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Modelling drug resistance and insecticide effects in infectious disease transmission with
saturated incidence for control interventions
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abstract: The burden of vector-borne infections is a complex interplay of biological, environmental, and
social factors. Dengue infection constitutes a substantial and multifaceted threat to both human health
and the socio-economic aspects of impoverished regions. In order to address these challenges, a thorough
comprehension of the complex dengue dynamics is necessary. In this study, we construct an epidemic model
for dengue with saturated incidence in the framework of Caputo-Fabrizio derivative with drug resistance.
Boundedness and positivity of the solution of the suggested model are examined. The endemic indicator,
denoted by R0, is computed using the next-generation matrix technique. It is demonstrated that for R0 < 1,
the system’s infection-free steady-state is locally asymptotically stable. The fixed-point theorem is then used
to examine the existence and uniqueness of the proposed system’s solution. The time series analysis of the
model has been presented to illustrate the influence of several parameters on the dengue infection system. The
role of memory index has been conceptualized through numerical findings. Our findings anticipate the pivotal
scenario within the system pertinent to the control and prevention of dengue.
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1. Introduction

Vector-borne infections are diseases transmitted to animals and humans through vectors including
sandflies, fleas, ticks and mosquitoes. These infections are significant global health issue in different
regions of the globe, and can lead to widespread morbidity and mortality [1]. Prominent vector-borne
diseases include Zika virus, dengue, malaria, Lyme disease, and leishmaniasis. The burden of vector-borne
infections extends beyond health impacts, imposing economic costs on healthcare systems and affected
communities [2]. Efforts to control these diseases include vector control measures, such as insecticide-
treated nets, environmental management, and the development of vaccines. Dengue, a vector-borne
infection transmitted primarily by Aedes mosquitoes, poses a significant global health threat [3]. It is
worth noting that there are rare instances of vertical transmission of the virus occurring in both human
hosts and mosquitoes [4]. There are numerous control strategies for the elimination of this vector borne
infection. The goal of ongoing research is to combat dengue infection by developing vaccinations and
antiviral drugs. Public health efforts to control dengue focus on vector control, community education,
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and surveillance to reduce the spread of the virus. It is well-known that there is currently no fully effective
medication for treatment of this vector-borne infection. Moreover, various vaccines for dengue infection
have been developed and are undergoing clinical testing, as reported in references [5,6]. Thus, additional
preventative measures are crucial to manage and lower the incidence of dengue.

Mathematical models are useful tools for investigating infectious diseases and establishing efficient
infection control plans [7,8]. These models identify and emphasize the most critical and influential factors
contributing to the spread and management of the disease [9,10]. Several researchers have examined the
dynamics of dengue using varying assumptions in the literature [11,12,13]. Lourdes Esteva developed an
epidemic model for dengue fever, exploring its behavior within a variable human population [14,15]. In
another study, a model with two-strain of dengue has been analyzed by the researchers [16]. Furthermore,
some researchers constructed the dynamics of dengue and examined the stability of their models [17,18].
In [19], the authors proposed a model for dengue infection and offered quantitative and qualitative
analysis of the model to highlight the key factors of dengue. In [20], the research uses a two-patch model
of dengue transmission, incorporating human mobility between patches, to simulate the virus’s spread.
Recently, a novel model is introduced to examine the dynamics of dengue, with a particular emphasis on
the disease’s 2023 breakout [21]. The authors in this work used machine learning approach to investigate
the behaviours and patterns of dengue in Bangladesh. In this work, we present the dynamics of dengue
along with some control measures and the index of memory. Our main goal is to identify the most effective
control strategy and to determine whether the index of memory can be used as a control parameter for
this vector-borne infection.

