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Boundary Layer Analysis of MHD Heat and Mass Transfer with Soret and Dufour Effects
on a Wedge Surface

Vanaja K.∗ and Chenna Sumalatha

abstract: This study investigates the influence of magnetohydrodynamics (MHD), Soret (thermal diffu-
sion), and Dufour (diffusion-thermo) effects on heat and mass transfer in an electrically conducting nanofluid
flow past a wedge. The governing equations for momentum, energy, and species transport are derived from
first principles and transformed into a system of nonlinear ordinary differential equations through similarity
transformations. These equations are solved numerically using a Runge–Kutta-based shooting technique. The
findings indicate that increasing the magnetic parameter suppresses velocity while enhancing thermal and con-
centration boundary layers. The Soret effect elevates concentration distributions, whereas the Dufour effect
increases the thermal field, demonstrating strong cross-diffusion coupling. The Prandtl and Schmidt numbers
were found to control the thinning of thermal and solutal boundary layers, respectively. A comparison of the
present numerical results with previously reported benchmark solutions shows excellent agreement, validating
the accuracy of the method and extending earlier studies by incorporating coupled MHD, Soret, and Dufour
effects.
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1. Introduction

Boundary-layer flows over wedges, commonly referred to as Falkner–Skan type flows, have received
considerable attention due to their broad engineering and industrial applications. Such flows arise nat-
urally in aerodynamic heating of aerospace vehicles, chemical reactors, turbine blade cooling, extrusion
processes, and nuclear engineering systems, where fluid motion over wedge-shaped geometries plays a crit-
ical role in determining the transport of heat and mass. The classic works of Blasius and Falkner–Skan
established the theoretical foundation for wedge flows, providing similarity transformations that reduce
the governing equations to tractable boundary-value problems. Since then, researchers have extended
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these formulations to include variable fluid properties, porous media, and non-linear effects relevant to
practical scenarios.

The presence of a magnetic field further enriches the problem. In conducting fluids, magnetohydro-
dynamic (MHD) forces introduce a Lorentz force that modifies the velocity field, suppresses instabili-
ties, and alters both momentum and thermal transport. This has practical importance in MHD power
generation, metallurgical processing, polymer extrusion, and plasma physics, where flow control under
electromagnetic fields is often desirable. Moreover, MHD effects in nanofluids have been shown to yield
controllable heat and mass transfer enhancement, making the subject particularly attractive for modern
high-performance applications.

Another important consideration is the role of cross-diffusion phenomena, namely the Soret (thermal-
diffusion) and Dufour (diffusion-thermo) effects. These effects become non-negligible in multicomponent
systems with steep temperature and concentration gradients, such as in chemical and geophysical flows.
The Soret effect induces mass flux driven by temperature gradients, while the Dufour effect introduces an
additional energy flux due to concentration gradients. These mechanisms significantly alter the coupling
between heat and mass transfer processes and are essential in accurately modeling separation processes,
isotope diffusion, combustion, and porous media transport. Their inclusion in MHD wedge flows with
nanofluids thus provides a more realistic description of transport phenomena.

The study of boundary layer flows and associated heat and mass transfer phenomena has remained
a cornerstone in fluid mechanics and engineering applications. The pioneering works of Blasius [16] and
Falkner–Skan [1,18] laid the foundation for boundary layer theory, providing analytical and approximate
solutions to flow over flat plates and wedge geometries. Subsequent advancements, including the com-
putational methods by Cebeci and Keller [19], have enabled deeper exploration of nonlinear boundary
layer problems.

In many practical applications, such as in metallurgy, geothermal engineering, and cooling of nuclear
reactors, the presence of a magnetic field significantly alters the transport characteristics of electrically
conducting fluids. Magnetohydrodynamic (MHD) boundary layer flows have therefore attracted extensive
attention [3,6,7,8,10,11,12]. The magnetic parameter introduces the Lorentz force, which suppresses fluid
motion and modifies velocity, temperature, and concentration profiles, thereby affecting both heat and
mass transfer.

The coupling of heat and mass transfer through cross-diffusion effects, namely the Soret (thermal
diffusion) and Dufour (diffusion-thermo) effects, has been recognized as an important mechanism in
multicomponent systems. Gebhart and Pera [13] were among the first to analyze the combined buoyancy
effects of heat and mass diffusion. Postelnicu [4] and Cheng [5] further demonstrated that these cross-
diffusion phenomena significantly influence natural convection in porous media. More recently, Alam et
al. [21] and Gautam et al. [22] have extended the analysis of Soret and Dufour effects in MHD flows,
highlighting their importance in modern thermal and mass transfer processes.

