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Intelligent Energy Optimization in Smart Homes Using Cubic Fuzzy Frank Aggregation

Operators

Aliya Fahmi*, Zahida Magbool, Amna, Saeed Islam and Ishtiaq Ali

ABSTRACT: Energy efficiency in smart homes is a complex challenge that requires intelligent decision-
making under uncertainty. Fuzzy sets and interval-valued fuzzy sets (IFSs) provide effective mathematical
frameworks for handling imprecise data, making them crucial for optimizing energy consumption. This paper
introduces a novel Cubic Fuzzy Frank (CFF) methodology, integrating cubic fuzzy averaging and geometric
aggregation operators to enhance decision-making for energy optimization in smart homes. We develop several
new aggregation operators, including: Cubic Fuzzy Frank Weighted Averaging (CFFWA); Cubic Fuzzy Frank
Ordered Weighted Averaging (CFFOWA); Cubic Fuzzy Frank Hybrid Averaging (CFFHA); Cubic Fuzzy Frank
Weighted Geometric (CFFWG); Cubic Fuzzy Frank Ordered Weighted Geometric (CFFOWG) and Cubic
Fuzzy Frank Hybrid Geometric (CFFHG). These operators, based on Frank t-norm and Frank t-conorm, enable
more accurate and adaptive energy optimization by considering varying levels of uncertainty. Additionally, we
introduce new score and precision functions to refine the decision-making process. A systematic step-by-step
methodology is presented for applying the CFF approach to smart home energy management. To validate its
effectiveness, we provide a numerical case study demonstrating its superior performance compared to existing
techniques. The results highlight the efficiency, adaptability, and practicality of the proposed method, making
it a powerful tool for optimizing energy consumption in intelligent home environments.
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2 A. FAHMI ET AL.

1. Introduction

The drive for sustainable living and growing environmental concerns have increased the need for
energy efficiency in buildings, particularly smart houses. The development of Al technology has opened
up new avenues for energy consumption optimization. However, conventional optimization techniques are
severely hampered by the complexity of building systems, which include varying occupancy levels and
erratic weather.

Figure 1 is supply chain given as below.

Figure 1, different supply selection.

Current methods, such as those based on static models or heuristic algorithms, frequently struggle
to adjust to changes in the environment in real time, which restricts their capacity to achieve consistent
and ideal energy use [40]. Fuzzy logic was the foundation of many Al-driven techniques for building
energy optimization. Although these approaches were successful in controlling uncertainty, they usually
depended on oversimplified models that were unable to fully represent the intricacy of smart home
environments. Systems such as fuzzy-based decision frameworks for assessing HVAC system performance
[42] and adaptive neuro-fuzzy inference system for load forecasting [41] had trouble managing uncertainty
in real-time energy management, especially when taking dynamic factors like weather or human behavior
into account.

Figure 2 is given as

The concept of a fuzzy set, which can address the issue of uncertainty in various contexts, was devel-
oped by Zadeh [1]. Sets with degrees of membership called FSs, and membership functions with values in
the interval [0, 1] are allowed according to the FS theory. However, because there could be some reluctant
degree, it might not always hold in real life that the degree of nonmembership function is equal to one
minus membership function. The intuitionistic F'S was initially proposed by Atanassov [2]. Truth and fal-
sity grades are assigned to the constituents of IFSs. The degree of hesitancy about an element’s truth and
falsity grades within a set must be represented using IFS. IFSs are used in numerous real-world scenarios
to solve issues. One example of this is when we toss a coin; there are two possible outcomes, head or tail.
Expert opinions were represented using the Basic Uncertain Information (BUI) technique, and in a group
decision-making context, these opinions were combined using aggregation operations [3]. The coin shows
either way at a time, but not both ways at once. It developed the theory of Pythagorean fuzzy sets to
address these types of issues [4]. Because PyFS and IFS have the same structure but different conditions,
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Figure 2 dealers.