Fractional calculus provides a sophisticated and nuanced framework to understanding and controlling
infectious diseases [22,23]. By incorporating memory effects and anomalous diffusion, these models
provide a more accurate and flexible framework for studying the complex nature of infections [24]. These
models are particularly useful in capturing the intricate phenomena of diseases. Fractional models are
more flexible and provide more accurate results for real data of the infection [25,26]. This flexibility makes
them powerful tools for modeling complex biological systems. These models can evaluate the effectiveness
of control measures like vaccination, quarantine, and treatment by incorporating the fractional order to
simulate different intervention scenarios more realistically. Therefore, we propose modeling the dynamics
of dengue within a fractional framework with saturated incidence to obtain more accurate results and
provide effective control for the infection.

The layout of this work is as follows: Section 2 presents the fundamental results and definitions
of fractional theory. In Section 3, we develop a mathematical model for dengue using fractional order
derivatives. The basic reproduction number is calculated, and the equilibria are analyzed in Section 4.
Section 5 explores the solution’s existence and uniqueness with the help of fixed-point theory. In Section
6, we focus on the time series analysis of the proposed fractional system to numerically assess the system.
Finally, Section 7 provides concluding remarks and summarizes the overall analysis.

2. Fundamental theory

Here, we will introduce the basic results of the recently formulated Caputo-Fabrizio (CF) operator to
analyze the system. The outcomes of the CF derivative are outlined as follows:

Definition 2.1 The CF operator [29] for a function g ∈ G1(r1, r2) is defined as

Dξ
t (g(t)) =

M(ξ)

1− ξ

∫ t

a

g′(y) exp
[
− ξ

t− y

1− ξ

]
dy, (2.1)

in which the normality is indicated by M(τ) and fractional order ξ ∈ [0, 1]. Moreover, we have r1
smaller than r2. In the case, if g /∈ G1(r1, r2), then we get

Dξ
t (g(t)) =

ξU(ξ)

1− ξ

∫ t

r1

(g(t)− g(y)) exp
[
− ξ

t− y

1− ξ

]
dy. (2.2)

Remark 2.1 In the case if β = 1−ξ
ξ ∈ [0,∞) and ξ = 1

1+β ∈ [0, 1], then the above (2.2) becomes as

Dξ
t (g(t)) =

N(β)

β

∫ t

r1

g′(y)e[−
t−y
β ]dy, N(0) = N(∞) = 1. (2.3)
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Furthermore, there is

lim
β−→0

1

β
exp

[
− t− y

β

]
= δ(y − t). (2.4)

Definition 2.2 [30], Let us take g, then the integral of CF operator for g is as follows

Iξt (g(t)) =
2(1− ξ)

(2− ξ)U(ξ)
g(t) +

2ξ

(2− ξ)U(ξ)

∫ t

0

g(v)dv, t ≥ 0. (2.5)

Remark 2.2 Here, the upper mentioned 2.2 leads to the below

2(1− ξ)

(2− ξ)M(ξ)
+

2ξ

(2− ξ)M(ξ)
= 1. (2.6)

The above give us M(ξ) = 2
2−ξ , 0 < ξ < 1. In [30], the below definition is given

Dξ
t (g(t)) =

1

1− ξ

∫ t

0

g′(y) exp
[
ξ
t− y

1− ξ

]
dy. (2.7)

3. Formulation of the model

Let the entire population of vectors and hosts be denoted by Nv and Nh, respectively. The population
of host is classified into (Sh) susceptible, (Vh) vaccinated, (Ih) infected , and (Rh) recovered classes
while the overall population of female mosquitoes Nv is grouped into (Sv) susceptible and (Iv) infected
classes. Here, µv and µh are considered to be the natural birth and death rates for hosts and vectors,
respectively. Furthermore, rare cases of dengue death has been noticed so we did not assume it here.
We assumed nonlinear forces of infection represented by bβ1

