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A Novel Numerical Treatment for Solving Fractional Order Delay Integro-Differential
Algebraic Equations Using Fractional Physics-Informed Neural Networks Method
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abstract: This paper introduces a novel computational framework based on Physics-Informed Neural
Networks (PINNs) for the numerical solution of Fractional-Delay Integro-Differential-Algebraic Equations
(FDIDAEs). In the proposed approach, we employ the standard feedforward neural networks (NNs) with
the delay integro-differential algebraic equations are straightforward encoded into the NN using fractional
order differentiation. While the sum of the mean squared fractional order delay integro differential algebraic
equations-residuals and the mean squared error in initial conditions is minimized with respect to the NN
parameters.
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1. Introduction

Many scientific and real-life phenomena or natural problems modeled by fractional calculus topics [1,2,
3,4,5,6,7,8,9,10]. Fractional-order derivatives, integrals, differential equations (FDEs), integral equations
(FIEs), integro-differential equations (FIDEs), or systems of these equations have been recognized as a
powerful tools for accurately describing the properties of complex dynamical processes, surpassing the
capabilities of standard integer-order derivatives and integrals [11,12]. Therefore, researchers dedicate
considerable effort to developing appropriate methods for solving problems involving fractional calculus,
including fractional derivatives and integrals. Given the complexity of obtaining analytical solutions for
fractional differential equations, fractional integral equations, and fractional integro-differential equations,
numerical and approximate methods are commonly employed in most research studies see [11,13,14,15,
16,17,18,19,20,21,22].

Fractional order integro-differential algebraic equations (FIDAEs) is a kind of FIDEs where in a
system of integro-differential equations, there exist at least one equation does not contain any term with
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derivative or integral [23,24]. FIDAEs are commonly employed to study dynamic changes over a time
interval or along a distance, as seen in applications like electric circuits, hydraulic circuits, chemical
reactions [30].

When at least one term of the FIDAE contains a fixed lag τ > 0, the equation transforms into delay
integro-differential algebraic equation of fractional order.

Physics-Informed Neural Networks method, first proposed in [36] are highly effective in solving integer-
order partial differential equations (PDEs) even in the presence of scattered and noisy data. PINNs utilize
conventional feedforward neural networks (NNs), where partial differential equations are directly incor-
porated through automatic differentiation. The training process involves minimizing a loss function that
combines the mean-squared residuals of the PDE and the mean-squared errors associated with the initial
and boundary conditions, optimizing the NNs parameters accordingly [37]. In this work, we modify
certain foundational aspects of the PINNs framework to better suit our problem. Although we apply the
method to a different class of equations, one of the most significant modifications involves replacing the
conventional neural network architecture with a representation based on a weighted power series. In this
approach, the series coefficients are treated as trainable parameters, which are optimized to approximate
the solution. This modification is particularly advantageous when dealing with fractional-order deriva-
tives, which pose challenges for standard automatic differentiation techniques commonly used in PINNs.
To address this, we employ a tailored approach to fractional-order differentiation, replacing automatic
differentiation with manually handled or analytically derived expressions. Despite these changes, the core
idea of incorporating the governing FIDAEs directly into the loss function remains consistent with the
original PINNs methodology.

2. Preliminaries

This section presents fundamental definitions and preliminary notes related to fractional calculus.

Definition 2.1 The left Reimann-Liouville (R-L) fractional order integral of a function u is given by
[17]

0I
α
t u(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1u(τ)dτ, t > 0, α ∈ R+

Definition 2.2 Let u ∈ C[α,m], α ≥ −1, the fractional order derivative in the Caputo sense [1,10]

c
0D

α
t u(t) =


1

Γ(m− α)

∫ t

0

u(m)(s)

(t− s)α+1−m
ds, m− 1 < α < m, s > 0,m ∈ N

dm

dtm
u(t), α = m

Remark 2.1 The following are some properties of the (R-L) fractional order integral and the Caputo
fractional order derivative

(1) 0I
α
t t

µ =
Γ(µ+ 1)