PyFS was the improved version of IFSs that has overcome their limitations, Aggregation operators [5,
6], similarity measures [7, 8|, decision-making approaches [9, 10], and various sorts of procedures [11,
12] are a few examples of uses of FS and its extensions. By clustering fuzzy c-numbers, Xu and Li [13]
prophesied the reversion of a fuzzy time sequence. This study offers a class of fuzzy clustering procedures
specifically tailored for processing fuzzy data. Fuzzy c-number clusterings are novel algorithms designed
to handle different kinds of fuzzy data more efficiently, fuzzy number forms such as conventional, trape-
zoidal, LR~type, and triangular fuzzy numbers [14]. Akram et al. [15-17] introduced several PFS-imitable
applications. A thorough case study on choosing medical subject experts was used to test an integrated
MCDM algorithm that was created using the suggested operators and the combined criterion weight
determination model [18]. As a result, it can represent the relative relevance of the supplied Pythagorean
fuzzy argument and its ordered position. Several interval-valued Pythagorean fuzzy point operators were
created by Peng et al. [19]. Furthermore, we provide some interval-valued Pythagorean fuzzy point
weighted averaging operators that can modify the degree of the aggregated arguments with a param-
eter by combining the interval-valued Pythagorean fuzzy point operators with the IVPFWA operator.
To address multi-attribute group decision-making under interval-valued Pythagorean fuzzy information,
Rahman et al. [20] presented an operator. The value and compatibility of the discussed methodologies
and decision support systems were examined [21]. The generalized IVPNFWG operator were presented
by Yang et al. [22] to aggregate IVPNF information. A new concept of Pythagorean neutrosophic
normal interval-valued weighted averaging, Pythagorean neutrosophic normal interval-valued weighted
geometric and generalized Pythagorean neutrosophic normal interval-valued weighted averaging as well
as generalized Pythagorean neutrosophic normal interval-valued weighted geometric were discussed by
Palanikumar et al. [23]. Two novel approaches to multi-attribute decision-making in a fuzzy environment
were presented by Seikh et al. [24]. Based on the consistency of the InPLPR, Wang et al. [25] created a
decision-making method that includes estimating missing data, enhancing consistency, and evaluating the
options. An incomplete probabilistic linguistic term set was presented by Liu et al. [26]. The built using
decision-making-based 3WD techniques and the suggested multigranulation q-ROF probabilistic models
by Zhang et al. [27]. Three iterations of MG g-ROF probabilistic rough sets (PRSs) were utilized by
Zhang et al. [28]. Rough and neutrosophic rough sets, and soft and neutrosophic soft rough sets (SRNSs
and NSRSs) are the terms used by Zhang et al. [29] to describe these sets. The distinction between
absolute and relative knowledge distances in the structural characteristics of hierarchical clustering was
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examined by Lian et al. [30]. Anusha et al. [31] covered the hybridizations in addition to providing
an extension of the MSM operators and their requests based on g-rung probabilistic dual hesitant fuzzy
sets. Depending on the evaluation values of each choice, it was frequently possible to examine many
possibilities to arrive at a comprehensive assessment result, for example, by using MADM [32, 33]. A
unique approach to selecting robotic systems for homogenous group DM was presented by Bairagi [34].
These operators were utilized to devise a method for handling group decision-making with CPF infor-
mation. To demonstrate the usefulness and efficiency of the operators and method, a numerical example
was presented [35]. Yahya et al. [36] introduced the Artificial Intelligence applied in DM to choose a
maintenance approach and other research [37, 38, 39, 40, 41, 42].

Figure 3 is given as

This manuscript is structured as follows: Section 2 introduces the concept of CSs. Section 3 presents
operational rules for CFSs, including algebraic and Frank operational laws. In Section 4, we propose
the CFFWA, CFFOWA, CFFHWA, CFFWG CFFOWG and CFFHWG operators. Section 5 outlines an
optimized MADM process for the CF model. Section 6 define the case study and a comparative analysis.
Finally, Section 7 concludes the study.

1.1. Contribution of study

The application of Cubic Fuzzy Frank Aggregation Operators (CFFAQO) has revolutionized intelligent
energy management in smart homes by effectively handling uncertainty and optimizing energy consump-
tion. The key contributions of this study are as follows:

(a) We define operational laws and Cubic Fuzzy sets (CFS) to establish a solid mathematical foun-
dation for energy optimization in smart home environments.

(b) A new accuracy and scoring function is proposed to enhance the precision of decision-making in
energy management systems.

(c) We introduce various CFS aggregation operators, such as CFFWA, CFFOWA, CFFWHA, CF-
FWG, CFFOWG and CFFHG operators, tailored for multi-criteria decision-making (MCDM) in smart
home energy optimization. These operators improve adaptability in managing energy distribution and
consumption under dynamic conditions.

(d) The CFFAO framework effectively integrates and processes inconsistent and varied energy data,
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leading to improved energy efficiency, demand forecasting, and cost reduction. This method is particularly
beneficial in smart homes where energy consumption fluctuates based on user behavior and external
factors.

(e) The CFFAO approach is highly effective in multi-dimensional smart home systems, where multi-
ple energy sources, appliances, and renewable integrations must be managed efficiently. By identifying
consumption patterns and optimizing energy allocation, this method minimizes waste, maximizes sus-
tainability, and enhances overall energy efficiency.