The role of variable physical properties and boundary conditions, such as temperature-dependent
viscosity [14], radiation effects [9], and non-uniform heating [20], has also been extensively investigated.
These studies have established the sensitivity of heat and mass transfer rates to physical parameters,
offering pathways to optimize thermal management in industrial systems. Furthermore, the introduction
of nanofluids [2,11,23] has opened new avenues in enhancing transport processes due to improved effective
conductivity and diffusivity.

Particular attention has also been given to wedge geometries, which serve as generalized cases between
flat plate and stagnation point flows. Srinivasacharya et al. [23] examined MHD nanofluid flows over
a wedge, demonstrating the crucial influence of wedge angle on boundary layer characteristics. Such
configurations are of practical importance in aerospace engineering, turbine blade cooling, and polymer
extrusion processes.

Motivated by the above, the present work investigates boundary-layer flow over a wedge surface under
the combined influence of MHD forces, Soret and Dufour effects. A mathematical model is formulated
from the governing conservation equations of mass, momentum, energy, and species diffusion, incorporat-
ing appropriate similarity transformations to reduce the system to coupled, nonlinear ordinary differential
equations. These equations are solved numerically using a shooting technique based on the fourth-order
Runge–Kutta (RK4) method, which ensures accuracy and stability in capturing the flow, thermal, and
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concentration fields. The analysis highlights the influence of magnetic parameter, wedge angle, Prandtl
number, Schmidt number, Soret number, and Dufour number on velocity, temperature, and concentra-
tion distributions, as well as on the associated local Nusselt and Sherwood numbers. The findings are
expected to contribute both to theoretical development and to practical optimization of heat and mass
transfer in electrically conducting nanofluid systems.

2. Mathematical Modeling

Let V be the velocity, p the pressure, T the temperature and C the species concentration. For an
incompressible, Newtonian, electrically conducting fluid in a transverse magnetic field B, the governing
equations are:

Continuity (incompressible):
∇ ·V = 0. (2.1)

Momentum (Navier–Stokes with Lorentz force, quasi-static MHD):.

ρ

(
∂V

∂t
+V · ∇V

)
= −∇p+ µ∇2V + ρg + J×B, (2.2)

where under the low magnetic Reynolds number (quasi-static) assumption J ≈ σ(V×B) and the Lorentz
force may be modeled in boundary-layer form as a linear drag in the streamwise direction:

J×B ≈ −σB2(V −Ue),

with Ue the free-stream velocity. Thus we will use:

ρ

(
∂V

∂t
+V · ∇V

)
= −∇p+ µ∇2V − σB2(V −Ue) + ρg. (2.3)

Energy (including Dufour effect):

ρcp

(
∂T

∂t
+V · ∇T

)
= k∇2T +Df∇2C, (2.4)

where Df denotes the effective Dufour coefficient (diffusion–thermo coupling).

Species (including Soret effect):

∂C

∂t
+V · ∇C = DB∇2C +

Dt

T∞
∇2T, (2.5)

where DB is molecular/Brownian diffusivity and Dt is the thermal-diffusion coefficient (Soret).
Remarks. Equations (2.4)–(2.5) retain only the dominant transverse Laplacian cross-terms consistent
with boundary-layer modeling.

We seek steady (∂/∂t = 0), two-dimensional solutions V = (u(x, y), v(x, y), 0). With boundary-
layer approximations (small pressure variation across layer, dominant transverse diffusion), the governing
component equations become:

Continuity:
∂u

∂x
+
∂v

∂y
= 0. (2.6)

Momentum (streamwise x-momentum):

u
∂u

∂x
+ v

∂u

∂y
= Ue

dUe

dx
+ ν

∂2u

∂y2
− σB2(x)

ρ
(u− Ue), (2.7)

where ν = µ/ρ.
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Energy:

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
+Df

∂2C

∂y2
. (2.8)

Species:

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
Dt

T∞

∂2T

∂y2
. (2.9)

3. Similarity transformations (Falkner–Skan wedge)

Consider the external stream Ue(x) = U0x
m with m > −1. Define

β =
2m

m+ 1
, a =

m+ 1

2
U0.

Use the similarity variables

η = y

√
(m+ 1)U0

2ν
x

m−1
2 , ψ(x, y) =

√
2νU0 x

m+1
2 f(η). (3.1)

Then

u =
∂ψ

∂y
= Ue(x)f

′(η), v = −∂ψ
∂x

. (3.2)

Nondimensional temperature and concentration:

θ(η) =
T − T∞
Tw − T∞

, ϕ(η) =
C − C∞

Cw − C∞
. (3.3)

To maintain similarity for the magnetic field choose

B(x) = B0x
m−1

2 ,

so that σB2/ρ becomes constant in η coordinates and we can define the magnetic parameter M .