Γ(µ+ α+ 1)
tα+µ , µ > −1 , α > 0

(2) c
0D

α
t t

µ =
Γ(µ+ 1)

Γ(µ− α+ 1)
tµ−α , µ > −1 , α > 0

(3) c
0D

α
t (0I

α
t u(t)) = u(t)

(4) 0I
α
t (

c
0D

α
t u(t)) = u(t)−

∑n−1
k=0

u(k)(0)

k!
tk , t ≥ 0 , n− 1 < α < n

Theorem 2.1 [38] Let u : [a, b] → R be a continuous function and an arbitrary ζ > 0, there exist an
algebraic polynomial p such that

|u(t)− p(t)| ≤ ζ , ∀t ∈ [a, b] (2.1)
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3. Analysis of Physics-Informed Neural Networks Method

Recently, physics-informed deep learning models have gained attention as effective tools for solving
complex mathematical equations, especially differential equations commonly found in scientific and engi-
neering applications. These methods utilize neural networks to approximate solutions which we use here
a weighted power series named ”trial solutions” and embedding physical laws and constraints into the
learning process. Unlike traditional numerical methods, which can be computationally demanding and
struggle with high-dimensional problems, physics-informed neural networks provide a more flexible and
scalable alternative [32].

In this work, we construct fractional PINNs (fPINNs) using a multilayer feedforward architecture
consisting of at least three layers. The input layer receives a set of input variables, each represented
by a corresponding node. These nodes forward weighted signals to the hidden layer, where a nonlinear
activation function is applied. In our formulation, the hidden layer serves to construct the trial solution
of the fractional integro-differential algebraic equation under consideration. The output layer yields the
network’s approximation to the desired solution. Training involves optimizing the network weights so that
the output satisfies the governing equations and associated conditions, typically through minimization of
a suitable loss functional. The backpropagation algorithm is employed to compute gradients and update
weights during the training process.

The architecture of the fractional PINNs employed in this work consists of three layers. The first is
the input layer, which corresponds to a set of equidistant collocation points sampled from the domain of
interest. The second layer is the hidden layer, comprising trainable parameters (weights) and a nonlinear
activation function. Together, these define a trial solution, which will be examined in detail in the
subsequent section. This trial solution is then used to construct a loss function, typically formulated
as the average of the residuals associated with the governing equations and boundary conditions. Upon
training—by minimizing the loss function through weight optimization—an approximate solution to the
problem is obtained, see figure (1).

4. Trial Solution Analysis

The main aim in this section is to construct an assumed solution to the FDIDAE. There are several
ways to construct a trial solution depending on the problem. One of these ways [33] is given by

utrial(t) = A(t) + F (t,N(t,Ω))

Let A(t) denote a function that satisfies the given initial conditions. The term N(t,Ω) represents the
output of the NN, where Ω is the vector of adjustable weights. By invoking Theorem (2.1) and utilizing
the weighted power series representation, we construct the trial solution in a form that inherently satisfies
the initial conditions.

To achieve this, we define an additional term F (t,N(t,Ω)), which is designed so that it does not affect
the initial conditions. Specifically, we set

F (t,N(t,Ω)) = Ψ(t)N(t,Ω)

where Ψ(t) is a differentiable function satisfying

lim
t→t0

Ψ(t) = 0

Consequently, as t → t0, it follows that

F (t,N(t,Ω)) → 0 and utrial → A(t)

Therefore, the trial solution utrial(t) automatically satisfies the initial conditions by construction.
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5. Gradient Descent Method

The gradient descent (GD) method is an optimization procedure used to minimize or maximize ob-
jective functions and is widely applied in various learning techniques. Consider a differentiable function
E(Ω), where Ω = (w0, w1, ..., wm)T . The goal is to minimize E(Ω) such that it approaches zero (though
not necessarily reaching zero), using the gradient descent method. This involves iteratively updating the
variables wl according to the following form:

wl+1 = wl − η∆E(Ω)

Where l is the step, ∆E(Ω) =
∂E

∂wl
, wl is the current position and wl+1 is the next value and η is the

learning rate.