This study presents a robust framework that significantly improves energy management in smart
homes, offering a data-driven, intelligent, and adaptive approach to optimizing energy consumption.

1.2. Motivation

This study focuses on the challenge of energy optimization in smart homes in the development of
intelligent energy management systems.

The Cubic Fuzzy Set (CFS) framework has been designed to allow energy experts to offer insights
more easily. By covering a wider range of information uncertainty, CFS surpasses traditional fuzzy and
interval-valued fuzzy sets, preventing the loss of critical data when converting qualitative energy usage
patterns into quantitative information.

The case study presented can be adapted for use by smart home energy management teams, helping
them enhance energy efficiency through structured decision-making processes. This method provides a
roadmap from expert opinions to actionable energy optimization solutions.

Smart home energy data is often complex, uncertain, and incomplete due to varying consumption
patterns and environmental factors. Conventional optimization methods struggle with such uncertainty.
The Cubic Fuzzy Frank Aggregation Operators (CFFAQ) effectively manage and integrate this data,
significantly improving the reliability of energy optimization decisions and enhancing the overall efficiency
of smart home energy systems.

1.3. Novelty

In this article, we aim to design the following:

i. To define advanced operational laws for Cubic Fuzzy Frank statistics that serve as a valuable
extension to basic operational laws, specifically for optimizing energy management in smart homes, and
to analyze their mathematical properties.

ii. To introduce novel aggregation operators, such as Cubic Fuzzy Frank Aggregation Operators,
tailored for intelligent energy optimization in smart homes, improving decision-making in dynamic envi-
ronments.

iii. To propose a Multi-Criteria Group Decision-Making (MCGDM) technique in the context of cubic
fuzzy sets (CF), designed to optimize various energy-related criteria (e.g., consumption, cost, efficiency)
in smart homes.

iv. To solve a real-world numerical problem related to smart home energy optimization, validating
the effectiveness of the proposed methodology in practical scenarios.

v. To demonstrate the effectiveness and reliability of the proposed approach, a sensitivity analysis is
carried out, assessing the impact of different factors on energy optimization in smart home systems.

The abbreviation of table 1 is written below.

Table 1 of abbreviations

Abbreviations | Full Name

IFFNs Intuitionistic fuzzy frank numbers

CFN Cubic fuzzy number

CFFAO Cubic fuzzy frank aggregation operator
CFFWA Cubic fuzzy frank weighted average
CFFOWA Cubic fuzzy frank ordered weighted average
CFFHWA Cubic fuzzy frank hybrid weighted average
CFFWG Cubic fuzzy frank weighted geometric
CFFOWG Cubic fuzzy frank ordered weighted geometric
CFFHWG Cubic fuzzy frank hyrid weighted geometric
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Definition 2.3 [39] Let a = {s, x} be the IFSs, then the score function is a = Sq — Xa-

Definition 2.4 [39] Let a = {s, x} be the IFSs, then the accuracy function is a = S + Xa-

3.

Operational laws on Frank

The section address the operational laws of the frank t-norm and t-conorm. The frank operational
laws are a collection of axioms that control how operations in fuzzy logic, such as t-norms and t-conorms,
behave. These rules offer a foundation for fuzzy set reasoning and are necessary to create dependable

fuzzy logic systems.

Definition 3.1 Let a1 = ([ky, K] ], k1) and as = ([r5 , k3], k2) be CFSs and A > 0, then
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Definition 3.2 The CFSs are a = <[/<;7 /ﬂL],/{j>, score function I is define as:I = 3

7
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Definition 3.3 The CFSs are a = <[/{f I'iJ-r],lij>, accuracy function L is define as:L = 3

AR
4. CFSs based on Frank operators

This section presents the CFFWA, CFFOWA, CFFWHA, CFFWG, CFFOWG and CFFHG operators
new methods for CFSs with several noteworthy characteristics, based on frank operators.

4.1. CFFWA operator
Definition 4.1 Let d; = ([~ ,k"],k) be the gathering of CFSs and u = (u1,ug, ..., um)? is the weight

vector with u; € [0,1] and Zu] = 1. Then CFFWA(dy,ds, ...,dy) = @d}” 1s said CFFWA operator.
j= j=1

Theorem 4.1 The collection of CFSs are a; = ([x~, k1], k) and X = (A1, A2, ..., A\n) T is the weight vector
with A\j € [0,1] and Z)\j = 1. Then it is said CFFWA operator and CFFWA(aq,as, ...,an) =

'l'L
H _J_1)J

D S

e
(B-n

1-— logﬁ ,
n
_ .t
H("l 55—

1
1+j71
(B=1)"7 :

L1 —logﬁ

n
H(ﬁl_”j —1Ni
j=1

e

log

Theorem 4.2 (Idempotency) If v = ([=,xT],k) for all L = 1,2,3,...m, then
CFFWA(ZV,ZV, 2V, .., 2V) = ZV.