1+αhIv
ShIv,

bβ2

1+αhIv
VhIv, and

β3b
1+αvIh

SvIh.
Also, a proportion p of the Sh moves to Vh after vaccination and a fraction ν of the recovered class
(Rh) loses immunity and becomes susceptible again. The dynamics of dengue infection are consequently
described as 

dSh

dt = Λh − bβ1

1+αhIv
ShIv − µhSh − pSh + υRh,

dVh

dt = pSh − bβ2

1+αhIv
VhIv − µhVh,

dIh

dt = bβ1

1+αhIv
ShIv +

bβ2

1+αhIv
VhIv − (µh + γh)Ih − ξ1θ1(1− q1)Ih,

dRh

dt = γhIh + ξ1θ1(1− q1)Ih − υRh − µhRh,
dSv

dt = Λv − β3b
1+αvIh

SvIh − µvSv − ξ2θ2(1− q2)Sv,
dIv

dt = bβ3

1+αvIh
SvIh − µvIv − ξ2θ2(1− q2)Iv,

(3.1)

with the following

0 ≤ Sv(0), 0 ≤ Iv(0), 0 ≤ Sh(0), 0 ≤ Vh(0), 0 ≤ Ih(0), 0 ≤ Rh(0),

where, αh ∈ [0, 1] denotes the antibody response rate when subjected to antigens generated by vectors,
while αv ∈ [0, 1] indicates the antibody production rate against antigens encountered from infectious hosts.
The drug was administered to the infected patients at ξ1θ1 in which θ1 reflects the drug’s contribution to
recovery rate and ξ1 indicates the efficacy of drugs. In addition, ξ1θ1q1Ih in which q1 ∈ [0, 1] represents
the medication’s resistance acquisition ratio, provides the number of infected people resistant to the drug.
As a result, the word ξ1θ1(1− q1)Ih denotes the percentage of people that are drug-sensitive. The effect
of insecticides reduces the vector population at a rate of ξ2θ2, where θ2 is the mosquito population death
caused by pesticides and ξ2 is the insecticide efficacy. The resistance acquisition ratio to the insecticides
is represented by q2 ∈ [0, 1], and the mosquitoes resistant to the pesticides is ξ2θ2q2. Because of this, the
formula ξ2θ2(1− q2) indicates the percentage of mosquitoes that are insecticide-sensitive.

Fractional calculus enhances the capability of epidemic models by incorporating memory effects, non-
local interactions, and better fitting to empirical data. It provides a more flexible and accurate framework
for visualization and predicting the spread of infectious diseases. As the understanding and computational



4 M. Shutaywi, Z. Shah, R. Jan, W. Deebani, E. Antonescu, A. Hasegan

tools for fractional calculus continue to develop, its application in epidemiology is likely to grow, offering
deeper insights and more effective strategies for disease control and prevention. Therefore, we employ
the CF-derivative to represent the dynamics of dengue fever, aiming for a more precise understanding of
the transmission phenomena as follows

CF
0 Dξ

tSh = Λh − bβ1

1+αhIv
ShIv − µhSh − pSh + υRh,

CF
0 Dξ

tVh = pSh − bβ2

1+αhIv
VhIv − µhVh,

CF
0 Dξ

tIh = bβ1

1+αhIv
ShIv +

bβ2

1+αhIv
VhIv − (µh + γh)Ih − ξ1θ1(1− q1)Ih,

CF
0 Dξ

tRh = γhIh + ξ1θ1(1− q1)Ih − υRh − µhRh,
CF
0 Dξ

tSv = Λv − β3b
1+αvIh

SvIh − µvSv − ξ2θ2(1− q2)Sv,
CF
0 Dξ

t Iv = bβ3

1+αvIh
SvIh − µvIv − ξ2θ2(1− q2)Iv,

(3.2)

in which CF
0 Dξ

t is the Caputo-Fabrizio derivative and ξ is the order of CF derivative with the considtion
0 ≤ ξ ≤ 1.

Theorem 3.1 The suggested model (3.2) of the vector-borne infection has positive and bounded solutions
(Sh,Vh,Ih,Rh,Sv,Iv) for suitable initial conditions.