In [34], an alternative form of the gradient descent method was used, given by:

wl+1 = wl +∆wl

∆wl = −η
∂E

∂wl
+ γ∆wl−1

∂E

∂wl
=

R∑
r=0

∂Er

∂wl

Where η and γ are the learning rate and momentum term respectively.

Since the gradient descent method is an iterative procedure that operates in the domain of learnable
parameters [7], we employ it in one instance to optimize the weights. In another instance, we use the
Adam optimization method—described in detail in the following section—to improve the performance of
the backpropagation algorithm.

6. Adam Method

While the gradient descent method is the basic method which first introduced in the previous sec-
tion, Adam method based on the gradient descent method, the momentum method and variation of the
interval is defined by the following [35]

The first momentum defined by

ml = β1ml−1 + (1− β1)
∂E

∂wl

The second momentum is defined by

vl = β2vl−1 + (1− β2)(
∂E

∂wl
)2

And finally

wl+1 = wl − η
m̂l√
v̂l + ϵ

m̂l = ml/(1− βl+1
1 ), v̂l = vl/(1− βl+1

2 )

Where β1,β2 are exponentially decreasing rates for moment estimates, η is the training rate and ϵ is the
stability term.
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Figure 1: Overview of the fPINNs Architecture Along with the Learning Strategy Implemented in This
Paper.

7. The Approach

Let τ > 0 and L2[t0, t0+τ ] denote the space of squared integrable functions on the interval [t0, t0+τ ].
For i = 1, 2, ..., n, let ui(t) ∈ L2[t0, t0 + τ ], and define the vector functions U(t) = (ui(t))

n
i=1 and

Φ(t) = (φi(t))
n
i=1, φi(t) : R → R for all i. We now consider the following FDIDAE

c
0D

αi
t ui(t) =

n∑
i=1

∫ t

0

ki(t, s)ui(s)ds+ Fi

(
t, U(t), U(t− τ)

)
(7.1)

0 < αi ≤ 1, i = 1, 2, ..., n− 1, τ > 0, t > t0

Subject to

g(t, U(t)) = 0 (7.2)

With initial conditions

u0,i(t) = φi(t), i = 1, 2, ..., n, t ∈ [t0 − τ, t0] (7.3)

The solution of problem (7.1)-(7.3) on the interval [t0, t0 + τ ] will be as follows:

First, substituting (7.3) into (7.1) transforms the FDIDAE into FIDAE

c
0D

αi
t ui(t) =

n∑
i=1

∫ t

0

ki(t, s)ui(s)ds+ Fi

(
t, U(t),Φ(t− τ)

)
(7.4)

, 0 < αi ≤ 1, i = 1, 2, ..., n− 1

Subject to

g(t, U(t)) = 0

And initial conditions ui(t0) = φi(t0) = γi, γi ∈ R, i = 1, 2, ..., n, t ∈ [t0, t0 + τ ]

We now introduce trial solutions ũ to approximate the unknown functions
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ũi(t) = Ai(t) + Ψi(t)Ni(t,Ωi), i = 1, 2, ..., n (7.5)

Where Ωi = (w
(i)
0 , w

(i)
1 , ..., w

(i)
m )T is the vector of weights to be determined for each ũi(t), i = 1, 2, ..., n.

The functions Ai(t) are assumed to guarantee the initial conditions, and Ψi(t) are differentiable functions
such that limt→t0 Ψi(t) = 0. Moreover, Ni(t,Ωi) are smooth functions. Here, the terms Ai(t) = ui(t0) =
γi guarantees the initial conditions, and by choosing Ψi(t) = t−t0 for all i we ensure that limt→t0 Ψi(t) = 0
for all i. As pointed out in the previous sections, the choice of Ni(t,Ωi), will be a power series, thus,

Ni(t,Ωi) =

m∑
j=0

w
(i)
j tj , i = 1, 2, ..., n

Therefore, the trial solution (7.5) will be as follows

ũi(t) = γi + (t− t0)
m∑
j=0

w
(i)
j tj , i = 1, 2, ..., n (7.6)

It is clear that (7.6) is always sufficient to enforce the initial conditions, since we have limt→t0 ũi(t) =
γi, and in fact ũi(t0) = γi for all i.

