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Some Relations and Applications of Fuzzy Automation Sub Semi-Groups

G. Lakshmi Harini∗, E. Keshava Reddy

abstract: [1,2] In this research paper, to showing that A, besides B, remain two sets. Formerly, a relative
ρ from A to B may be defined as a subset of A×B [1,2,3]. For each a ∈ A, we then define aρ in the obvious
way, to find the aρ = {b ∈ B | (a, b) ∈ ρ}. If S and T are two fuzzy semi-groups, then a subset µ ⊆ S × T is
known as a relational morphism from S to T , if the conditions are satisfied by the relations as follows: (RM1)
(∀a ∈ S) aµ ̸= ∅; (RM2) (∀a, b ∈ S) (aµ)(bµ) ⊆ (ab)µ. It is known as injective if, in addition: (RM3)
(∀a, b ∈ S) aµ ∩ bµ ̸= ∅ ⇒ aµ = bµ [4]. To showing every relational morphism is a fuzzy sub semi-group of
direct products S×T . We say that S divides T if there exists a fuzzy sub semi-group U of T and a morphism
ψ from U onto S. Thus, S is a quotient of a fuzzy sub semi-group of T . To shows that S divides T if as well
as only if U is a relation morphism injection originating S to T [4,5,6].

Key Words: Fuzzy sub-groups, sub-product semi-groups, computational product groups, monogenic
fuzzy semi-groups and fuzzy sub-semi-groups.
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1. Introduction

[1,2,3] One in all these directions relies on mathematical logic and fuzzy sets another uses the notion
of baggage that extend sets in a way that allows its constituents to occur more frequently. Recently,
each of the aforementioned methods was linked to a fuzzy grouping automaton plan [7]. Motivated
by the paper, we prefer to define pumping lemmas for fuzzy languages generated both settled which
nondeterministic fuzzy multi-set finite automata, propose the plan of settled fuzzy multi-set infinite
automaton, and uncover some properties of the related languages [7,8]. The following is the schedule
for the granted paper. Basic concepts of multi-sets, actions over multi-sets, multi-set finite automata,
including multi-set languages are presented in Section II-A. Fuzzy multi-set finite automata are covered
in Section II-B [1,2,9,10].

2. Definitions and Lemmas

Definition 2.1 Suppose fuzzy semi-group theory is one type of morphism, is known as Rees morphism,
that does correspond very closely to an ideal. Initially, I is a proper ideal of fuzzy semi-group S, then
ρI = (I × I) ∪ IS.

Lemma 2.1 A then B are two sets formerly a relation ρ from A to B may be defined as a subset of A×B
[1,2,3]. For each a ∈ A, we then define aρ in the obvious way, to find aρ = {b ∈ B | (a, b) ∈ ρ}. If S and
T are two fuzzy semi-groups, then a subset µ ⊆ S × T is known as a relational morphism from S to T ,
if the conditions are satisfied by the relations as follows: (RM1) ∀a ∈ S, aµ ̸= ∅; (RM2) ∀a, b ∈ S,
(aµ)(bµ) ⊆ (ab)µ. It is known as injective if, in addition: (RM3) ∀a, b ∈ S, aµ ∩ bµ ̸= ∅ ⇒ aµ = bµ
[4]. To showing every relational morphism is a fuzzy sub semi-group of the direct product S×T . We say
that S divides T if there exists a fuzzy sub semi-group U of T , and a morphism ψ from U onto S. Thus,

∗ Corresponding author.
2020 Mathematics Subject Classification: 20N25, 06F05.

Submitted August 27, 2025. Published October 09, 2025

1
Typeset by BSPMstyle.
© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.78649


2 G. Lakshmi Harini, E. Keshava Reddy

S is a quotient of a fuzzy sub semi-group of T . To shows if and only if here is an injective structural
morphism from S to T , then S divides T .

Proof: Suppose S and T be the fuzzy semi-groups. A relational morphism µ ⊆ S × T satisfies that
relational morphism conditions are (RM1) ∀a ∈ S, aµ ̸= ∅; (RM2) ∀a, b ∈ S, (aµ)(bµ) ⊆ (ab)µ.

