ X, then STz = SSz = TTz = TSz.
Proof. Suppose that {xn} is a sequence in X defined by xn = z, n = 1, 2, . . . for some z ∈ X and
Sz = Tz. Then we have Sxn and Txn → Sz as n → ∞. Since S and T are compatible, we have

D(STz, TSz) = lim
n→∞

D(STxn, TSxn) = 0.

Hence we have STz = TTz. Therefore, since Sz = Tz, we have STz = SSz = TTz = TSz. This
completes the proof. 2

Proposition 2.16. Let S and T be compatible mappings of a perturbed metric space (X,D,P ) into
itself. Suppose that

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X.

Then

(a) limn→∞ TSxn = Sz if S is continuous at z;

(b) limn→∞ STxn = Tz if T is continuous at z;

(c) STz = TSz and Sz = Tz if S and T are continuous at z.

Proof.

(a) Suppose that S is continuous at z. Since limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X, we have
STxn → Sz as n → ∞. Since S and T are compatible, we have

lim
n→∞

D(TSxn, Sz) ≤ lim
n→∞

[D(TSxn, STxn) +D(STxn, Sz)] = 0.

Therefore, limn→∞ TSxn = Sz. This completes the proof.
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(b) The proof of limn→∞ STxn = Tz follows by similar arguments as in (1).

(c) Suppose that S and T are continuous at z. Since Txn → z as n → ∞ and S is continuous at z, by
(1), TSxn → Sz as n → ∞. On the other hand, T is also continuous at z, so TSxn → Tz. Thus,
we have Sz = Tz by uniqueness of the limit, and by Proposition 2.14, STz = TSz. This completes
the proof. 2

Proposition 2.17. Let S and T be compatible mappings of type (B) of a perturbed metric space
(X,D,P ) into itself. If Sz = Tz for some z ∈ X, then

STz = SSz = TTz = TSz.

Proof. Let {xn} is a sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X

and suppose Sz = Tz. Then we have

TSxn → Tz and TTxn → Tz as n → ∞.

Since S and T are compatible of type (B), we have

lim
n→∞

D(TSxn, SSxn) ≤
1

2

[
lim

n→∞
D(TSxn, T z) + lim

n→∞
D(Tz, TTxn)

]
= 0,

and

lim
n→∞

D(STxn, TTxn) ≤
1

2

[
lim
n→∞

D(STxn, Sz) + lim
n→∞

D(Sz, SSxn)
]
= 0,

Hence STz = TTz. Now, since Sz = Tz, we also have

SSz = TSz and TSz = TTz.

Therefore,
STz = SSz = TTz = TSz.

This completes the proof. 2

Proposition 2.18. Let S and T be compatible mappings of type (B) of a perturbed metric space
(X,D,P ) into itself. Suppose that

lim
n→∞

Txn = z and lim
n→∞

Sxn = z for some z ∈ X.

Then

(a) limn→∞ TTxn = Sz if S is continuous at z.

(b) limn→∞ SSxn = Tz if T is continuous at z.

(c) STz = TSz and Sz = Tz if S and T are continuous at z.

Proof: (a) Suppose that S is continuous at z. Since

lim
n→∞

Sxn = lim
n→∞

Txn = z

for some z ∈ X, we have SSxn, STxn → Sz as n → ∞.
Since S and T are compatible of type (B), we have

lim
n→∞

D(TSxn, SSxn) ≤
1

2

[
lim

n→∞
D(TSxn, T z) + lim

n→∞
D(Tz, TTxn)

]
= 0,
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and

lim
n→∞

D(STxn, TTxn) ≤
1

2

[
lim
n→∞

D(STxn, Sz) + lim
n→∞

D(Sz, SSxn)
]
= 0,

Therefore, limn→∞ TTxn = Sz. This completes the proof of (a).

(b) The proof of limn→∞ SSxn = Tz follows by similar arguments as in (a).

(c) Suppose that S and T are continuous at z. Since Txn → z as n → ∞ and S is continuous at z, by
(a), TTxn → Sz as n → ∞. On the other hand, T is also continuous at z, so TTxn → Tz. Thus, we
have Sz = Tz by the uniqueness of limits, and by Proposition 2.16, STz = TSz. This completes the proof.