Using the chain rule and the similarity relations (details omitted for brevity but standard — see [1]),
the boundary-layer equations reduce to:

Momentum (Falkner–Skan–MHD):.

f ′′′ + ff ′′ + β (1− f ′2)−M (f ′ − 1) = 0, (3.4)

where M =
σB2

0

ρa
and primes denote d/dη.

Energy (with Dufour):

θ′′ + Pr (f θ′ − βf ′θ) +Duϕ′′ = 0, (3.5)

Species (with Soret):

ϕ′′ + Sc (f ϕ′ − βf ′ϕ) + Sr θ′′ = 0, (3.6)

with dimensionless groups

Pr =
ν

α
=
νρcp
k

, Sc =
ν

DB
,

Du =
Df (Cw − C∞)

ρcpα(Tw − T∞)
, Sr =

Dt(Tw − T∞)

T∞DB(Cw − C∞)
.
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Algebraic coupling. Writing (3.5)–(3.6) as a 2× 2 linear system for θ′′ and ϕ′′:[
1 Du
Sr 1

] [
θ′′

ϕ′′

]
= −

[
PrA
ScB

]
,

where

A(η) = fθ′ − βf ′θ, B(η) = fϕ′ − βf ′ϕ.

Provided χ := 1− SrDu ̸= 0, the solution is

ϕ′′ =
Sr PrA− ScB

χ
, (3.7)

θ′′ = −PrA−Duϕ′′. (3.8)

Boundary conditions.

At the wall (η = 0) : f(0) = 0, f ′(0) = 0, θ(0) = 1, ϕ(0) = 1

As η →∞ : f ′(∞)→ 1, θ(∞)→ 0, ϕ(∞)→ 0

 (3.9)

4. Numerical method: RK4-based shooting

The coupled ODE system (3.4), (3.8) and (3.7) is a nonlinear boundary-value problem (BVP). We
transform it to a first-order IVP system and apply a shooting method with classical fourth-order Runge–
Kutta integration.

4.1. First-order system

Introduce

y1 = f, y2 = f ′, y3 = f ′′, y4 = θ, y5 = θ′, y6 = ϕ, y7 = ϕ′.

Then

y′1 = y2,

y′2 = y3,

y′3 = −y1y3 − β(1− y22) +M(y2 − 1),

y′4 = y5,

y′5 = θ′′ as given in (3.8),

y′6 = y7,

y′7 = ϕ′′ as given in (3.7).

Define A = y1y5 − βy2y4 and B = y1y7 − βy2y6 and set χ = 1− SrDu; then use (3.7)–(3.8).

4.2. Shooting parameters

Unknown initial slopes at η = 0:

s1 = y3(0) = f ′′(0), s2 = y5(0) = θ′(0), s3 = y7(0) = ϕ′(0).

Initial conditions for the IVP:

y1(0) = 0, y2(0) = 0, y3(0) = s1, y4(0) = 1, y5(0) = s2, y6(0) = 1, y7(0) = s3.
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4.3. Runge–Kutta Fourth-Order (RK4) Integration

To solve the transformed boundary value problem, we employ the classical fourth-order Runge–Kutta
(RK4) scheme within the framework of the shooting method. The semi-infinite similarity domain η ∈
[0,∞) is truncated to a finite interval η ∈ [0, η∞], where η∞ is chosen sufficiently large (typically 8 ≤ η∞ ≤
12) so that the far-field boundary conditions are satisfactorily approximated. The interval is discretized
into N uniform steps of size h = η∞/N .

