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Attractivity Results for Fuzzy Caputo-Katugampola Fractional Differential Equations
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abstract: This work investigates sufficient conditions for the existence of locally attractive mild solutions
of the Caputo-Katugampola fuzzy fractional differential equation. The main findings are derived using the
fixed-point method, supported by key tools such as Wright-type functions, semigroup theory, and fractional
calculus. Finally, the theoretical results are illustrated through an illustrative example.
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1. Introduction

The study of Fractional differential equations has become a very active area of research because they
are useful in many fields of science and engineering. Equations that use fractional (non-integer) order
derivatives are good at describing real-world processes such as diffusion, transport, earthquakes, fluid flow,
traffic models, mechanics, chemistry, sound waves, and even psychology. These equations are harder to
analyze than ordinary differential equations because fractional derivatives are non-local which means they
depend on the whole past of the function, not just its value at a single point. They also involve special
kernels that behave differently near the starting point. For more details on fractional calculus and its
many applications, there are several good reference books and articles available [1,2,3,4,5,6].

Fractional differential equations have seen substantial development through the work of Zhou [1] and
Kilbas et al., Miller and Ross, Podlubny, Lakshmikantham et al. [7,8,9,10], significantly advancing both
theory and applications across science and engineering.

Allahviranloo et al. [11] investigated fuzzy fractional differential equations using the Caputo fractional
gH-derivative, placing particular emphasis on the existence and uniqueness of solutions. Arshad [12] also
studied the fundamental properties of fuzzy fractional differential equations, focusing on existence and
uniqueness results through fuzzy integral equivalent equations. In a related contribution, Salahshour and
his team [13] addressed the complexities of fractional differential equations within a fuzzy framework,
proposing more effective and efficient methods for obtaining solutions. Hariharan and Udhayakumar [14,
15] have studied approximate controllability in fuzzy fractional systems. One paper focuses on Sobolev-
type systems with Hilfer fractional derivatives and Clarke subdifferential using fixed point theorems.
Another addresses fuzzy fractional evolution equations of order between 1 and 2, employing semigroup
theory. Their work advances control theory for fuzzy fractional systems.

Katugampola introduced the Katugampola fractional integral and derivative operators [16,17], which
include an additional parameter ϱ > 0. When ϱ approaches 0+, these operators coincide with the
Hadamard fractional integral, and for ϱ = 1, they reduce to the Riemann-Liouville fractional integral.
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This parameterization unifies the two classical operators, allowing results proved for the Katugampola
derivative to simultaneously apply to both the Riemann-Liouville and Hadamard derivatives, thus sim-
plifying the theoretical analysis.

Katugampola [18] investigated the existence and uniqueness of solutions for fractional differential
equations involving the Caputo-Katugampola derivative using Schauder fixed point theorem. Almeida et
al. [19] further studied initial value problems for Caputo-Katugampola fractional differential equations,
establishing existence and uniqueness results along with a numerical solution method. Zeng et al. [20]
introduced a discrete form of the Caputo-Katugampola derivative and developed a numerical approach
for solving linear fractional differential equations with the Caputo-Katugampola derivative. Baleanu et
al. [21] explored chaotic dynamics and stability analysis in fractional differential equations based on
the Caputo-Katugampola derivative. More recently, Hariharan and Udhayakumar [22] examined the
existence of mild solutions for fuzzy fractional differential equations employing the Hilfer-Katugampola
fractional derivative. These studies have emerged in recent years and provide a foundational framework for
the development of fuzzy fractional differential equation involving the Katugampola fractional derivative.

Abbas and Benchohra [23] investigated the existence and attractivity of solutions to fractional order
integral equations within the framework of Fréchet spaces. Abbas et al. [24] focused on establishing
existence and attractivity results for solutions to Hilfer fractional differential equations. Using fixed point
theorem and analytical tools, they provided conditions ensuring the existence and asymptotic attractivity
of solutions.