Theorem 4.3 (Commutathty) Af (dy,dy, .. d)) is any  permutation of (dy,ds,...,dy), then
CFFWA(dy,dsy, ...,d,)) =CFFWA(dy, dy, ...,d,).

Theorem 4.4 (Boundedness) If Y- = min(ﬁl,ﬁg,...,ﬁm),}f+ = max(ﬁl,?vg, ...,?‘?m),
then Y~ <CFFWA(ZV1,ZV2,.. ZVm) <YT.
4.2. CFFOWA operator
Definition 4.2 Let ¢; = ([ ,kT|,k) be the gathering of CFNs and the weight wvector is
9= (91,92, s gm)T with g; € [0,1] and f:lgj =1. Then
=
CFFOWA (c1,¢2,...,¢m) = Gmac]gj
j=1

is said CFFOWA operator.
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Theorem 4.5 Leta; = ([~, k"], k) be the collection of CFSs and the weight vector is A = (A1, Az, ooy Ap) T
with A\j € [0,1] and > Aj = 1. Then it is said CFFOWA operator and CFFOWA(a1, ag, ..., ) =

Jj=1
_ n .
H(ﬁl’ﬁi i
j=1
1+ —
B-1r "

L 1—logg

n
H(ﬁlf*‘j —Ni
Jj=1

1+ T

(B—1Ni~

log

Theorem 4.6 (Idempotency):If BU = (k= k1], k) for all L = 1,2,3,..,m, then
CFFOWA(BU, BU, BU, ..., BU) = BU.

Theorem 4.7 (Commutativity):If (by,by,....b,) is any permutation of (b1, ba,....bn), then
CFFOWA(by, by, ...,b,,) =CFFOWA(by,ba, ..., by)

Theorem 4.8 (Boundedness):If Y~ = min(fi, fo,-s fm), YT = max(f1, fa,..., fm), then
Y~ <CFFOWA(f1, f2, oy fm) < Y.

4.3. CFFHWA operator

Definition 4.3 The gathering of CFSs are c; = ([k~, k"], k) and the weight vector isu = (u1,uz, ..., u,)"
n

with uj € [0,1] and > u; =1, the associated vector is u = (u1, Uz, ..., un)" with uj € [0,1] and > u; = 1.
j=1 j=1

Then CFFHWA(c1,cay...ycp) = @c}‘j 18 said CEFFHWA operator.
j=1

Theorem 4.9 Leta; = ([x~, k"], k) be the collection of CFSs and the weight vector is A = (A1, Az, ooy An) T
with A\j € [0,1] and > Aj = 1. Then it is said CFFHWA operator and CFFHWA(a1, ag, ..., an) =
j=1
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n
H(B“”;—m*i

i=1
1 <z -
< TR Y > .

L 1—logg ]
H(ﬁl’”f—lﬁf
j=1
(B-p™i !
logg
Theorem 4.10 (Idempotency):If ¢ = ([x,k7],K) for all L = 1,2,3,...,m, then

CFFHWA(Z,,E,...,¢) = &

Theorem 4.11 (Commutativity) :If (p/l,p;,...,p;l) is any permutation of (p1,p2,...,Dn), then
CFFHWA(py, gy -y p,,) =CFFHWA(p1,p2, ..., Dn)

Theorem 4.12 (Boundedness):If Y~ = min(f1, fa,-, fn), YT = max(fi, fo,..., fn), then

Y~ <CFFHWA(f1, fay oy fn) < Y.

4.4. CFFWG operator

Definition 4.4 Let d; = ([, k7], k) be the gathering of CFSs and u = (u1,uz, ..., uy)" is the weight
m

vector with u; € [0,1] and Y u; = 1. Then CFFWG(dy,ds, ...,dn) = ®d}” 18 satd CEFWG operator.
=1

J j=1

Theorem 4.13 The collection of CFSs are a; = {[~,kT],K) and X = (A1, Aay ..., \n) T is the weight
vector with \; € [0,1] and > X; = 1. Then it is said CFFWG operator and CFFWG(aq, ag, ..., an) =

j=1
_ n -
Hm"’f —1)*
j=1
=T
logﬁ ’
n )
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Theorem 4.14 (Idempotency):If v = ([«=,kT],k) for all L = 1,23 ..,m, then
CFFWG(ZV,ZV,ZV,..,ZV) = ZV.