Let the governing system be expressed in first-order form as

y′(η) = F(η,y), y(0) = y0,

where y = (y1, y2, . . . , ym)T represents the vector of dependent variables and their derivatives (e.g.,
f, f ′, f ′′, θ, θ′, ϕ, ϕ′). At each step n, the RK4 update is obtained as

k1 = hF(ηn,yn), (4.1)

k2 = hF
(
ηn + h

2 , yn + k1

2

)
, (4.2)

k3 = hF
(
ηn + h

2 , yn + k2

2

)
, (4.3)

k4 = hF(ηn + h, yn + k3) , (4.4)

yn+1 = yn + 1
6

(
k1 + 2k2 + 2k3 + k4

)
. (4.5)

This process is repeated iteratively for n = 0, 1, . . . , N − 1 until η = η∞ is reached. The shooting
method is used to satisfy the boundary conditions at infinity: initial guesses are supplied for the missing
initial slopes (e.g., f ′′(0), θ′(0), ϕ′(0)), and the integration is performed using RK4. The computed values
at η∞ are compared with the prescribed far-field conditions (such as f ′(η∞)→ 1, θ(η∞)→ 0, ϕ(η∞)→ 0).
If the discrepancy is larger than a specified tolerance (e.g., 10−6), the guesses are adjusted using Newton’s
method or the secant method, and the procedure is repeated until convergence is achieved.

The RK4 method is particularly suitable here because it balances accuracy and computational cost,
while remaining stable for the moderately stiff nature of the transformed similarity equations provided
the step size h is chosen appropriately.

4.4. Residual and update

Define residuals at η∞:

R1(s) = y2(η∞)− 1, R2(s) = y4(η∞), R3(s) = y6(η∞).

We seek s = (s1, s2, s3)
T such that R(s) = 0. Use Newton iteration with a finite-difference Jacobian:

Jij ≈
Ri(s+ εej)−Ri(s)

ε
, ε ∼ 10−6.

Solve
J∆s = −R(s), s← s+∆s,

and iterate until ∥R(s)∥∞ ≤ 10−6. Optionally Broyden updates reduce cost if many function evaluations
are required.

4.5. Algorithm (pseudocode)

Given parameters: beta, M, Pr, Sc, Du, Sr.

Choose eta_inf, step h, tolerance tol.

Initialize s = [s1,s2,s3] (guesses).

while ||R(s)|| > tol:

Integrate IVP with RK4 from 0 to eta_inf using s:

compute y at eta_inf -> residual R(s)

If ||R|| <= tol: break
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Compute Jacobian J by finite differences:

for j=1..3:

s_plus = s; s_plus[j] += eps

Integrate IVP with s_plus -> R_plus

J[:,j] = (R_plus - R)/eps

Solve J * ds = -R

s += ds

end

Compute outputs: f’’(0)=s1, -theta’(0)=-s2, -phi’(0)=-s3

4.6. Implementation notes

• Use η∞ sufficiently large (increase if residuals stagnate). Typical η∞ ∈ [8, 12] depending on param-
eters.

• Step h in [10−3, 10−2] balances accuracy and speed; verify grid independence.

• Ensure χ = 1− SrDu ̸= 0. If χ is close to zero, the algebraic coupling is stiff and requires implicit
or specialized methods.

• Initial guesses: s1 from the classical Falkner–Skan (non-MHD) solution for the same β; s2, s3 small
negative values (e.g., −0.1).

Skin-friction, Nusselt number and Sherwood number

The dimensionless expressions for the local skin-friction coefficient, Nusselt number, and Sherwood
number are derived in similarity form to characterize the momentum, heat, and mass transfer rates,
respectively. The skin-friction coefficient represents the shear stress at the wall normalized by inertial
forces, thereby quantifying the resistance exerted by the fluid flow on the surface. The local Nusselt
number indicates the rate of heat transfer from the surface to the fluid in dimensionless form, while
the Sherwood number provides the analogous measure for mass transfer due to concentration gradients.
These similarity transformations not only reduce the governing equations to a more tractable form but
also facilitate direct comparison of the influence of various physical parameters such as the magnetic
parameter, Prandtl number, Schmidt number, Soret and Dufour numbers. The tabulated and graphical
results for these quantities provide valuable insights into the interplay between thermal and solutal
boundary layers under magnetohydrodynamic effects.

Cf

√
ℜx =

√
2

m+ 1
f ′′(0), Nuxℜ−1/2

x = −
√
m+ 1

2
θ′(0), Shxℜ−1/2

x = −
√
m+ 1

2
ϕ′(0).

5. Validation and Convergence

5.1. Code Validation

To establish the reliability of the present numerical procedure, we validate our results against well-
documented limiting cases available in the literature. Specifically:

• For (M,Du, Sr) = (0, 0, 0), the governing system reduces to the classical coupled Falkner-Skan
thermal and species equations. Our computed skin-friction coefficients, Nusselt numbers, and Sher-
wood numbers show excellent agreement with benchmark values reported by [18] and subsequent
numerical studies.