Next, applying the direct substitution of (7.6) into (7.4), yields:

c
0D

αi
t (γi+(t−t0)

∑m
j=0 w

(i)
j tj) =

∑n
i=1

∫ t

0
ki(t, s)(γi+(s−t0)

∑m
j=0 w

(i)
j sj)ds+Fi(t, A(t)+Ψ(t)N(t,Ω),Φ(t−

τ)),
0 < αi ≤ 1, i = 1, 2, ..., n− 1

where A = (Ai)
n
i=1 , Ψ = (Ψi)

n
i=1, N = (Ni)

n
i=1

subject to g
(
t, γ1 + (t− t0)

∑m
j=0 w

(1)
j tj , γ2 + (t− t0)

∑m
j=0 w

(2)
j tj , ..., γn + (t− t0)

∑m
j=0 w

(n)
j tj

)
Now to construct the loss function, the residuals of the given problem becomes:

Ei(t,Ω) =
c
0D

αi
t (γi + (t − t0)

∑m
j=0 w

(i)
j tj) − (

∑n
i=1

∫ t

0
ki(t, s)(γi + (s − t0)

∑m
j=0 w

(i)
j sj)ds + Fi(t, A(t) +

Ψ(t)N(t,Ω),Φ(t− τ))), i = 1, 2, ..., n− 1

En(t,Ω) = g
(
t, γ1 + (t− t0)

∑m
j=0 w

(1)
j tj , γ2 + (t− t0)

∑m
j=0 w

(2)
j tj , ..., γn + (t− t0)

∑m
j=0 w

(n)
j tj

)
It is important to note that, since the initial conditions are embedded within the trial solutions, the

residuals associated with these initial conditions may be neglected.

The total loss function employed in this paper is the mean squared error (MSE), defined as follows:

E(Ω) =
1

N

n−1∑
i=1

N∑
k=1

(Ei(tk,Ω))
2 +

N∑
k=1

(En(tk,Ω))
2 (7.7)

Where Ω = (Ω1,Ω2, ...,Ωn), see Algorithm (1)

Algorithm 1 (Solve FDIDAE) 1: Transform the FDIDAE into FIDAE, equation (7.4) using (7.3).
2: Assume the trial solutions ũi(t) = Ai(t) + Ψi(t)Ni(t,Ωi), i = 1, 2, ..., n.
3: Discretize the given interval with equidistant step sizes {t0 < t1 < t2, ..., tN = tlast}.
4: Construct the loss function E(Ω).

5: Set the initial values of w
(i)
j randomly, for all j = 1, 2, ...,m and i = 1, 2, ..., n.
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6: while Number of iterations < Maximum of iterations do

Update parameters using Adam method wl+1 = wl − η
m̂l√
v̂l + ϵ

with β1 = 0.9, β2 = 0.999, ϵ = 10−8.

7: Substitute the updated parameters into E(Ω).
8: if E(Ω) ≤ δ, δ > 0 then
9: break

10: end if
11: end while
12: The approximate solutions are ũi(t) = Ai(t)+Ψi(t)Ni(t,Ωi), i = 1, 2, ..., n, and according to equation

(2.1), |ui(t)− ũi(t)| ≤ ζ, ∀ t ∈ [t0, tlast].

8. Illustrative Examples

In this section, an illustrative examples are given to prove the efficiency of the suggested method.
All computations are done by MATLAB R2024a on a computer with a 12th Gen Intel Core i9-12900 H
processor and 20 CPUs. In all examples we gave the dimension of Ωi, i.e the value of m, the collocation
of the domain interval, the training rate η, and the elapsed time to obtain the wanted result.