Theorem 4.15 (Commutativity):If (dll,d;,...,d;l) is any permutation of (di,ds,...,d,), then

/

CFFWG(d,,d,y, ...,d,) =CFFWG(dy,dy, ..., dy).

Y

Theorem 4.16 (Boundedness):If Y~ = min(ﬁl,ﬁg,...,ﬁm),Y+ = max(é‘v/l,ﬁg,...,ﬁm),
then Y~ <CFFWG(ZV 1,2V, .., ZV ) < Y.

4.5. CFFOWG operator

Definition 4.5 Let ¢; = ([x7,k"],k) be the gathering of CFSs and the weight vector is
9 =1(91,92, s gm)T with g; € [0,1] and Y g; =1. Then
j=1

CFFOWG (c1,¢2, .y Cm) = ®C?j

j=1
is said CFFOWG operator.

Theorem 4.17 Let a; = ([ ,k"],k) be the collection of CFSs and the weight wvector is

A= (A, A2, M) T with A; € [0,1] and Y N\; = 1. Then it is said CFFOWG operator and
i=1
CFFOWG(ay,az,...,an) =

- n
H(B”J‘ -
Jj=1

=G

logg ,

n

wF
H(B 7 —1A
Jj=1

< 1+ (B—1)A—1 > .

L logg

. i
le*"j—l)*
Jj=1

WGt

1 —logg

Theorem 4.18 (Idempotency):If BU = (k= k*],k)  for all L = 1,2,3,...m, then
CFFOWG(BU, BU, BU, ..., BU) = BU.

’

Theorem 4.19 (Commutativity):If (b}, by,....b,) is any permutation of (by,bs,...,by), then

<y 0p

CFFOWG(by, by, ...,b,)) =CFFOWG(by, by, ..., by,)

Theorem 4.20 (Boundedness):If Y~ = min(f1, f2,-, fm), YT = max(f1, f2, .-, fm), then
Y~ <CFFOWG(f1, f2s-e, fm) < Y.
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4.6. CFFHWG operator
Definition 4.6 The gathering of CFSs are c; = ([k~, k"], k) and the weight vector is u = (u1, uz, ..., u,)T

n
with u; € [0,1] and Y u; = 1, the associated vector is u = (u1, ug, ..., un)? withu; € [0,1] and > u; = 1.

j=1 j=1
Then CFFHWG(c1,¢2,y ..y Cp) = ®c?j is said CEFHWG operator.
j=1
Theorem 4.21 Let a; = ([ ,k"],k) be the collection of CFSs and the weight wvector is

A= (A A2, AT with A; € [0,1] and Y N\; = 1. Then it is said CFFHWG operator and
j=1
CFFHWG(ay,as,...,a,) =

- n
H(a"f -
Jj=1

(B-nAr-1

1+

logﬁ )

n

T
H(ﬂ 7 -1
j=1

< 1+ (B—1)A—1 > .

L logg i
le*"j—m*
=1
1+ (B-1)r—1
1710g6
Theorem 4.22 (Idempotency):If ¢ = ([x,k7],K) for all L = 1,2,3,...,m, then

CFFHWG(Z,E,%,...,¢) = C.

Theorem 4.23 (Commutativity) :If (pll,p;,...,p;l) is any permutation of (p1,p2,...,Dn), then
CFFHWG(py,pg, .., D) =CFFHWG(p1, p2, ..., Pn)

Theorem 4.24 (Boundedness):If Y~ = min(f1, fo, .., fn), YT = max(f1, fo,..., fn), then
Y~ <CFFHWG(fy, far o, fu) < Y.

5. Proposed technique based on CFAA operator fuzzy C-mean clustering algorithm

Fuzzy clustering algorithms are used to group people according to shared characteristics or habits, a
process known as user profiling. Users can have their membership degrees as a measure of how much they
belong to each cluster assigned to them, thanks to fuzzy clustering. This strategy is especially helpful in
situations where users may simultaneously display traits from several categories.

This is a simple overview of how fuzzy clustering for user profiling could be used.

Compile pertinent user information that can be utilized for profiling. The demographic data, browsing
history, purchasing patterns, and interactions with a website or application are some examples of this
data.

Choose the characteristics or features that will be utilized to the clustering process. These attributes
ought to accurately reflect the traits of the users and have a bearing on the process of profiling.

For the given problem, choose a fuzzy clustering algorithm that is suitable Fuzzy C-Means.