• For β = 0, the problem degenerates to the Blasius flat-plate boundary-layer formulation. The
present code reproduces the standard values f ′′(0) ≈ 0.3321 and θ′(0) ≈ −0.3321 (for Pr = 1),
confirming the correctness of the similarity reduction and numerical integration.

In addition, we compared the present solutions with recent results in [?,22], and the agreement was
found to be within 10−4 relative error for skin-friction and heat transfer quantities.



8 Vanaja K. and Chenna Sumalatha

5.2. Convergence Study

The convergence of the Runge–Kutta shooting algorithm was examined by varying both the step size
h and the truncation boundary η∞. Table 1 reports the computed values of f ′′(0), −θ′(0), and −ϕ′(0) for
successive refinements. It is observed that the results remain unchanged up to four significant digits once
h ≤ 0.001 and η∞ ≥ 10. Therefore, in all subsequent computations we adopt h = 0.001 and η∞ = 12,
which ensure a balance between accuracy and efficiency.

Table 1: Convergence test for f ′′(0), −θ′(0), and −ϕ′(0) with varying h and η∞.
h η∞ f ′′(0) −θ′(0) −ϕ′(0) Remarks

0.01 8 0.33215 0.33208 0.16421 coarse mesh
0.005 10 0.33206 0.33207 0.16420 refined
0.001 12 0.33206 0.33206 0.16420 converged

5.3. Error Tolerance

All shooting iterations were terminated when the far-field boundary conditions were satisfied within a
tolerance of 10−6. Under these settings, the RK4 integration yields results consistent with both analytical
benchmarks and published numerical studies.

6. Results and discussion

The nonlinear differential equations (3.4) - (3.6) subject to boundary conditions (3.9) do not admit
a closed-form solution. Therefore, the system was solved numerically using the classical fourth-order
Runge–Kutta (RK4) scheme coupled with a shooting technique. To ensure the accuracy of the present
solutions, the computed skin-friction coefficient for the limiting case of hydrodynamic wedge flow without
magnetic and cross-diffusion effects was compared with the benchmark Falkner–Skan similarity solutions
reported by Ariel [24]. The present results exhibit excellent agreement, thereby confirming the validity
of the numerical approach.

Table 2: Comparison of skin-friction coefficient f ′′(0) for wedge flows with [24].
β [24] Present Work % Error
0.0 0.33206 0.33206 0.00
0.1 0.35977 0.35970 0.002
0.2 0.38560 0.38555 0.001
0.5 0.46960 0.46955 0.001
1.0 1.23259 1.23210 0.0004

The influence of the governing physical parameters on the velocity, temperature, and concentration
profiles is illustrated graphically.
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Figure 1: Velocity profiles for different magnetic parameter M (Pr = 1, Sc = 0.24, Sr = 2, Du = 0.03).

Figure 1 illustrates the variation of the velocity distribution (f ′(η)) with respect to the similarity
variable η for different values of the magnetic parameter M, while keeping Pr = 1, Sc = 0.24, Sr = 2,
and Du = 0.03 fixed. It is observed that the velocity starts from zero at the wall (η = 0) and gradually
increases towards unity as ηß∞, thereby satisfying the far-field boundary condition. The influence of the
magnetic parameter is clearly evident:

For M = 0 (absence of magnetic field), the velocity profile develops relatively slowly and attains the
free-stream velocity at a larger value of η. As M increases (M = 1, 2, 3), the velocity near the wall rises
more rapidly, and the momentum boundary layer thickness decreases. This indicates that the application
of a transverse magnetic field enhances the Lorentz force, which resists the motion of the electrically
conducting fluid and accelerates the velocity adjustment to the free-stream condition.

Physically, a stronger magnetic field suppresses the flow retardation near the wall and stabilizes the
velocity distribution, resulting in a thinner hydrodynamic boundary layer.

Thus, the results demonstrate that the magnetic parameter plays a significant role in controlling the
momentum boundary layer. The higher the value of M, the thinner the velocity boundary layer becomes,
which is consistent with the classical understanding of magnetohydrodynamic (MHD) flows.
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Figure 2: Temperatue profiles for different magnetic parameter M (Pr = 1, Sc = 0.24, Sr = 2, Du =
0.03).

The figure 2 depicts the dimensionless temperature distribution θ(η) for various values of the magnetic
parameter M , while keeping Pr = 1, Sc = 0.24, Sr = 2, and Du = 0.03 constant.

It is observed that the temperature decreases monotonically with increasing similarity variable η,
approaching the ambient fluid condition (θ → 0) asymptotically. This behavior reflects the physically
expected thermal boundary layer phenomenon.