Remark 2.3. In Proposition 2.17, assume that S and T be compatible mappings of type (C) or of type
(P ) instead of of type (B). The conclusion of Proposition 2.17 still holds.

Remark 2.4. In Proposition 2.18, assume that S and T be compatible mappings of type (C) or of type
(P ) instead of of type (B). The conclusion of Proposition 2.18 still holds.

3. Main Results

Now we prove theorems for these mappings.
Theorem 3.1. Let (X,D,P ) be a complete perturbed metric space and f and g be compatible
self-mappings of X satisfying the following conditions:

(3.1) g(X) ⊆ f(X);

(3.2) f or g is continuous;

(3.3) D(gx, gy) ≤ αD(fx, fy) for every x, y ∈ X and 0 ≤ α < 1.

Then f and g have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. By (3.1) one can choose a point x1 in X such that fx1 = gx0.
In general choose

yn = gxn−1 = fxn, for all n = 0, 1, 2, . . . , where x0 ∈ X. (3.4)

Therefore, from (3.4), we have

D(yn, yn+1) = D(fxn, fxn+1) = D(gxn−1, gxn) ≤ αD(fxn−1, fxn)

= αD(yn−1, yn)

...

≤ αnD(y0, y1). (3.5)

i.e.,
D(yn, yn+1) ≤ αnD(y0, y1).

Let d = D − P be the exact metric. Then, from (3.5), we obtain that

d(yn, yn+1) + P (yn, yn+1) ≤ αnD(y0, y1) ∀n ≥ 0.

Thus, we have

d(yn, yn+p) ≤ αnD(y0, y1) + αn+1D(y0, y1) + · · ·+ αn+p−1D(y0, y1)

= αnD(y0, y1)(1 + α+ · · ·+ αp−1)

= αnD(y0, y1)

(
1− αp

1− α

)
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≤ αn

1− α
D(y0, y1).

Since α ∈ [0, 1), we obtain that < yn > is a cauchy sequence in the metric space (X, d), so < yn > is a
perturbed cauchy sequence in (X,D,P ). By the completeness of the perturbed metric space (X,D,P ),
there exists t ∈ X such that

f(xn) → t. (3.6)

But (3.4) implies that
g(xn) → t. (3.7)

Let us suppose that the mapping g is continuous. Therefore

lim
n→∞

gfxn = lim
n→∞

ggxn = gt.

Since f and g are compatible mappings,

lim
n→∞

D(g(f(xn)), f(g(xn))) = 0. (3.8)

whenever {xn}∞n=1 is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X.

we get
lim
n→∞

fgxn = lim
n→∞

gfxn = gt.

We now prove that t = gt. Suppose t ̸= gt, then D(t, gt) > 0.
From (3.3), on letting x = xn, y = gxn

D(g(xn), g(g(xn))) ≤ α D(f(xn), fg(xn)). (3.9)

Proceeding limit as n → ∞, we get

D(t, gt) ≤ α D(t, gt) < D(t, gt), a contradicition.

Therefore t = gt. Since g(X) ⊆ f(X), we can find t1 in X such that t = gt = ft1.
Now from (3.3), take x = gxn, y = t1, we have

D(g(g(xn)), g(t1)) ≤ α D(f(g(xn)), f(t1)). (3.10)

Taking limit as n → ∞, we get

D(gt, gt1) ≤ α D(gt, ft1) = αD(gt, gt) = 0,

which implies that gt = gt1, i.e.,

t = gt = gt1 = ft1.

Also, by using definition of compatibility,

D(gt, ft) = lim
n→∞

D(g(f(xn)), f(g(xn))) = 0,

which again implies that
ft = gt = t.

Thus t is a common fixed point of f and g.
Uniqueness: We assume that t2(̸= t) be another common fixed point of f and g.
Then D(t, t2) > 0 and

D(t, t2) = D(gt, gt2) ≤ α D(ft, ft2) = αD(t, t2) < D(t, t2),

a contradiction, therefore t = t2. Hence uniqueness follows.
Theorem 3.2. Theorem 3.1 remains true if compatible mappings is replaced by any one (retaining the
rest of the hypothesis) of the following:
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(a) compatible mappings of type (A),

(b) compatible mappings of type (B),

(c) compatible mappings of type (C),

(d) compatible mappings of type (P ).