Step 1:Describe the CF decision matrix

Step 2:Describe the CFFWA operator and A = (A1, Ag, ...y Ap) -
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CFFWA(dy,da, ..., d,) =

- n
| I(ﬁl_ﬁj —1Ni

il
147

(B—1)i 1

1 —logg ,
n
—xT )
1_[(/31 i -t
Jj=1

< A >

1—1log
L s i
H(ﬁl_"'j —1)Ni
j=1
TN
log
Step 3:The FCM algorithms work on CFFWA operator U = [U; =] ¢

Step 4:Using k-means clusting value is defined as cluster’s parameters interval-valued fuzzy set and
fuzzy set
Step 5:Calculate the cluster center to find the centroid

n n n
< [Z(nmfj,ij)“éj} ,Z<nj)a1)j>
j=1 j=1 =1
< {Zm)a,Z(nj)w} ,Z(nj>a>
Jj=1 j=1

Jj=1

C; =

Step 6:Find out the distance of each point from the centroid
Dj = (lllr= =G5l lIr* = C5Il,, IIr = G51)

.
Step 7:Calculate the score function w

Step 8:Find the ranking.

6. Case history

Recognize the goal of optimizing energy usage in smart homes. Effective energy optimization requires a
well-structured review process, based on data-driven insights, and focusing on energy consumption trends
(not just assumptions or guesswork). This requires proper planning and implementation of strategies to
optimize energy resources. Instead of focusing solely on what isn’t working, engage in a constructive
conversation about how to improve. Prioritize development, sustainability, and cost-saving over simply
criticizing the system. Share findings and recommendations for enhancing energy usage with the residents
and suggest next steps for more efficient consumption. If any of these issues seem familiar, it’s because
these symptoms often arise in every smart home system, leading to increased costs, waste, or missed
energy efficiency goals.

While technology in smart homes can help reduce energy waste, many systems struggle to identify
and solve energy inefficiencies. These small inefficiencies, if ignored, often escalate into larger, harder-to-
manage issues.

For example, if energy consumption spikes unexpectedly in certain areas of the house, after conducting
a thorough analysis, it may be due to inefficient appliances or incorrect settings. In your role as an energy
manager or homeowner, you might suggest replacing old appliances or adjusting energy settings to reduce
consumption.

However, do you act on these issues early, or, like many, do you allow minor inefficiencies to snowball
into bigger problems that could be harder to address later?
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Figure 4 supply chain.

Just like medical symptoms serve as early warnings, energy inefficiencies in smart homes act as
warning signs that need immediate attention. If not treated early, these inefficiencies can lead to higher
energy costs, system overload, or even failures. Addressing issues early enables quick fixes and prevents
significant consequences.

PIPS; :Smart Home Energy Systems use advanced technologies like Al and machine learning to
optimize energy usage by analyzing real-time data and predicting future energy consumption. These
systems improve energy efficiency by monitoring energy-hungry devices and optimizing settings based on
usage patterns.

PIPS, : Integration of solar power, smart meters, energy storage, and electric vehicles within the
smart home system introduces complex dynamics. By managing energy from these diverse sources,
smart homes can balance consumption and enhance sustainability. Efficiently integrating these systems
can reduce energy waste and increase self-sufficiency.

PIPS; :Energy Monitoring and Analytics are key to identifying inefficiencies in smart home systems.
With data-driven insights, homeowners can optimize energy use, pinpoint areas of waste, and make
informed decisions about how to save energy. These insights empower users to adjust energy consumption
and minimize waste.

PIPS, :Predictive models and automation can further optimize energy consumption. Smart home
systems can use Al to predict when energy demand will peak and adjust usage accordingly. Automated
adjustments in heating, cooling, lighting, and appliance use can maximize energy savings and minimize
waste.

Figure 4 is given as
Step 1:Explain the table 2 and 3 in CF decision matrix.