Here aµ = {t ∈ T : (a, t) ∈ µ}, and (aµ)(bµ) is the set {t1t2 : t1 ∈ aµ, t2 ∈ bµ}.
The injectivity condition of (RM3) ∀a, b ∈ S, aµ ∩ bµ ̸= ∅ ⇒ aµ = bµ is division of fuzzy semi-

groups. We say S divides T if: there exists fuzzy sub-semi-group U ⊆ T ; there exists a morphism
ψ : U → S that is onto.

Since (⇒) if S divides T , then there exists an injective relational morphism µ ⊆ S × T . S divides T ,
there exists fuzzy sub-semi-group U ⊆ T and surjective morphism ψ : U → S.

The relation exists µ ⊆ S × T as (a, t) ∈ µ⇔ ψ(t) = a, so aµ ∈ µ⇔ ψ(t ∈ U) = a.
(RM1) ∀a ∈ S, aµ ̸= ∅; (RM2): for a, b ∈ S, take t1 ∈ aµ, t2 ∈ bµ → ψ(t1) = a, ψ(t2) = b,

then ψ(t1t2) = ψ(t1)ψ(t2) = ab⇒ t1t2 ∈ (ab)µ. So, (aµ)(bµ) ⊆ (ab)µ.

Figure 1: The above figure represents (RM1) ∀a ∈ S, aµ ̸= ∅; (RM2) ∀a, b ∈ S, (aµ)(bµ) ⊆ (ab)µ. It is
known as injective if in addition (RM3) ∀a, b ∈ S, aµ ∩ bµ ̸= ∅ ⇒ aµ = bµ.

(RM3): If (aµ) ∩ (bµ) ̸= ∅, then there exists t ∈ U such that ψ(t) = a and ψ(t) = b → a = b → (aµ) =
(bµ). Thus, µ is an injective relational morphism from S to T .

Since (⇔) if an injective relational morphism is present µ ⊆ S × T , then S divides T .

(i) Assume U =
⋃

a∈S aµ ⊆ T . Since µ satisfies (RM1) and (RM2), U is closed under the fuzzy
semi-group operation → a fuzzy sub-semi-group.

(ii) From the definition of ψ : U → S by ψ(t) = a iff t ∈ aµ.

(iii) Well-defined? Injectivity (RM3) guarantees that each t ∈ U is in exactly one aµ, so ψ
is well-defined.

(iv) Surjective? Yes, because aµ ̸= ∅ for all a.

(v) Morphism? For t1 ∈ aµ, t2 ∈ bµ, t1t2 ∈ (ab)µ⇒ ψ(t1t2) = ab = ψ(t1)ψ(t2).
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Thus, ψ is an onto morphism from the fuzzy sub-semi-group U ⊆ T onto S → so S divides T . 2

Definition 2.2 Suppose commutative fuzzy semi-group S, define the relation θSn (n ≥ 1), then
S
ρ and(

S
ρ )(

σ
ρ )
∼= S

ρ . Since the intersection of a non-empty family of congruence’s on a fuzzy semi-group S
is a congruence on S.

Lemma 2.2 For commutative fuzzy semi-group S, define the relation θsn (n ≥ 1) by aθsnb iff (∀x ∈
Sn) xa = xb.

(i) Show that θsn is a congruence on S, and that θs1 ⊆ θs2 ⊆ θs3 ⊆ · · ·

(ii) Show that θsn = 1S for all n if S is a monoid.

(iii) For n = 1, 2, . . ., denote s
θs
n
by Sn. Show that for all (n ≥ 2),then Sn

∼= Sn−1/θ
Sn−1

1 .

(iv) Assumimg that S = ⟨a⟩ = M(m, r) is a finite monogenic semi-group, where m > 1. Show that
S
θS
1

∼= M(m − 1, r) and deduce that S
θS
1

∼= M(m − n, r) for all n < m. Show also that S
θS
n

is

isomorphic to the fuzzy cyclic group of order r for all n ≥ m.

Proof: Given a commutative fuzzy semi-group S, for n ≥ 1, defined as a θsn b ⇐⇒ ∀x ∈ Sn, xa = xb.
Here, Sn is the set of all n-tuples over S, and xa means x1, x2, · · · , xna, i.e., product with a at the end
commutatively ensures order doesn’t matter.