4. Threshold parameter

Equilibrium points in both classical and fractional epidemic models are determined by setting the
derivatives to zero. Identifying these points, namely the disease-free equilibrium (DFE) and the endemic
equilibrium, provides crucial insight into the potential long-term behavior of an epidemic. We take
CF
0 Dξ

tSh,
CF
0 Dξ

tVh,
CF
0 Dξ

tIh,
CF
0 Dξ

tRh,
CF
0 Dξ

tSv, and
CF
0 Dξ

tIv equal to zero for steady-states. For DFE,
we put the infected classes equal to zero and get the following

E0(S 0
h ,V

0
h ,I 0

h ,R
0
h,S

0
v ,I

0
v ) =

(
Λh

p+ µh
,

Λhp

(µh + p)µh
, 0, 0,

Λv

µv + ξ2θ2(1− q2)
, 0

)
.

The details of the basic reproduction number is provided in [27,28], typically represented by R0, and its
calculated as

F =

[
bβ1

1+αhIv
ShIv +

bβ2

1+αhIv
VhIv

bβ3

1+αvIh
SvIh

]
and V =

[
(µh + γh)Ih + ξ1θ1(1− q1)Ih

µvIv + ξ2θ2(1− q2)Iv

]
,

evaluating the jacobian of the above matrices at E0, yields the following

F =

[
0 µhbβ1Λh+bβ2Λhp

(µh+p)µh
bβ3Λv

ξ2θ2(1−q2)+µv
0

]
and V =

[
ξ1θ1(1− q1) + µh + γh 0

0 µv + ξ2θ2(1− q2)

]
,

which gives

FV −1 =

[
0 µhbβ1Λh+bβ2Λhp

(ξ2θ2(1−q2)+µv)(µh+p)µh
bβ3Λv

(ξ1θ1(1−q1)+µh+γh)(ξ2θ2(1−q2)+µv)
0

]
.

Through next generation matrix we get the R0 of the fractional order dengue model (3.2) as

ρ(FV −1) =
b

(ξ2θ2(1− q2) + µv)

√
β3ΛhΛv(pβ2 + β1µh)

µh(p+ µh)(ξ2θ2(1− q2) + µv)(ξ1θ1(1− q1) + µh + γh)
,

⇒ R0 =
b

(ξ2θ2(1− q2) + µv)

√
β3ΛhΛv(pβ2 + β1µh)

µh(p+ µh)(ξ2θ2(1− q2) + µv)(ξ1θ1(1− q1) + µh + γh)
.

Theorem 4.1 If R0 < 1, then E0 of the suggested model (3.2) of vector-borne infection is locally asymp-
tomatically stable and unstable in other cases.
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Proof: For the proof of this theorem, we will take the Jacobian of system (3.2) at E0 as

J =



−(µh + p) 0 0 υ 0 −bβ1Λh

µh+p

p −µh 0 0 0 −bβ2Λhp
µh(µh+p)

0 0 −A 0 0 bβ1Λhµh+bβ2Λhp
µh(µh+p)

0 0 C −(υ + µh) 0 0

0 0 − bβ3Λv

D 0 −D 0

0 0 bβ3Λv

D 0 0 −B


, (4.1)

whereA = (ξ1θ1(1−q1)+µh+γh), B = (ξ2θ2(1−q2)+µv), C = (ξ1θ1(1−q1)+γh) andD = (ξ2θ2(1−q2)+µv)
. Here, the first eigenvalue is λ1 = −µh with the following Jacobian

J1 =


−(µh + p) 0 υ 0 −bβ1Λh

µh+p

0 −A 0 0 bβ1Λhµh+bβ2Λhp
µh(µh+p)

0 C −(υ + µh) 0 0

0 − bβ3Λv

D 0 −D 0

0 bβ3Λv

D 0 0 −B

 , (4.2)

the second eigenvalue of the system is λ2 = −(µh + p) with the following Jacobian