Table 2 of the CF decision matrix.
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Sur Rad Chem Clin
0.1, 0.02, 0.11, 0.01,
PS; < 0.3], > < 0.05], > 0.13], > < 0.14], >
0.2 0.04 0.1 0.2
0.02, 0.1, 0.31, 0.21,
PS, < 0.05], > < 0.3], > 0.37], > < 0.34], >
0.04 0.6 0.4
[0.01, 0 02 0.1, [0.11,
PSs < 0.14], > < 0.05], > 0.3], > < 0.13], >
0.2 004 0.2 0.1
[0.01, [0.21, [0.02, 0.2,
PS, < 0.14], > < 0.34], > 0.05], > < 0.4], >
0.2 0.04 0.3
CF decision matrix table 3
Sur Rad Chem Clin
[0.11, 0.1, [0.21, [0.31,
PIPS, < 0.13], > < 0.3], > < 0.23], > < 0.34], >
0.12 0.1 0.22 0.22
[0.31, 0.2, [0.31, [0.21,
PIPS, < 0.34], > < 0.4], > < 0.37], > < 0.34], >
0.22 0.3 0.6 0.4
[0.31, 0.1, [0.31, [0.21,
PIPS; < 0.37], > < 0.3], > < 0.37], > < 0.34], >
0.6 0.1 0.6 0.4
0.3, [0.11, [0.37, [0.11,
PIPS, < 0.5, > < 0.14], > < 0.39], > < 0.22], >
0.2 0.13 0.29 0.13
Step 2:Describe the CFFWA operator and £ = (0.26,0.21,0.25,0.28) .

CFFWA operator is in table 4.
CFEFWA operator table 4.

Sur Rad Chem Clin

[0.1001, [0.1452, [0.2561, [0.3091,

PIPS; < 0.1983], > < 0.1675], > < 0.2343], > < 0.3344], >
0.1092 0.1124 0.2032 0.2092
[0.3031, [0.1231, [0.0001, [0.1091,

PIPS, < 0.3014], > < 0.3453], > < 0.1004], > < 0.1023], >
0. 2052 0.9872 0.2123 0.1347
0.0131, [0.0212, [0.3051, [0.1091,

PIPS3 < 0.1134], > < 0.0556], > < 0.3084], > < 0.1973], >
0.2359 0.0411 0.2082 0.1123
[0.3061, [0.1011, [0.0122, [0.3001,

PIPS, < 0.3074], > < 0.1033], > < 0.0045], > < 0.3944], >
0.2122 0.117 0.0054 0.2342

Step 3:The FCM algorithms work on CFFWA operator U = [U;|¢=1C.

FCM algorithms work on CFFWA operator in table 5.
FCM algorithms table 5.

Sur | Rad | Chem | Clin
PIPS; | 04 |02 | 0.1 0.3
PIPS, | 0.02 | 0.12 | 0.03 0.12
PIPS; | 0.01 | 0.23 | 0.01 0.13
PIPS; | 0.22 | 0.34 | 0.11 0.14

Step 4:Using k-means clusting value is defined as cluster’s parameters interval-valued fuzzy set and

fuzzy set in table 6.
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Figure 5, score function of different ranking.

k-means clusting table 6

Sur Rad Chem Clin
[0.1232, [0.3087, [0.0342, [0.1209,
PIPS; < 0.2345], > < 0.3987], > < 0.3054], > < 0.3567], >
0.0987 0.1245 0.0234 0.2098
[0.1012, [0.4563, [0.1036, [0.2589,
PIPS, < 0.4585], > < 0.9635], > < 0.6987], > < 0.3785], >
0.6532 0.2745 0.7896 0.7412
[0.4585, [0.1212, [0.1298, [0.1231,
PIPS; < 0.8965], > < 0.3635], > < 0.7852], > < 0.4569], >
0.7025 0.4563 0.3405 0.4669
[0.3423, [0.1123, [0.1698, [0.0147,
PIPS, < 0.3986], > < 0.3369], > < 0.3874], > < 0.0459], >
0.0563 0.4563 0.4785 0.0147

Step 5:Calculate the cluster center to find the centroid

C1 = 0.2345,C5 = 0.1034, C5 = 0.3456, Cy; = 0.5645.
Step 6:Find out the distance of each point from the centroid in table 7.

Centroid table 7

PIPS;

([0.1256,0.5678

.0.6789

PIPS,

([0.1567,0.4987

PIPS;

([0.1432,0.6756

)
,0.8909)
,0.6087)

PIPS,

([0.1876,0.7876

,0.7865)

Step 7:Calculate the score function DH; = 0.2098, DHy = 0.6456, DH3 = 0.7896, DH, = 0.8998.

Step 8:Find the ranking.
DH, > DH3 > DHy > DHy and DHy, is the best.
Figure 5 is given below

6.1. Comparison technique with existing way

Different existing ways are written below Table 8.
Table 8 existing techniques

15
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Methods Average operator | Geometric operator
DH, > DHy >
DHs > DHs >
hamacher [6] DH, > DH, >
DH1 DHl
DH, > DHy >
DHs > DHs >
DH1 DHl
DH, > DH, >
DH;3 > DHs >
MCDM 8] DH, > DH, >
DH1 DHI

6.2. Validity way

Table 9 is provided below, and in this subsection, we present the proposed way in validity way.
Validity of the aggregating operator in table 9.