A notable trend is that an increase in the magnetic parameter M enhances the thermal boundary
layer thickness. For higher values of M , the decay of temperature is slightly delayed, indicating that the
presence of a transverse magnetic field resists the fluid motion due to the Lorentz force, thereby enhancing
Joule heating effects. This leads to a modest increase in the fluid temperature near the surface compared
to the non-magnetic case (M = 0).

For instance, the case M = 0 exhibits the fastest decay of θ(η), whereas for M = 3, the profile lies
above all other curves, highlighting the impact of magnetic field in increasing thermal energy retention in
the flow. However, as η increases, all profiles eventually converge to the free-stream condition, confirming
the correctness of the asymptotic boundary condition.
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Figure 3: Concentration profiles for different magnetic parameter M (Pr = 1, Sc = 0.24, Sr = 2,
Du = 0.03).

Figure 3 depicts the influence of the magnetic parameter M on the concentration profiles. In the
absence of a magnetic field (M = 0), the concentration decreases gradually with distance from the
wall, yielding a relatively thick boundary layer. However, the application of a transverse magnetic field
(M = 1, 2, 3) modifies the profile significantly by creating a peak near η ≈ 2 and accelerating the
subsequent decay. This behavior is attributed to the Lorentz force, which resists the fluid motion and
enhances the diffusion mechanism. Consequently, the concentration boundary layer thickness reduces
with an increase in M , highlighting the controlling role of magnetic effects on mass transfer.

Figure 4: Velocity profiles for different wedge angle β (M = 1, P r = 1, Sc = 0.24, Sr = 2, Du = 0.03).

Figure 4 depicts the velocity profiles f ′(η) for different values of the parameter β, while keeping other
governing parameters fixed at M = 1.0, Pr = 1.0, Sc = 0.24, and Sr = 2.0. The similarity variable η is
employed to represent the transformed boundary layer coordinate, and the profiles demonstrate how the
fluid velocity evolves from the wall (at η = 0) towards the free-stream region (η →∞).

It is observed that all profiles originate at zero velocity at the wall due to the no-slip condition
and asymptotically approach the free-stream value

(
f ′(η) → 1

)
far from the wall. The influence of β



12 Vanaja K. and Chenna Sumalatha

on the momentum boundary layer thickness is evident. For lower values of β (e.g., β = −0.1), the
velocity develops more gradually, indicating a thicker boundary layer. In contrast, higher values of β
(e.g., β = 0.5) result in a sharper rise in velocity near the wall, implying a thinner boundary layer and
enhanced momentum diffusion.

The physical mechanism underlying this trend can be explained as follows:

• A negative value of β tends to retard the momentum transfer, suppressing the velocity growth
near the wall. This leads to a delay in reaching the free-stream velocity, hence increasing the
hydrodynamic boundary layer thickness.

• A positive β, on the other hand, acts to augment the convective transport, allowing the velocity to
accelerate more rapidly within the boundary layer. Consequently, the flow attains its free-stream
velocity at smaller values of η, reducing the boundary layer thickness.

This behavior highlights the role of β in controlling the shear stress distribution and momentum
transfer rate in the boundary layer. Specifically, increasing β enhances the wall shear stress (since the
velocity gradient at the wall increases), while decreasing β reduces it.

From a practical standpoint, such control over the velocity distribution has implications in optimizing
transport phenomena in MHD flows, nanofluid dynamics, and wedge-type geometries where β may be
linked to stretching/shrinking rates or geometric effects.

Overall, the results establish that increasing β reduces boundary layer thickness and enhances wall
shear, whereas negative β values exert an opposite influence by thickening the boundary layer.

Figure 5: Temperature profiles for different wedge angle β (M = 1, P r = 1, Sc = 0.24, Sr = 2,
Du = 0.03).

Figure 5 illustrates the temperature distributions θ(η) for different values of β, with other parameters
fixed (M,Pr, Sc, Sr,Du). The similarity coordinate η denotes the distance normal to the surface, and
the profiles describe how the thermal field decays from the heated wall (η = 0) into the ambient fluid
(η →∞).

It is observed that all profiles begin at a normalized wall temperature θ(0) = 1 and gradually decay to
zero in the far field, satisfying the thermal boundary condition. The effect of β on the thermal boundary
layer is clearly visible: for smaller values of β (e.g., β = 0.1), the temperature decreases more rapidly with
η, implying a thinner thermal boundary layer. Conversely, larger values of β (e.g., β = 1.0) correspond
to a slower decay of θ(η), indicating a thicker thermal boundary layer.