Van Hoa et al. [25] introduced a novel concept of fuzzy fractional derivatives and investigated the
existence and uniqueness of solutions for an initial value problem involving Caputo-Katugampola fuzzy
fractional differential equations. Motivated by this work, the present study examines the existence of
locally attractive mild solutions for fuzzy fractional differential equations with the Caputo-Katugampola
fractional derivative, subject to the following initial condition:

{
CDα,ϱ

0+ x(t) = Ax(t) + f(t, x(t)), t ∈ [0,∞) = U,
x(0) = x0,

(1.1)

where CDα,ϱ
0+ is a Caputo-Katugampola fractional derivative of order 0 < α < 1. The state variable

x(·) takes values within the space F and a fuzzy number is defined as a fuzzy set x : R → [0, 1]. A is the
infinitesimal generator of a C0-semigroup consisting of uniformly bounded linear operators T (t)t≥0 on
the space B and f : U×F → F is a fuzzy valued function, where F denotes the space of all fuzzy numbers
on R.

The manuscript is organized as follows. Section 2 reviews the fundamental concepts of fuzzy fractional
calculus relevant to this study. Section 3 establishes the existence of the proposed mild solution. Section
4 provides an illustrative example to facilitate understanding. Finally, Section 5 presents the conclusions.

2. Preliminaries

Definition 2.1 [26] A fuzzy number is a fuzzy set on R that satisfies properties such as convexity,
normality, and upper semicontinuity. A common way to define a distance between fuzzy numbers x̃ and
ỹ is using a norm-based metric, such as:

d(x̃, ỹ) = ∥x̃− ỹ∥,

where ∥ · ∥ is a norm that measures differences between fuzzy numbers.

Definition 2.2 [14] In a fuzzy number space, the Hausdorff distance can be defined similarly to classical
sets:

dH(x̃, ỹ) = max

{
sup
ζ∈x̃

inf
ς∈ỹ

∥ζ − ς∥, sup
ς∈ỹ

inf
ζ∈x̃

∥ς − ζ∥
}
.

Where ζ, ς represent elements in the support of the fuzzy numbers, and ∥ς− ζ∥ is the norm-based distance
between them.
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Let us consider the function g : N → F (where N = [0, β] and β > 0) with the supremum norm

∥g∥∞ = sup
t∈β

|g(t)|.

A space is defined by

AC1(N) =

{
x : N → F :

dx

dt
∈ AC(N)

}
,

where AC1(N) is absolutely continuous function from N into F. A mapping g : N → F with the norm
and L1 denote the Lebesgue integrable functions defined as

∥g∥1 =

∫ β

0

|g(t)|dt.

We define weighted space of continuous functions Cα(N) and C1
α(N) as follows:

Cα(N) =

{
x : (0, β] → F : x(t) ∈ C

}
with the norm

∥x∥Cα
= sup

t∈N
|x(t)|

and weighted space we define as

C1
α(N) =

{
x ∈ C :

dx

dt
∈ Cα

}
with the norm x

∥x∥C1
α
= ∥x∥∞ + ∥h′∥Cα

FCα = FCα(U),
where FC is a space of all fuzzy numbers of all continuous and bounded functions from U into F and

the weighted space of FCα defined by

FCα =

{
x : (0,+∞) → F : x(t) ∈ FC

}
with the norm

∥x∥FCα
= sup

t∈β
|x(t)|.

Important notions and preliminaries concerning fractional calculus are introduced below:

Definition 2.3 [16] The Katugampola fractional integral of order α and x : (0,+∞) → R for −∞ <
0 < t < ∞ is defined by

Iα,ϱ0+ x(t) =
ϱ1−α

Γ(α)

∫ t

0

sϱ−1

(tϱ − sϱ)1−α
x(s)ds, t > b; ϱ > 0, α > 0.

The Katugampola fractional integral is defined with respect to an additional parameter ϱ > 0. These
operators have special properties based on the value of ϱ.

Remark 2.4 [16] Specifically, as ϱ → 0+, the Katugampola fractional integral converges to the Hadamard
fractional integral,

lim
ϱ→0

Iα,ϱ0+ x(t) =

∫ t

0

(
log t

s

)α−1

Γ(α)
x(s)

ds

s
.