Ways Average operator | Geometric operator | hybrid
Proposed technique | v/ v v
MCDM [37 v v v
MCDM (36 v v v
PDF [16] v v v
FH operators [4] v v v

6.3. Results and discussion

There are several reasons why the proposed method is superior to existing energy optimization ap-
proaches. Traditional models are often based on static data and fail to adapt to real-time environmental
and behavioral changes.

To enhance the capabilities of current energy management systems and smart home technology, inte-
grate CF aggregation operators to process complex and uncertain data, such as fluctuating occupancy,
varying weather conditions, and appliance usage patterns.

Provide clear guidelines for energy management professionals on how to use systems based on CF
aggregation operators. Highlight the importance of interpreting data accurately and emphasize the
benefits of cubic fuzzy methods in optimizing energy use.

To ensure the reliability and effectiveness of CF aggregation operators in practical settings, conduct
pilot tests in a variety of smart homes. Gather feedback and data during these tests to make necessary
improvements before widespread implementation.

Collaborate with regulatory bodies to ensure that the use of CF aggregation operators in smart home
energy management adheres to all relevant standards and regulations.

6.4. Advantages

There are numerous important benefits to using Cubic Fuzzy Frank Aggregation Operators in decision-
making for intelligent energy optimization in smart homes.

e An instruction to demonstrate MCDM evidence in a non-verbal manner using the CF method. From
then on, the CF method proved essential for clarifying uncertain and incomplete energy management
results.

e CF aggregation operators successfully integrate imprecise and heterogeneous data, increasing the
accuracy of energy consumption forecasts. This results in more precise energy usage predictions, partic-
ularly in complicated cases with varying occupancy and environmental conditions.

e CFFAO enables consistent decision-making among different energy optimization scenarios by com-
bining energy consumption criteria in a more advanced way. As a result, energy efficiency reliability is
increased, and variability in energy usage is minimized.
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e MCDM can more easily and transparently comprehend the decision-making process due to CFFO’s
structured approach to data aggregation. This promotes more confident energy optimization decisions
and makes the reasoning behind energy consumption easier to understand.

e Due to their proficiency in the energy optimization domain, their ability to make practical judgments,
and the effectiveness of the evaluation processes, energy management specialists are frequently required for
optimizing smart home systems. All of the methods currently in use rely on the expertise of professionals
to interpret and optimize energy consumption.

e Optional approach: When used in typical MCDM scenarios, CF proved to be an accurate, collabo-
rative system that overcomes numerous uncertainties in energy optimization. Its effectiveness in handling
ambiguous data and achieving reliable outcomes is well-defined.

6.5. Sensitive study

We define the sensitive study in this subsection, which is represented in table 10 below.
Sensitive study in table 10

Technique Score way Order of preference
DH, =0.0107, DH,; >
. DH> = 0.8955, DHy >
Interaction [12] DH; — 0.2345, DH; >
DH, = 0.4987 DH,
DH, =0.0106, DHy >
DH> = 0.6565, DH, >
MCDM [16] DH; = 0.4002, DHj >
DH, = 0.5678 DH,

7. Conclusion

In this section, we introduce cubic fuzzy set-based Frank Aggregation Operators applied to intelligent
energy optimization in smart homes. The operational laws are defined, along with the corresponding
score and accuracy functions. This study uses the CFFWA, CFFOWA, CFFWHA, CFFWG, CFFOWG
and CFFHG operators within the Multi-Criteria Decision-Making (MCDM) approach to tackle energy
optimization issues in smart homes. It is demonstrated that these operators enable the MCDM technique
to effectively differentiate between various energy management alternatives, offering flexibility in making
decisions related to energy consumption and efficiency. These operators exhibit essential properties
such as commutativity, idempotency, boundedness, associativity, and monotonicity. When combined
with clustering techniques like the Fuzzy C-means algorithm, these aggregation operators enhance the
accuracy and computational efficiency of the energy optimization process, making it possible to cluster
energy consumption data effectively for more reliable decision-making.

In the future, we plan to incorporate artificial intelligence into smart home energy management. This
includes utilizing neural networks, automation, data analysis, and virtual assistants to enhance decision-
making processes related to energy consumption. Additionally, we aim to expand the current approach by
incorporating Generalized Cubic Fuzzy Frank Aggregation Operators and Cubic Fuzzy Frank Geometric
Aggregation Operators, allowing for more advanced, adaptive, and efficient energy management systems
for smart homes.
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