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A Note on Biregular and Triregular Hyperenergetic Graphs

Smitha M. !, Shashirekha S.!, Ashawini M. P.2, Honnegowda C. K.3

ABSTRACT: If G is a molecular graph with eigenvalues p1, 2, us, ..., up for the adjacency matrix of G then,
energy ((G) of graph G is the sum of the absolute values of p;’s. The graphs having energy greater than the
energy of complete graph are known as hyperenergetic graphs. Mathematically we say G is hyperenergetic if
it satisfies the equation {(G) > (2p — 2), where p is the count of vertices in G. In [1,8,6] the authors have
studied various hyperenergetic graphs and established many results regarding hyperenergetic graphs. In this
research paper we obtain constraints for a graph to be hyperenergetic which are biregular and triregular in
terms of count of their vertices and edges.
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1. Introduction

We consider graphs which are finite, undirected and without loops. Basic terminologies and notations
can be found in [10]. Let G represent a simple graph with p vertices. Then we have the adjacency matrix
Adj(G) of G as a matrix of order p x p whose entries are equal to one if vertices v; and v; are adjacent
in G. If vertices v; and v; are not adjacent in G, then entry is zero. We also observe that all the entries
in the principal diagonal elements of Adj(G) are zero.

Let f1, 2, 43, -, thp be the eigenvalues of the graph G. The energy of G is defined as in [5], given by

C(@) = 3 Il (1.1)

The roots of the characteristic polynomial of adjacency matrix of the graph G is known as eigenvalues
of G. The set of eigenvalues of the graph with their multiplicities is known as spectrum of the graph.
Hence we have,

Spectrum(G) = (F1H2 137 B 1.2
p ( ) (7’1,7‘2,7’3,"‘,7’1) ( )

Energy for a graph was introduced by I. Gutman [5], motivated by pi-electron energy in chemistry. A
brief study in energy of graph and various significant results can be found in D. Cvetkovic et.al, [4] and
X. Li et.al, [16]. For added information and history of graph energy one can study in detail in [3,5,7,8]
and the references mentioned in the cited papers.

Two graphs which are non-isomorphic are concluded as co-spectral when they have identical spectra,
otherwise we call them as non-co-spectral. Any two graphs are said to be equienergetic if they have
same energy. Further equienergetic graphs have been studied in X. Li et.al [16]. A symmetric study
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has been done using computers for equienergetic trees in [2] [11]. In [9], we find open problems for
equienergetic graphs. The big challenge and interesting task is to find out equienergetic graphs which are
non-copspectral as well. In [5] I.Gutman during 1978 conjectured that graphs K, which are complete
has maximum energy. The conjecture given by I.Gutman was disproved by H.B. Walikar et.al, in [18].
Further they introduced the concept of hyperenergetic graphs, where they proved that, there exists graphs
whose energy exceeds energy of complete graphs. In [6] I.Gutman showed that hyperenergetic graphs
exists for graphs with vertices p > 8. Further they proved that, there does not exist o hyperenergetic
graphs whose vertices are less than eight. Subsequent computer studies revealed that, among graphs with
large number of edges hyperenergetic graphs are encountered quite frequently.

There are many classes of graphs with p vertices satisfying the inequality,

(G) = p. (1.3)
Here we mention two of them.

Theorem 1.1 [7] Consider graph G which is not-singular, then

(G) = p. (1.4)
Theorem 1.2 [7]Consider graph G , we have

(@) = p. (1.5)

while we also have certain graphs with

C(G) <p. (1.6)
These include acyclic graphs such as K 2 and K; 3 whose energies are 21/2 and 2v/3 respectively. Another
example is Ko 3 whose energy is 21/6 which is less than 5. The energy of the complete graph K, is given
by ¢((K,) = (2p—2). A graph G of order n is called hyperenergetic if ((G) > (2p—2). If {(G) < (2p—2)
then it is called non-hyperenergetic. The line graph L(G) of graph G is constructed by taking edges of
G as vertices of L(G) and joining two vertices in L(G), whenever the corresponding edges in G have a
common vertex. It is well known that line graph of all k-regular graphs, for k > 4, are hyperenergetic.
Two non-isomorphic graphs G; and G of same order are said to be equienergetic if ((G1) = ((Ga).
In [14,15] H.S.Ramane et.al, have proved that if G; and G2 are regular graphs of sameorder then for
k> 2 Li(G1) and Li(G2) are equienergetic. Here, Ly (G) is called iterated line graph of G.
In [17] Samir K. Vaidya et.al, have studied hyperenergetic, equienergetic, and hypoenergetic graphs and
have obtained significant results. Motivated by the above works in this research work we have obtained
conditions under which Biregular and Triregular graphs satisfy the condition ((G) > p.

2. Pre-Requisites
Let pi1, pt2, pi3, .., pip be the eigen values of the graph G. It is well known that
My = 2m. (2.1)
P
My =2 "d} —2m+8q. (2.2)
i=1

where d; is the degree of the it vertex. m is the number of edges in G, ¢ is the number of quadrangles
and M denote the k' spectral moment of the graph G. In [13,12,19], we have lower bound expression

for energy of graph given by,
M3
G) > | 2. 2.3
(6 =57 (23)

2m

¢(G) > 2m\/2 ST B —om 1 8¢’ (2.4)

Now we shall recall the following definitions.

Further we have,
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Definition 2.1 A graph G is said to be w reqular graph, if every vertex of G has degree w.