When the parameter ϱ = 1, they coincide with the Riemann-Liouville fractional integral,

Iα,10+ x(t) =

∫ t

0

x(s)

Γ(α)(t− s)1−α
ds.
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Definition 2.5 [25] The Caputo-Katugampola fractional derivative of order α ∈ (0, 1) and parameter
ϱ > 0 of a function x : [0,∞) → R is defined by

CDα,ϱ
0+

x(t) =
ϱα

Γ(1− α)

∫ t

0

(tϱ − sϱ)−αx
′
(s)ds, t > 0,

where Γ(·) is the Gamma function and x′ denotes the classical derivative of x.

Note:-

• If ϱ = 1, then the Caputo-Katugampola fractional derivative reduces to the well-known Caputo
fractional derivative.

• If ϱ = 0+, it becomes the Caputo-Hadamard fractional derivative.

Definition 2.6 [27] A function f : U × F → F is said to satisfy the Caratheodory conditions, if the
following holds:

• The map t → f(t, x) is measurable for x ∈ FCα.

• The map x → f(t, x) is continuous for each t ∈ U.

Lemma 2.7 [28] Assume that the linear operator A acts as the infinitesimal generator of a C0-semigroup
if and only if

• The set A has the property of being closed and D(A) = B.

• The resolvent set p(A) of A includes positive real numbers, ∀ α > 0,

∥T (β,A)∥ ≤ 1

β
,

where T (β,A) = (βqI −A)−1s =
∫∞
0

e−βqtJ(t)sdt.

Lemma 2.8 [25] The system (1.1) can be expressed in the form of the following integral equation:

x(t) = x0 +
1

Γ(α)

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1[Ax(s) + f(s, x(s))]ds. (2.1)

Corollary 2.1 [14] The wright function Tα(µ) is defined by,

Tα(µ) =
∞∑
t=1

(−µ)t−1

(t− 1)! α(1− αt)
, α ∈ (0, 1), µ ∈ [0,+∞).

Which satisfies the equality given below∫ ∞

0

µsTα(µ)dµ =
Γ(1 + s)

(1 + αs)
, s ≥ 0.

Where Tα(µ) is a probability density function and is given as follows

Tα(µ) =
1

α
µ−1− 1

ακα(µ
− 1

α ) ≤ 0, for α ∈ (0, 1), µ ∈ [0,+∞),

where

κα(µ) =
1

π

∞∑
m=1

(−1)m−1µ−mα−1Γ(1 +mα)

m!
sin(mπα).
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Definition 2.9 [29] A mild solution of the system (1.1) is defined as a function x ∈ FCα as follows:

x(t) = Wα

(
tϱ

ϱ

)
x0 +

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Qα

(
tϱ − sϱ

ϱ

)
f(s, x(s))ds, (2.2)

where

Wα

(
tϱ

ϱ

)
=

∫ ∞

0

Tα(µ)J
((

tϱ

ϱ

)α

µ

)
dµ

and

Qα

(
tϱ

ϱ

)
= α

∫ ∞

0

µTα(µ)J
((

tϱ

ϱ

)α

µ

)
dµ.

Definition 2.10 [29] The operators Wα(
tϱ

ϱ ) and Qα(
tϱ

ϱ ) satisfy the following characteristics:

• The operatos
{
Wα(

tϱ

ϱ )
}
t>0

and
{
Qα(

tϱ

ϱ )
}
t>0

are linear, bounded and compact. Hence we obtain:∣∣∣∣Wα

(
tϱ

ϱ

)
x

∣∣∣∣ ≤ K|x| and
∣∣∣∣Qα

(
tϱ

ϱ

)
x

∣∣∣∣ ≤ K
Γ(α)

|x|, with K > 0 and x ∈ B.

• The operators
{
Wα(

tϱ

ϱ )
}
t>0

and
{
Qα(

tϱ

ϱ )
}
t>0

are strongly continuous ∀ t1, t2 ∈ U, we have∣∣∣∣Wα

(
tϱ2
ϱ

)
x−Wα

(
tϱ1
ϱ

)
x

∣∣∣∣ → 0,

∣∣∣∣Qα

(
tϱ2
ϱ

)
x−Qα

(
tϱ1
ϱ

)
x

∣∣∣∣ → 0, as tϱ2 → tϱ1.