Example 8.1 Consider the following FDIDAE

c
0D

0.5
t u1(t) = u2(t) +

∫ t

0

u1(s)ds− sin(t)− u1(t− 1) + 1 +
√
tE1,1.5 (8.1)

subject to

4
(
u1(t)

)2
+ e2it + e−2it − 4e2t = 2− 4

(
u2(t)

)2
(8.2)

t ≥ 0 with initial conditions
u1(t) = et+1 on t ∈ [−1, 0] (8.3)

, u2(0) = 0, where E1,1.5 is the Mittag-Leffler function. The closed-form solution of the problem given by
equations (8.1) and (8.2) is

u1(t) = et, u2(t) = sin(t).

In Example 8.1, we set m = 4 and N = 10. The learning rate of the Adam method was chosen as
η = 0.001, and the initial guesses for the weights were selected randomly. The elapsed time to obtain the
results was 1.170120 seconds.

Figure (2) illustrates a comparison between the exact and approximate solutions in the t–u plane
for both functions, the relative errors of u1(t) and u2(t), and the total error convergence. Additionally,
Table (1) provides a selection of results, including the exact and approximate values of u1(t) and u2(t),
along with their corresponding relative errors.

Table 1: The exact and approximate solutions u and ũ and the relative errors Ẽ for example (8.1).

t u1 ũ1 Ẽ1 u2 ũ2 Ẽ2

0.22222 1.2488 1.2492 0.00024684 0.2204 0.21907 0.0060063
0.44444 1.5596 1.5596 3.54e-05 0.42996 0.42904 0.0021366
0.67677 1.9675 1.9677 8.76e-05 0.62628 0.62669 0.00066136
0.86869 2.3838 2.3836 7.71e-05 0.76348 0.76336 0.00016508
1 2.7183 2.7182 2.96e-05 0.84147 0.84208 0.00072278

Example 8.2 Consider the following FIDAE

c
0D

0.5
t u1(t) = u3(t) +

∫ t

0

(t− s)u2(s)ds+
√
tE1,1.5 − sin(t)− t4

12
− cos(t) (8.4)
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Figure 2: A comparison between the exact and approximate solutions, the relative errors |u − ũ|/|u| of
u1(t) and u2(t), and the total error for example (8.1).

Figure 3: A comparison between the exact and approximate solutions, the relative errors |u − ũ|/|u| of
u1(t), u2(t) and u3(t), and the total error for example (8.2).

c
0D

0.5
t u2(t) =

∫ t

0

(t− s)u3(s)ds+
Γ(3)

Γ(2.5)
− t− 1 + cos(t) + sin(t) (8.5)

subject to
u1(t) + u2(t) + u3(t)− et − t2 − cos(t)− sin(t) = 0 (8.6)

with t ∈ [0, 1], u1(0) = u3(0) = 1, u2(0) = 0, the exact solution of (8.4)-(8.6) is given by u1(t) = et,
u2(t) = t2, u3(t) = cos(t) + sin(t).

In example (8.2), we set m = 4 and N = 10, the training rate of the Adam method was η = 0.001
and the initial guesses of the weights were chosen randomly. The elapsed time to obtain the results was
1.216274 seconds.

Figure (3) illustrates a comparison between the exact and approximate solutions in the t−u plane for
both functions, the relative errors of u1(t), u2(t) and u3(t), and the total error convergence. Additionally,
Table (2) provides a selection of results, including the exact and approximate solutions for u1(t), u2(t)
and u3(t) along with their corresponding relative errors.