J2 =


−A 0 0 bβ1Λhµh+bβ2Λhp

µh(µh+p)

C −(υ + µh) 0 0

− bβ3Λv

D 0 −D 0
bβ3Λv

D 0 0 −B

 , (4.3)

the third eigenvalue of the system is λ3 = −(υ + µh) with the following Jacobian

J3 =

 −A 0 bβ1Λhµh+bβ2Λhp
µh(µh+p)

− bβ3Λv

D −D 0
bβ3Λv

D 0 −B

 , (4.4)

the fourth eigenvalue of the system is λ4 = −D with the below Jacobian

J4 =

[
−A bβ1Λhµh+bβ2Λhp

µh(µh+p)
bβ3Λv

D −B

]
. (4.5)

Here, we will show that the other two eigenvalues of the J4 are negative. Equivalently, we will show that
Det(J4) > 0 and Tr(J4) < 0 for R0 < 1. The Det(J4) = AB − bβ1Λhµh+bβ2Λhp

µh(µh+p)
bβ3Λv

D , this implies that

Det(J4) = AB
[
1− bβ1Λhµh+bβ2Λhp

ABµh(µh+p)
bβ3Λv

D

]
. This shows that Det(J4) > 0 for R0 < 1. Clearly, Tr(J4) < 0,

thus the remaining eigenvalues are negative for R0 < 1. As a result, E0 of the system is LAS for R0 < 1
and unstable in other cases. 2



dSh

dt = Λh − bβ1

1+αhIv
ShIv − µhSh − pSh + υRh,

dVh

dt = pSh − bβ2

1+αhIv
VhIv − µhVh,

dIh

dt = bβ1

1+αhIv
ShIv +

bβ2

1+αhIv
VhIv − (µh + γh)Ih − ξ1θ1(1− q1)Ih,

dRh

dt = γhIh + ξ1θ1(1− q1)Ih − υRh − µhRh,
dSv

dt = Λv − β3b
1+αvIh

SvIh − ξ2θ2(1− q2)Sv − µvSv,
dIv

dt = bβ3

1+αvIh
SvIh − ξ2θ2(1− q2)Iv − µvIv,

(4.6)
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5. Existence theory

In order to verify the existence and uniqueness of the solution of the system (3.2) of a vector-borne
disease, we will employ fixed point theory. We express our system (3.2) as follows:

Sh(t)− Sh(0) = CF
0 Iξt

{
Λh − bβ1

1+αhIv
ShIv − µhSh − pSh + υRh

}
,

Vh(t)− Vh(0) = CF
0 Iξt

{
pSh − bβ2

1+αhIv
VhIv − µhVh

}
,

Ih(t)− Ih(0) = CF
0 Iξt

{
bβ1

1+αhIv
ShIv +

bβ2

1+αhIv
VhIv − ξ1θ1(1− q1)Ih − (µh + γh)Ih

}
,

Rh(t)− Rh(0) = CF
0 Iξt

{
ξ1θ1(1− q1)Ih + γhIh − υRh − µhRh

}
,

Sv(t)− Sv(0) = CF
0 Iξt

{
Λv − β3b

1+αvIh
SvIh − ξ2θ2(1− q2)Sv − µvSv

}
,

Iv(t)− Iv(0) = CF
0 Iξt

{
bβ3

1+αvIh
SvIh − ξ2θ2(1− q2)Iv − µvIv

}
.