Let Ξ : Ψ → Ψ and Ψ ⊂ FCα (where, Ψ is non-empty). Let the solution of the equation be

(Ξx)(t) = x(t). (2.3)

We initiate the following concepts of attractivity of the solutions for the equation (2.3).

Definition 2.11 [24] The equation (2.3) are Locally Asysmptotically Stable (LAS) or Locally Attractive
(LA) in the space FCα, there exist a ball B(x0, i) in FCα such that solution of the equation is u = u(t)
and v = v(t) of the equation (2.3) belongs to B(x0, i) ∪Ψ then the equation is

lim
t→∞

(u(t)− v(t)) = 0, (2.4)

equation (2.4) is uniform with respect to the ball B(x0, i) ∪Ψ. Then the solution of the equation (2.3) is
said to be uniformly LAS or uniformly LA.

Lemma 2.12 [24] If P ⊂ FCα then P is relatively compact in Space of all fuzzy numbers of continuous
and bounded satisfied the bellow conditions:

• The mapping Ξ : Ψ → Ψ belong to P are almost equicontinuous in U that is a equicontinuous on
every compact set in U.

• The mapping Ξ is equiconvergent, that is, given ω > 0, then there exist β(ω) > 0 such that

|x(t)− lim
t→∞

x(t)| < ω,

for every x ∈ P, t ≥ P(ω).

• P is uniformly bounded in FCα.

Theorem 2.13 [22] Let B be a Banach space and D is a nonempty, closed, bounded, and convex subset
of a Banach space B, such that S : D → D is a compact operator. Then S has at least one fixed point in
D.
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3. Existence of Mild Solution

The following results are established under the following hypotheses:

(K1) Let A be the infinitesimal generator of C0-semigroup {T (t), t > 0} in F such that ∥T (t)∥ ≤ K,
where K ≥ 1 be the constant.

(K2) The function f : U× F → F satisfies Caratheodory conditions.

(K3) Then there exists a mapping Φf : U → U, x ∈ F such that:∣∣f(t, x(t))∣∣ ≤ Φf (t), ∀t ∈ U,

and
lim
t→∞

(Iα
0 Φf )(t) = 0.

We define

µ =
KtαϱB(1, α)

Γ(α)ϱα
, and Φ∗

f = sup
t∈U

Φf (t).

Theorem 3.1 Assume that the hypotheses (K1) − (K3) are satisfied. Then, the equation (1.1) has at
least one solution on U, and the equation (2.2) is uniformly locally asymptotically stable.

Proof: Now, we consider the operator Ξ : FCα → FCα, for any element of t ∈ U.

Ξx(t) = Wα

(
tϱ

ϱ

)
x0 +

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Qα

(
tϱ − sϱ

ϱ

)
f(s, x(s))ds.

Next, we define BT = B(0, T ) = {x ∈ FCα : ∥x∥FCα ≤ T}, it is clear that BT is closed, bounded and
convex subset of FCα with ∀ T > 0, such that:(

K|x0|+ µΦ∗
f

)
≤ T.

Next to show that Ξ has a fixed point on BT .

Step-1 The operator Ξ maps the set BT into itself. Let x ∈ BT . Then, ∀t ∈ U we obtain

∥Ξx(t)∥FCα = sup
t∈U

∣∣∣∣Wα

(
tϱ

ϱ

)
x0 +

∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Qα

(
tϱ − sϱ

ϱ

)
f(s, x(s))ds

∣∣∣∣
≤ sup

t∈U

[∣∣∣∣Wα

(
tϱ

ϱ

)
x0

∣∣∣∣+ ∣∣∣∣ ∫ t

0

(
tϱ − sϱ

ϱ

)α−1

sϱ−1Qα

(
tϱ − sϱ

ϱ

)
f(s, x(s))ds

∣∣∣∣]
≤ K

(
|x0|+

∫ t

0

(tϱ − sϱ)α−1

Γ(α)ϱα−1
sϱ−1|f(s, x(s))|ds

)
. (3.1)

By using (K3). ∀t ∈ U, we have ∣∣f(t, x(t))∣∣ ≤ Φf (t).