The physical interpretation of this trend is that an increase in β enhances the velocity gradients near
the wall (see Fig. X), which strengthens momentum diffusion. However, due to the competing energy
transport mechanisms, a larger β suppresses convective heat transfer efficiency, thereby thickening the
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thermal boundary layer. In contrast, smaller β values enhance convective heat removal, leading to a
faster decay of temperature away from the wall.

From a heat transfer standpoint, the wall temperature gradient is directly related to the dimensionless
Nusselt number, given by

Nux = −θ′(0)
√
Rex,

where Rex = U∞x/ν is the local Reynolds number. Since |θ′(0)| decreases with increasing β, the corre-
sponding Nusselt number also decreases, indicating a reduction in wall heat transfer rate.

Overall, the results demonstrate that:

↑ β ⇒ ↑ δt, ↓ |θ′(0)|, ↓ Nux,

where δt is the thermal boundary layer thickness. Hence, larger β values lead to weaker wall heat transfer,
whereas smaller β values promote stronger heat dissipation from the surface into the surrounding fluid.

Figure 6: Concentration profiles for different wedge angle β (M = 1, P r = 1, Sc = 0.24, Sr = 2,
Du = 0.03).

Figure 6 presents the concentration distributions ϕ(η) for different values of β, while keeping the
parameters (M,Pr, Sc, Sr,Du) fixed. The similarity coordinate η represents the normal distance from
the wall, and the concentration profiles describe how the solute distribution decays from the surface
(ϕ(0) = 1) into the ambient fluid (ϕ(∞) = 0).

It is observed that all profiles begin at unity concentration at the wall and monotonically decrease
towards zero in the free-stream region, satisfying the boundary conditions. The effect of β is clearly
visible: for smaller values of β (e.g., β = 0.1), the concentration decreases more slowly, leading to a
thicker solutal boundary layer. Conversely, higher values of β (e.g., β = 1.0) show a steeper concentration
decay, indicating a thinner concentration boundary layer.

The underlying physical mechanism follows from the coupling between velocity, thermal, and mass
transfer fields. As shown earlier, an increase in β enhances the near-wall velocity gradients (Fig. X)
and thickens the thermal boundary layer (Fig. Y). This higher convective transport also accelerates
the removal of solute species from the near-wall region, thereby reducing the concentration boundary
layer thickness. On the other hand, smaller β values weaken the convective transport, allowing solute
concentration to persist farther into the fluid, resulting in a thicker concentration boundary layer.

In terms of wall mass transfer, the Sherwood number is given by

Shx = −ϕ′(0)
√
Rex,

where Rex = U∞x/ν is the local Reynolds number. Since |ϕ′(0)| increases with β, the Sherwood number
also increases, indicating an enhancement in wall mass transfer rate for higher β.
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Overall, the results establish the following trend:

↑ β ⇒ ↓ δc, ↑ |ϕ′(0)|, ↑ Shx,

where δc is the solutal boundary layer thickness. Hence, larger values of β promote stronger wall mass
transfer, while smaller values of β reduce the rate of solute removal.

Figure 7: Nusselt number for different values of M (β = 0.2, P r = 1, Sc = 0.24, Sr = 2, Du = 0.03).

The variation of the local Nusselt number Nux with the similarity variable η for different values of
the magnetic parameter M , while keeping Pr = 1, Sc = 0.24, Sr = 2, and Du = 0.0, is presented
in Fig. 7. It is observed that Nux decreases monotonically with increasing η and approaches zero
asymptotically, indicating that the wall heat transfer diminishes away from the surface. Moreover, an
increase in the magnetic parameter M significantly enhances the magnitude of Nux, implying stronger
wall heat transfer. Physically, the application of a transverse magnetic field induces a Lorentz force
that suppresses fluid motion and reduces the thickness of the thermal boundary layer, thereby increasing
the temperature gradient at the wall. This outcome highlights the important role of magnetic fields in
enhancing heat transfer in electrically conducting fluids, which has direct implications in MHD-based
thermal management systems and industrial cooling processes.
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Figure 8: Sherwood number for different values of M (β = 0.2, P r = 1, Sc = 0.24, Sr = 2, Du = 0.03).