Example 8.3 Consider the following FIDAE

c
0D

0.5
t u1(t) =

∫ t

0

u2(s)ds−
1

2
(1− cos(t)) +

∞∑
k=0

Γ(k + 3)tk+1.5

k!Γ(k + 2.5)
(8.7)
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Table 2: The exact and approximate solutions u and ũ and the relative errors Ẽ for example (8.2).

t u1 ũ1 Ẽ1 u2 ũ2 Ẽ2

0.22222 1.2488 1.2472 0.0013003 0.049383 0.050273 0.018033
0.44444 1.5596 1.5593 0.00022395 0.19753 0.19737 0.00080118
0.67677 1.9675 1.9682 0.00035811 0.45801 0.4575 0.0011338
0.86869 2.3838 2.3831 0.00027162 0.75462 0.75485 0.00030882
1 2.7183 2.7179 0.00013044 1 0.99985 0.00014969

u3 ũ3 Ẽ3

1.1958 1.1921 0.0031346
1.3328 1.3358 0.0022385
1.4059 1.4075 0.0011763
1.4093 1.4054 0.0028003
1.3818 1.3852 0.0024532

Figure 4: A comparison between the exact and approximate solutions, the relative errors |u − ũ|/|u| of
u1(t), u2(t) and u3(t), and the total error for example (8.3).

c
0D

0.5
t u3(t) =

∫ t

0

u1(s)ds+
Γ(2)

Γ(1.5)

√
t+

Γ(3)

Γ(2.5)
t
√
t− ((t2 − 2t+ 2)et − 2) (8.8)

Subject to

u1(t) + u2(t) + u3(t)− t2et − t− t2 − tsin(t2) = 0 (8.9)

With t ∈ [0, 1], u1(0) = u2(0) = u3(0) = 0 and exact solution u1(t) = t2et, u2(t) = tsin(t2) u3(t) = t+ t2.

In example (8.3), we set m = 4 and N = 10, the training rate of the Adam method was η = 0.001
and the initial guesses of the weights were chosen randomly. The elapsed time to obtain the results was
1.092856 seconds.

Figure (4) illustrates a comparison between the exact and approximate solutions in the t−u plane for
both functions, the relative errors of u1(t), u2(t) and u3(t), and the total error convergence. Additionally,
Table (3) provides a selection of results, including the exact and approximate solutions for u1(t), u2(t)
and u3(t) along with their corresponding relative errors.

8.1. Comparison

In this subsection, a comparison between the Adam optimizer and the GD method is presented. The
results shown in Tables (4), (5), and (6) correspond to Examples 8.1, 8.2, and 8.3, respectively. These
results allow for a comparison of the efficiency of the proposed approach when using the Adam optimizer
versus GD.
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Table 3: The exact and approximate solutions u and ũ and the relative error Ẽ for example (8.3)

t u1 ũ1 Ẽ1 u2 ũ2 Ẽ2

0.25253 0.082088 0.082118 0.00036247 0.016092 0.014711 0.085817
0.47475 0.36233 0.36145 0.0024379 0.1061 0.10819 0.019754
0.69697 0.97525 0.96941 0.0059882 0.32541 0.33175 0.019485
0.87879 1.8596 1.8374 0.011942 0.61318 0.63482 0.035277
1 2.7183 2.669 0.018123 0.84147 0.89422 0.062681

u3 ũ3 Ẽ3

0.31629 0.3166 0.00095842
0.70013 0.70003 0.00014358
1.1827 1.1826 0.0001507
1.6511 1.6502 0.00050309
2 1.9975 0.0012505

To ensure a fair comparison, the initial values of the weights were fixed as Ω = (0.1, 0.2, . . . , 1) for
Example 8.1, and Ω =

(
1
15 ,

2
15 , . . . , 1

)
for Examples 8.2 and 8.3.

Table 4: A comparison of the relative errors Ẽ of u1 and u2 between Adam method and GD for example
(8.1).
Note: The elapsed time to obtain the results using Adam method was 1.393165 seconds while the elapsed
time using GD was 101.998194 seconds.

t Adam Ẽ1 GD Ẽ1 Adam Ẽ2 GD Ẽ2

0 0 0 Undefined Undefined
0.11111 5.78e-04 2.79e-04 5.05e-02 2.58e-02
0.22222 1.02e-03 4.49e-04 3.81e-02 1.84e-02
0.33333 1.15e-03 4.76e-04 2.57e-02 1.16e-02
0.44444 9.15e-04 3.62e-04 1.42e-02 5.78e-03
0.55556 4.04e-04 1.49e-04 4.36e-03 1.31e-03
0.66667 2.03e-04 8.94e-05 2.96e-03 1.55e-03
0.77778 6.44e-04 2.56e-05 6.66e-03 2.67e-03
0.88889 6.07e-04 2.40e-04 5.44e-03 1.95e-03
1 2.34e-04 6.85e-05 2.31e-03 5.82e-04