Hence,
∥Ξx(t)∥FCα

≤
(
K|x0|+ µΦ∗

f

)
.

This implies that:

∥Ξx(t)∥FCα
≤ T. (3.2)

This demonstrates that Ξ maps the ball BT onto itself, implying that Ξ is bounded.
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Step-2 The Ξ is continuous and uniformly bounded. If we consider the sequence of {xn}n∈N such that
xn → x in BT , for every t ∈ U we have

∥Ξxn(t)− Ξx(t)∥FCα
≤ K

Γ(α)

∫ t

0

(tϱ − sϱ)α−1

ϱα−1
sϱ−1|fn(s, x(s))− f(s, x(s))|ds. (3.3)

If two cases, t ∈ [0, β], and t ∈ (β,∞), where β > 0.

Case-(i)

By the Lebesgue dominated convergence theorem, if t ∈ [0, β], xn → x as n → ∞ and the function
f is continuous above equation implies that

∥Ξxn(t)− Ξx(t)∥FCα → 0, n → ∞.

Case-(ii)

If t ∈ (β,∞), from equation (3.3) and the hypotheses satisfies this equation which implies that

∥Ξxn(t)− Ξx(t)∥FCα ≤ 2K
Γ(α)

∫ t

0

(tϱ − sϱ)α−1

ϱα−1
sϱ−1Φ∗

fds.

From the above equation converges to zero as t → ∞, where xn → x as n → ∞ such that,

∥Ξxn(t)− Ξx(t)∥FCα → 0, n → ∞.

By the equation (3.2) satified bounded conditions. Therefore, Ξ(BT ) ⊂ BT is bounded. Hence,
Ξ(BT ) is uniformly bounded.

Step-3 Ξ(BT ) is equiconvergent and equicontinuous, where β > 0, [0, β] ∈ U. Let x ∈ BT and t1, t2 ∈
[0, β], t1 < t2 this yields

∥Ξx(t2)− Ξx(t1)∥FCα
≤ K
Γ(α)

∣∣∣∣ ∫ t2

0

(tϱ2 − sϱ)α−1

ϱα−1
sϱ−1f(s, x(s))ds

−
∫ t1

0

(tϱ1 − sϱ)α−1

ϱα−1
sϱ−1f(s, x(s))ds

∣∣∣∣
≤ K
Γ(α)

∫ t1

0

[(tϱ2 − sϱ)α−1 − (tϱ1 − sϱ)α−1]

ϱα−1
sϱ−1|f(s, x(s))|ds

+
K

Γ(α)

∫ t2

t1

(tϱ2 − sϱ)α−1

ϱα−1
sϱ−1|f(s, x(s))|ds

≤
KΦ∗

f

Γ(α)

[
tαϱ2
ϱα−1

∫ t1
t2

0

(1− uϱ)α−1uϱ−1ds− tαϱ1
ϱα−1

∫ 1

0

(1− uϱ)α−1uϱ−1ds

+
tαϱ2
ϱα−1

∫ 1

t1
t2

(1− uϱ)α−1uϱ−1ds

]

≤
KΦ∗

f

Γ(α)

∫ 1

0

(1− uϱ)α−1uϱ−1ds

[
tαϱ2
ϱα−1

− tαϱ1
ϱα−1

]
≤
KΦ∗

fB(1, α)

Γ(α)ϱα
[tϱ2

α − tϱ1
α
].

Therefore, ∥Ξx(t2)−Ξx(t1)∥FCα
→ 0 as tϱ2 → tϱ1. Hence, we conclude that Ξ(BT ) is equicontinuous.



8 Ramaraj Hariharan and Ramalingam Udhayakumar

Next to prove Ξ(BT ) is equiconvergent, from the equation (3.1) is given by

|(Ξx)(t)| ≤ K|x0|+
K

Γ(α)

∫ t

0

(tϱ − sϱ)α−1

ϱα−1
sϱ−1Φf (s)ds

≤ K|x0|+K(ϱIα0 Φf )(s).