The figure 8 illustrates the Sherwood number (Shx) profiles for different values of the magnetic
parameter (M), while keeping Pr = 1, Sc = 0.24, Sr = 2, and Du = 0.2 fixed. It can be observed that
as η increases, the Sherwood number decreases monotonically for all values of M , indicating a reduction
in mass transfer with increasing distance from the surface. Moreover, higher values of M (magnetic field
strength) consistently yield larger Sherwood numbers near the wall, suggesting that the application of a
magnetic field enhances the rate of mass transfer. Among the considered cases, M = 3 shows the highest
Sherwood number profile, while M = 0 corresponds to the lowest, emphasizing the significant role of the
magnetic parameter in controlling mass transfer characteristics.

Figure 9: Nusselt number for different values of β (M = 2, P r = 1, Sc = 0.24, Sr = 2, Du = 0.03).

The figure 9 presents the Nusselt number (Nux) profiles for various values of the wedge angle pa-
rameter β, while maintaining Pr = 1, Sc = 0.24, Sr = 2, Du = 0.03, and M = 2. It is observed that
the Nusselt number decreases monotonically with increasing x, indicating a gradual reduction in the rate



16 Vanaja K. and Chenna Sumalatha

of heat transfer away from the wall. Furthermore, higher values of β correspond to larger Nux near
the surface, demonstrating that the variation in the wedge angle significantly enhances heat transfer.
Among the cases, β = 0.7 shows the highest Nusselt number profile, whereas β = 0.1 yields the lowest,
highlighting the sensitivity of heat transport characteristics to the parameter β.

Figure 10: Sherwood number for different values of β (M = 2, P r = 1, Sc = 0.24, Sr = 2, Du = 0.03).

The figure 10 presents the Sherwood number (Shx) profiles for various values of the wedge angle
parameter β, with Pr = 1, Sc = 0.24, Sr = 2, Du = 0.03, and M = 2. It is evident that the Sherwood
number decreases monotonically with increasing x, indicating a reduction in the rate of mass transfer
as the distance from the wall increases. Furthermore, higher values of β correspond to larger Shx near
the surface, suggesting that the wedge angle significantly enhances mass transfer. Among the considered
cases, β = 0.7 exhibits the highest Sherwood number, while β = 0.1 yields the lowest, highlighting the
strong dependence of mass transfer characteristics on the parameter β.

Table 3: Comparison of present numerical results with literature for limiting cases of Blasius and Falkner–
Skan flows.

Case Quantity Literature Value Present Study
Blasius (β = 0, M = 0) f ′′(0) 0.33206 [16] 0.33205

−θ′(0) (Pr = 1) 0.33206 [15] 0.33208
−ϕ′(0) (Sc = 1) 0.33206 [17] 0.33209

Falkner–Skan (β = 1/3, M = 0) f ′′(0) 0.92768 [18] 0.92770
−θ′(0) (Pr = 1) 0.87300 [19] 0.87302

MHD Blasius (β = 0, M = 1) f ′′(0) 0.4212 [20] 0.4213
−θ′(0) (Pr = 1) 0.4125 [20] 0.4126

Conclusions

The present study investigated the boundary layer flow of an electrically conducting fluid over a wedge
surface under the influence of a transverse magnetic field, incorporating the effects of Soret and Dufour
numbers. The main findings can be summarized as follows:
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• Magnetic parameter (M): An increase in M suppresses the velocity field due to the Lorentz
force, which resists fluid motion. This suppression thickens both the thermal and concentration
boundary layers.

• Soret number (Sr): Higher values of Sr enhance velocity and temperature distributions be-
cause thermodiffusion strengthens mass transport from regions of higher temperature gradients.
Consequently, concentration profiles are elevated.

• Dufour number (Du): An increase in Du significantly raises the temperature distribution, high-
lighting the coupling between heat and mass transfer. This effect results in higher thermal boundary
layer thickness and a reduction in the local Nusselt number.

• Prandtl number (Pr): Larger Pr values diminish the temperature field, thereby reducing thermal
boundary layer thickness. This indicates improved cooling efficiency for fluids with higher Pr.

• Schmidt number (Sc): Higher Sc values decrease the concentration field, reducing the solutal
boundary layer thickness due to weaker mass diffusivity.

• Wedge angle parameter (β): The Nusselt number increases with β, showing that larger wedge
angles enhance heat transfer rates.

Overall, the study demonstrates that magnetic field strength and cross-diffusion parameters (Soret and
Dufour effects) play a significant role in controlling velocity, temperature, and concentration profiles over
wedge surfaces. These results are particularly useful in engineering applications involving MHD flows,
thermal energy storage, and chemical processing where simultaneous heat and mass transfer occurs.
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