Proof: Let x0 be an arbitrary point in X. By (3.1) one can choose a point x1 in X such that fx1 = gx0.
In general choose

yn = gxn−1 = fxn, for all n = 0, 1, 2, . . . , where x0 ∈ X. (3.11)

From the proof of Theorem 3.1 we conclude that < yn > is a perturbed cauchy sequence in (X,D,P ).By
the completeness of the perturbed metric space (X,D,P ), there exists t ∈ X such that

f(xn) → t. (3.12)

But (3.11) implies that
g(xn) → t. (3.13)

Let us suppose that the mapping g is continuous. Therefore

lim
n→∞

gfxn = lim
n→∞

ggxn = gt.

(a) In case (f, g) is compatible mappings of type (A), then

lim
n→∞

D(ffxn, gfxn) = 0, and lim
n→∞

D(fgxn, ggxn) = 0,

whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X.
we get

lim
n→∞

ffxn = lim
n→∞

gfxn = lim
n→∞

ggxn = lim
n→∞

fgxn = gt.

We now prove that t = gt. Suppose t ̸= gt, then D(t, gt) > 0.
From (3.3), on letting x = xn, y = gxn

D(g(xn), g(g(xn))) ≤ α D(f(xn), fg(xn)). (3.15)

Proceeding limit as n → ∞, we get

D(t, gt) ≤ α D(t, gt) < D(t, gt), a contradicition.

Therefore t = gt. Since g(X) ⊆ f(X), we can find t1 in X such that t = gt = ft1.
Now from (3.3), take x = gxn, y = t1, we have

D(g(g(xn)), g(t1)) ≤ α D(f(g(xn)), f(t1)). (3.16)

Taking limit as n → ∞, we get

D(gt, gt1) ≤ α D(gt, ft1) = αD(gt, gt) = 0,

which implies that gt = gt1, i.e.,

t = gt = gt1 = ft1.

Also, by using definition of compatibility of type (A),

D(gt, ft) = lim
n→∞

D(g(f(xn)), f(f(xn))) = 0,

which again implies that
ft = gt = t.
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Thus t is a common fixed point of f and g.
(b) In case (f, g) is compatible mappings of type (B), then

lim
n→∞

D
(
gfxn, ffxn

)
≤ 1

2

[
lim
n→∞

D
(
gfxn, gt

)
+ lim

n→∞
D
(
gt, ggxn

)]
, (3.17)

and

lim
n→∞

D
(
fgxn, ggxn

)
≤ 1

2

[
lim

n→∞
D
(
fgxn, ft

)
+ lim

n→∞
D
(
ft, ffxn

)]
, (3.18)

whenever {xn} ⊂ X satisfies limn→∞ fxn = limn→∞ gxn = t ∈ X.
Using (3.17), we get

lim
n→∞

ffxn = lim
n→∞

gfxn = gt.

We now prove that t = gt. Suppose t ̸= gt, then D(t, gt) > 0.
From (3.3), on letting x = xn, y = fxn

D(g(xn), g(f(xn))) ≤ α D(f(xn), ff(xn)). (3.19)

Proceeding limit as n → ∞, we get

D(t, gt) ≤ α D(t, gt) < D(t, gt), a contradicition.

Therefore t = gt. Since g(X) ⊆ f(X), we can find t1 in X such that t = gt = ft1.
Now from (3.3), take x = fxn, y = t1, we have

D(g(f(xn)), g(t1)) ≤ α D(f(f(xn)), f(t1)). (3.20)

Taking limit as n → ∞, we get

D(gt, gt1) ≤ α D(gt, ft1) = αD(gt, gt) = 0,

which implies that gt = gt1, i.e.,

t = gt = gt1 = ft1.

Also, by using definition of compatibility of type (B), from (3.18)

D(ft, gt) = lim
n→∞

D
(
fgxn, ggxn

)
≤ 1

2

[
lim
n→∞

D
(
fgxn, ft

)
+ lim

n→∞
D
(
ft, ffxn

)]
= 0,

which again implies that
ft = gt = t.

Thus t is a common fixed point of f and g.

The proof of part (c) and part (d) follows by similar arguments as in part (a) and (b).
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