Since, K(ϱIα0 Φf )(s) → 0, therefore

|(Ξx)(t)| ≤ K|x0|+K(ϱIα0 Φf )(s) → 0.

Hence, |(Ξx)(t)− (Ξx)(+∞)| → 0 as t → +∞.

From Steps 1, 2, and 3, and Lemma 2.12, we conclude that Ξ : BT → BT is both continuous and
compact. By applying the Schauder fixed point theorem, Ξ has a fixed point x, which is a solution
of the equation (1.1) on U.

Step-4 We prove local asymptotic stability by assuming that x0 is a solution of the system (1.1) under
the conditions specified in this theorem. By taking x → B(x0, 2µΦ

∗
f ), we obtain

∥(Ξx)(t)− (x0)(t)∥FCα ≤ K
Γ(α)

∫ t

0

(tϱ − sϱ)α−1

ϱα−1
sϱ−1|fn(s, x(s))− f(s, x(s))|ds

≤ 2K
Γ(α)

∫ t

0

(tϱ − sϱ)α−1

ϱα−1
sϱ−1Φf (s)ds

≤ 2µΦ∗
f .

We get,

∥Ξ(x)− x0∥FCα
≤ 2µΦ∗

f

we determine that Ξ is continuous mapping such that

Ξ(B(x0, 2µΦ
∗
f )) ⊂ B(x0, 2µΦ

∗
f ).

If x is a solution of the equation (1.1) then

|x(t)− x0(t)| = |(Ξx)(t)− (Ξx0)(t)|

≤ K
Γ(α)

∫ t

0

(tϱ − sϱ)α−1

ϱα−1
sϱ−1|f(s, x(s))− f(s, x0(s))|ds

≤ 2K(ϱIα0 Φf )(s).

By using (K3), we obtain

lim
t→∞

(Iα
0 Φf )(t) = 0.

Therefore, we determined that

lim
t→∞

|x(t)− x0(t)| = 0.

Finally, the system (1.1) is uniformly locally attractivity.

2
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4. Example

Consider the equation of the form

{(ϱ
D

1
3
0 x

)
(t) = ∂2

∂t2x(t) + f(t, x(t)), t ∈ U,
x(0) = x0,

(4.1)

where ϱD
1
3
0 is the Caputo-Katugampola fuzzy fractional derivative of order α = 1

3 , the additional

parameter ϱ > 0, f : U × F → F is a fuzzy mapping and the linear operator µ = ∂2

∂t2 : D(µ) ⊂ B → B is
continuous functions. f(t, x) = Mt

−1
3 sin t

64(1+
√
t)
, t ∈ U, x ∈ F,

f(0, x) = 0, x ∈ F,

and

M =
9
√
π

16
.

Therefore, the function f is continuous. The hypothesis (K3) is satisfied withΦf (t) =
Mt

−1
3 sin t

64(1+
√
t)
, t ∈ (0,+∞),

Φf (0) = 0.

In addition, we have

I
1
3
0 Φf (t) =

1

Γ
(
1
3

) ∫ t

0

(t− s)
−2
3 Φf (s)ds → 0 as t → ∞.

All conditions of Theorem 3.1 are satisfied. Hence, the problem (4.1) has at least one solution defined on
U, and moreover, the solution of this problem is locally asymptotically stable.

5. Conclusion

The study established sufficient conditions for the existence of locally attractive mild solutions of
Caputo-Katugampola fuzzy fractional differential equations. The results were based on fixed-point meth-
ods and the use of fractional calculus together with semigroup theory. The analysis had been restricted to
the fractional order α ∈ (0, 1), and the results addressed only local attractivity rather than global attrac-
tivity. Future research could explore the applicability of the proposed approach to Caputo-Katugampola
fuzzy fractional differential equations of order α ∈ (1, 2). Moreover, numerical methods for approximating
mild solutions and stability analysis in broader functional spaces present interesting avenues for further
study.
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