(i) Show that θsn is a congruence on S, and that θs1 ⊆ θs2 ⊆ θs3 ⊆ · · ·
To prove that θsn is a congruence:

• Reflexivity is if xa = xa⇒ a θsn a.

• Symmetry is if xa = xb then xb = xa.

• Transitivity is if xa = xb and xb = xc, then xa = xc.

To show it’s a congruence (compatible with operation): Assuming that a θsn b and let c ∈ S,
show ac θsn bc: For all x ∈ Sn, we have: x(ac) = xca = xcb = x(bc), using commutativity. So,
θsn is a congruence.

Chain of inclusions: If a θsn b, then xa = xb for all x ∈ Sn,

so especially for all x ∈ Sn−1, we can define x′ = (x1, x2, . . . , xn−1, 1) ∈ Sn and apply the definition.
Thus, θs1 ⊆ θs2 ⊆ θs3 ⊆ · · ·

(ii) Show that θsn = 1S for all n, if S is a monoid.

If S is a monoid, it has an identity element e ∈ S. Consider a θsn b, then in particular relation of
monoid is x = (e, e, . . . , e) ∈ Sn. then xa = ea = a , xb = eb = b ⇒ a = b. So θsn is the identity
relation θsn = 1S = {(a, a) | a ∈ S}.

(iii) For n = 1, 2, . . ., denote S
θs
n
by Sn. Show that for all (n ≥ 2) then Sn

∼= Sn−1/θ
Sn−1

1 .

By the definition of Sn
∼= S/θs1 and Sn−1 = S/θsn−1. Consider πn−1 : S → Sn−1 be the canonical

projection, now define θ
Sn−1

1 as: πn−1(a) θ
Sn−1

1 πn−1(b) ⇔ ∀x ∈ Sn−1, xπn−1(a) = xπn−1(b). But
since multiplication in Sn−1 corresponds to multiplication in S modulo θsn−1, the condition reduces

to ∀x ∈ Sn, xa = xb⇒ a θsn b thus Sn = S/θsn
∼= Sn−1/θ

Sn−1

1 .
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(iv) Assuming that S = ⟨a⟩ = M(m, r) is a finite monogenic semi-group, where m > 1. Show that
S
θS
1

∼= M(m − 1, r) and deduce that S
θS
1

∼= M(m − n, r) for all n < m. Show also that S
θS
n

is

isomorphic to the fuzzy cyclic group of order r for all n ≥ m.

Figure 2: The above figure represents S = ⟨a⟩ = M(m, r) is a finite monogenic semi-group, where
m > 1. Show that S

θS
1

∼=M(m− 1, r) and deduce that S
θS
1

∼=M(m− n, r) for all n < m. Show also that
S
θS
n
is isomorphic to the fuzzy cyclic group of order r for all n ≥ m.

The structure of M(m, r): S = {a, a2, . . . , am+r−1}. with am = am+r, so the powers stabilize
after m index x = m, period r.Next we show that S

θS
1

∼= M(m− 1, r) since in θS1 , a θ
S
1 b if xa =

xb for all x ∈ S. Consider ai θS1 aj ⇐⇒ xai = xaj for all x ∈ S. But due to monogenic structure,
cancellation and multiplication only depend on exponents. So, all elements from am−1 onward act
the same when multiplied ⇒ collapse and the number of equivalence classes = m− 1 + r elements
in M(m− 1, r). Thus, S

θS
1

∼=M(m− 1, r).

We take deduction of S
θS
1

∼= M(m − n, r) for all n < m to apply (iii) recursively. Applications of

fuzzy ideals: S1 = S
θS
1

∼=M(m−1, r), S2 = S
θS
2

∼=M(m−2, r), . . . , Sn
∼=M(m−n, r). To show

that S
θS
n

∼= fuzzy cyclic group of order r for n ≥ m all elements ak for k ≥ m behave identically

under multiplication by any x ∈ Sn, because the powers have stabilized due to periodicity. Hence,
beyond m, all non-transient elements fall into one cycle of length r. So, S

θS
n
collapses to a structure

isomorphic to a cyclic group of order r.