Definition 2.2 Let r, s be positive integers, 1 <r < s. A graph G is said to be bireqular graph of degree
r and s, if atleast one vertex of G has degree r and atleast one vertex has degree r, and no verter of G
has degree other than r and s. The set of all p- vertex bireqular graphs of degree r and s will be denoted

by 5}0(73 5)'

Definition 2.3 Let r,s,t be positive integers, 1 <r < s <t. A graph G is said to be trireqular graph of
degree r,s and t, if atleast one vertex of G has degree r, atleast one vertexr has degree s, and atleast one
vertex of G has degree t no vertex of G has degree other than r,s and t. The set of all p- vertex trireqular
graphs of degree r, s and t will be denoted by I'p(r, s,t).

If G € B,(r,s), then using (2.4) I. Gutman [8] deduced that

2m
@)=z 2m\/(2r +2s—1)2m — 2rsp+ 8¢’ (2:5)

By employing the above inequality to obtain conditions for biregular and triregular graphs to be hyper-
energetic.

3. Main Results: Biregular Hyperenergetic Graphs

In this section, we determine conditions under which biregular graphs satisfy the condition {(G) > 2p.

Theorem 3.1 Let G € B,(r,s) and let the number of quadrangles q of G be less than or equal to =3 . If
17<r<s< %, then G is hyperenergetic.

Proof: If ¢ < =¥ then —2rsp + 8¢ < 0, Using this in 2.5 we obtain

CEY /m. (3.1)

¢(G) 1 1
e e (e .

This implies

where d = 27’” is the average vertex degree of the graph G. But m > 2,if and only if, s < %.
Hence 2
—92)2 _
CG)>2 if 17<r<s< (”3%. (3.3)
O

: : i (r—2)2—4r
That is G is hyperenergetic if 17 <7 < s < *——— and ¢ < “F.

—A4r

Corollary 3.1 Let G € B,(r,s) be quadrangle free. If 17 <r < s < %, then G is hyperenergetic.

Theorem 3.2 Let G € 3,(r,s) be quadrangle free. If 9 <r < s < (7'1%4), then G is hyperenergetic.

Proof: Since G is quadrangle free we have ¢ = 0. Putting ¢ = 0 in 2.5 and then dividing both sides by

p we obtain,
¢(G) d 1
-— > > —_— 4
P 2 d (2r+25—1)d—2rs_r (2s — 1)’ (34)




4 SMITHA. M, SHASHIREKHA S., ASsHAWINI M. P., HoNNEGOwWDA C. K.

where d = 277”

But

2
4
— > if and only if s< = 2 (3.5)
(2s—1)
Hence, if 9<r<s< w%@, then G is hyperenergetic. O

Now we consider biregular graphs G in which all quadrangles are mutually disjoint. That is no two
of them have a common vertex. Then we have ¢ < £. Using this fact and the function

T
9(x) = z\/(Qr +2s— 1Dz —(2rs—1)’ z € (rs). (36)
I. Gutman [8] proved that
SRS rvr ifr<s<or—14°. (3.7)
D (2r2 —r+2) r

Now, consider the function f(z) = 23 — 822 + 4z — 8. Since f/(x) = 322 — 16z + 4 > 0 if x > 6, the
function f(z) increases monotonically in [6,00). But f(7) < 0 and f(8) > 0. This implies f(r) > 0 if
r > 8, ie, % if r > 8. Hence ((G) > 2pif8<r<s<2s—1+ % Thus we have proved the
following theorem.

Theorem 3.3 Let G € B,(r,s) in which all quadrangles are mutually disjoint, and if 8 < r < s <
2r — 1+ % then G is hyperenergetic.

4. Main Results: Triregular Hyperenergetic Graphs

In this section we consider triregular graphs and determine the conditions under which some classes
of triregular graphs satisfy the condition ((G) > 2p.

If GeT,(1,rs) and G has m edges, then the following inequality has been recently deduced in [1],

2m
¢(G) = 2m\/(2r+23_ 1)(2m — k) —2rs(n — k) + k + 8¢’

(4.1)

where k and ¢ are respectively, the number of pendent vertices and quadrangles in G. If G € T'y(1,2,3)
is a quadrangle free molecular graph with m edges and k pendent vertices, then from 4.1 we have

2m

(@)= 2m\/9(2m k) 1200 k) + Kk

ie,

(@) 2m m

p — p V9Im—6p+ 2k
But

2m m
_— —— > 2.
p \ 9m — 6p + 2k -

if and only if 6p® — (9m + 2k)p? + m? > 0. Thus we have proved the following theorem :

Theorem 4.1 Let G be a quadrangle free molecular graph with p vertices and m edges and k pendent
vertices. If 6p° — (9m + 2k)p? +m? > 0, then G is hyperenergetic.

Corollary 4.1 Let G be a quadrangle free molecular graph with p vertices and m edges. If 4p® +m3 >
9mp?, then G is hyperenergetic.
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Proof: If k is the number of pendent vertices in G then we have —2kp? > —2p>. If
Imp? < 4p® + m?

then
0 < 4p® — 9Imp? +m® = 6p> — (Im + 2p)p? +m> < 6p® — (Im + 2k)p* + m>.

Now, from 4.1 it follows that G is hyperenergetic.

Finally to conclude in this the paper, we discuss the conditions under which certain biregular and
triregular graphs are hyperenergetic in terms of their number of vertices and number of edges. For
a biregular graph we have related quadrangles of graph with degree of biregular graph and obtained
the conditions under which biregular graphs are hyperenergetic. Also obtained conditions under which
quadrangle free biregular graphs are hyperenergetic. Further we have obtained conditions under which
triregular graphs are hyperenergetic, as a corallary we obtained conditions under which quadrangle free
triregular moelecular graphs are hyperenergetic.
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