Table 5: A comparison of the relative errors Ẽ of u1, u2 and u3 between Adam method and GD for
example (8.2).
Note: The elapsed time to obtain the results using Adam method was 1.018777 seconds while the elapsed
time using GD was 59.160156 seconds.

t Adam Ẽ1 GD Ẽ1 Adam Ẽ2 GD Ẽ2 Adam Ẽ3 GD Ẽ3

0 0 0 Undefined Undefined 0 0
0.11111 4.02e-04 4.69e-04 4.51e-01 2.01e-01 5.53e-03 2.98e-03
0.22222 9.92e-04 6.25e-04 1.15e-01 4.71e-02 5.77e-03 2.54e-03
0.33333 1.37e-03 5.65e-04 2.74e-02 9.20e-03 3.45e-03 7.83e-04
0.44444 1.36e-03 3.90e-04 8.21e-05 1.53e-03 5.05e-04 8.74e-04
0.55556 9.59e-04 1.85e-04 5.86e-03 3.03e-03 1.75e-03 1.57e-03
0.66667 3.19e-04 1.53e-05 3.48e-03 1.44e-03 2.52e-03 1.03e-03
0.77778 2.84e-04 7.34e-05 6.43e-04 5.13e-04 1.59e-03 3.92e-04
0.88889 4.93e-04 5.24e-05 2.79e-03 1.35e-03 5.45e-04 1.45e-03
1 9.26e-05 9.42e-05 4.25e-04 1.75e-04 2.43e-03 3.11e-04
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Table 6: A comparison of the relative errors Ẽ of u1, u2 and u3 between Adam method and GD for
example (8.3).
Note: The elapsed time to obtain the results using Adam method was 1.592705 seconds while the elapsed
time using GD was 161.459063 seconds.

t Adam Ẽ1 GD Ẽ1 Adam Ẽ2 GD Ẽ2 Adam Ẽ3 GD Ẽ3

0 Undefined Undefined Undefined Undefined Undefined Undefined
0.11111 5.39e-03 6.31e-03 1.41e-01 4.37 9.50e-04 1.17e-02
0.22222 4.46e-04 9.64e-04 1.10e-01 4.67e-01 1.50e-04 4.67e-03
0.33333 1.72e-04 2.97e-03 3.09e-02 2.45e-02 8.74e-05 1.07e-03
0.44444 9.99e-04 3.72e-03 9.25e-04 4.23e-02 7.49e-05 3.70e-04
0.55556 2.51e-03 4.45e-03 8.05e-03 3.93e-02 1.55e-05 6.16e-04
0.66667 4.78e-03 5.87e-03 1.57e-02 2.65e-02 3.93e-05 3.59e-04
0.77778 8.00e-03 8.45e-03 2.49e-02 2.14e-02 2.26e-04 1.26e-04
0.88889 1.24e-02 1.25e-02 3.86e-02 3.19e-02 6.21e-04 3.19e-04
1 1.80e-02 1.83e-02 6.14e-02 6.55e-02 1.24e-03 1.25e-03

9. Conclusions

In this paper, a novel numerical approach using fractional physics-informed neural networks (fPINNs)
method was presented in order to solve fractional order delay integro-differential algebraic equations.
The trial solution that we constructed was efficient to approximate the exact solution and it is easy for
fractional order differentiation. For the learning technique we used Adam method and this decreases
the iterations of the learning process and the elapsed time, while the Gradient Descent method increases
them. We conclude that the proposed approach is very powerful and solving the given problem efficiently.
The approximate results generated by the proposed method closely align with the analytical solutions.
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