2

Lemma 2.3 Consider ρm,r (m, r ≥ 1) be the congruence {(am, am+r)}# on the free monogenic fuzzy
semi-group a+. (Thus, a+/ρ is the monogenic semi-group M(m, r)).

(i) Show that (ap, aq) ∈ ρ iff p, q ≥ m and p ≡ q (mod r).

(ii) Show that, for all m,n, r, s ≥ 1, ρm,r ⊆ ρn,s iff m ≥ n and s divides r.

(iii) Deduce that, for all m,n, r, s ≥ 1, ρm,r ∩ ρn,s = ρmax(m,n), lcm(r,s),

ρm,r ∨ ρn,s = ρmin(m,n), hcf(r,s).

Proof: Consider a+ = {a1, a2, . . .} be the monogenic semi-group generated by a. From the definition of
congruence ρm,r := {(am, am+r)}#, where # is the operation of least congruence on a+ containing the

pair (am, am+r). Then a+

ρ(m,r)
∼=M(m, r), the monogenic fuzzy semi-group of index m and period r.
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Figure 3: The above figure represents ρm,r (m, r ≥ 1) be the congruence {(am, am+r)}# on the free
monogenic fuzzy semi-group a+.

(i) To show that (ap, aq) ∈ ρ iff p, q ≥ m and p ≡ q (mod r).

The relation ρm,r is generated by the identification am ∼ am+r. This allows us to repeatedly “cycle
forward” by steps of r starting at m, i.e., am ∼ am+r ∼ am+2r · · · Hence, in the quotient semigroup:
ap ∼ aq ⇐⇒ p ≡ q (mod r) and p, q ≥ m. So, (ap, aq) ∈ ρ iff p, q ≥ m and p ≡ q (mod r).

(ii) To show that m,n, r, s ≥, ρm,r ⊆ ρn,s iff m ≥ n and s divides r.

Suppose ρm,r ⊆ ρn,s then (ap, aq) ∈ ρ(m,r) ⇒ (ap, aq) ∈ ρ(n,s). Consider am ∼ am+r ∈ ρ(m,r) . For
this to be in ρ(n,s), both m,m + r ≥ n, so m ≥ n, also m + r ≡ m (mod r), so the ”step size” r
must be covered by congruence modulo s, which implies (s | r) ← suppose m ≥ n and (s | r) of
any pair (ap, aq) ∈ ρ(m,r) satisfies: p, q ≥ m ≥ n, p ≡ q (mod r). Since the monoid relation satisfies
(s | r), we have, p ≡ q (mod s), then (ap, aq) ∈ ρ(n,s), thus to satisfies the relation of monoid.

(iii) Deduce of the ρm,r ∩ ρn,s = ρmax(m,n), lcm(r,s), ρm,r ∨ ρn,s = ρmin(m,n), hcf(r,s).

We have the relation p, q ≥ m and p, q ≥ n ⇒ p, q ≥ max(m,n) and p ≡ q (mod r) and p ≡ q
(mod s)⇒ p ≡ q (mod lcm(r, s)). Therefore ρm,r∩ρn,s = ρmax(m,n), lcm(r,s). Similarly ρm,r∨ρn,s =
ρmin(m,n), hcf(r,s). to join the least congruence containing both of ρm,r and ρn,s and smallest index
for which both relations are applicable of min(m,n) largest of modulus such that both congruence’s
are preserved is, hcf(r, s).

2

3. Conclusion

This research paper to find the aρ = {b ∈ B | (a, b) ∈ ρ}. If S and T are two fuzzy semi-groups,
then a subset µ of S × T is known as relational morphism from S to T if the conditions are satisfied by
the relations are follows: (RM1) (∀a ∈ S) aµ ̸= ∅; (RM2) (∀a, b ∈ S) (aµ)(bµ) ⊆ (ab)µ and to showing
more relations applications of fuzzy automation semi-groups i.e., θSn = 1S for all n if S is a monoid,
S
θS
1

∼=M(m− 1, r), and deduce that S
θS
1

∼=M(m− n, r) for all n < m. Show also that S
θS
n
is isomorphic to

the fuzzy cyclic group of order r for all n ≥ m etc.
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