(5.1)
Through [30], the below is obtained

Sh(t)− Sh(0) =
2(1− ξ)

(2− ξ)M(ξ)

{
Λh −

bβ1

1 + αhIv
ShIv − µhSh − pSh + υRh

}
+

2ξ

(2− ξ)M(ξ)

∫ t

0

{
Λh −

bβ1

1 + αhIv
ShIv − µhSh − pSh + υRh

}
dy,

Vh(t)− Vh(0) =
2(1− ξ)

(2− ξ)M(ξ)

{
pSh −

bβ2

1 + αhIv
VhIv − µhVh

}
+

2ξ

(2− ξ)M(ξ)

∫ t

0

{
pSh −

bβ2

1 + αhIv
VhIv − µhVh

}
dy,

Ih(t)− Ih(0) =
2(1− ξ)

(2− ξ)M(ξ)

{
bβ1

1 + αhIv
ShIv +

bβ2

1 + αhIv
VhIv − (µh + γh)Ih − ξ1θ1(1− q1)Ih

}
+

2ξ

(2− ξ)M(ξ)

∫ t

0

{
bβ1

1 + αhIv
ShIv +

bβ2

1 + αhIv
VhIv − (µh + γh)Ih − ξ1θ1(1− q1)Ih

}
dy,

Rh(t)− Rh(0) =
2(1− ξ)

(2− ξ)M(ξ)

{
ξ1θ1(1− q1)Ih + γhIh − υRh − µhRh

}
+

2ξ

(2− ξ)M(ξ)

∫ t

0

{
ξ1θ1(1− q1)Ih + γhIh − υRh − µhRh

}
dy,

Sv(t)− Sv(0) =
2(1− ξ)

(2− ξ)M(ξ)

{
Λv −

β3b

1 + αvIh
SvIh − ξ2θ2(1− q2)Sv − µvSv

}
+

2ξ

(2− ξ)M(ξ)

∫ t

0

{
Λv −

β3b

1 + αvIh
SvIh − ξ2θ2(1− q2)Sv − µvSv

}
,

Iv(t)− Iv(0) =
2(1− ξ)

(2− ξ)M(ξ)

{
bβ3

1 + αvIh
SvIh − ξ2θ2(1− q2)Iv − µvIv

}
+

2ξ

(2− ξ)M(ξ)

∫ t

0

{
bβ3

1 + αvIh
SvIh − ξ2θ2(1− q2)Iv − µvIv

}
. (5.2)

Moreover, we have

B1(t,Sh) = Λh − bβ1

1+αhIv
ShIv − µhSh − pSh + υRh,

B2(t,Vh) = pSh − bβ2

1+αhIv
VhIv − µhVh,

B3(t,Ih) = bβ1

1+αhIv
ShIv +

bβ2

1+αhIv
VhIv − (µh + γh)Ih − ξ1θ1(1− q1)Ih,

B4(t,Rh) = γhIh + ξ1θ1(1− q1)Ih − υRh − µhRh,

B5(t,Sv) = Λv − β3b
1+αvIh

SvIh − µvSv − ξ2θ2(1− q2)Sv,

B6(t,Iv) = bβ3

1+αvIh
SvIh − µvIv − ξ2θ2(1− q2)Iv.

(5.3)

Theorem 5.1 If 0 ≤ bβ1A + µh + p < 1 satisfies, then the kernels B1,B2,B3,B4,B5 and B6 fulfills the
Lipschitz and contraction condition.
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Proof: To get the required result, we will take Sh and Sh1
, and proceed as mentioned below:

B1(t,Sh)− B1(t,Sh1
) = − bβ1Iv

1 + αhIv
{Sh(t)− Sh(t1)} − µh(t){Sh(t)− Sh(t1)}

− p{Sh(t)− Sh(t1)}. (5.4)

Taking norm on the both sides, yields that

∥B1(t,Sh)− B1(t,Sh1)∥ ≤ bβ1

∥∥∥∥ Iv
1 + αhIv

∥∥∥∥ ∥{Sh(t)− Sh(t1)}||+ µh∥{Sh(t)− Sh(t1)}∥

+ p∥{Sh(t)− Sh(t1)}∥

≤ bβ1A ∥{Sh(t)− Sh(t1)}||+ µh∥{Sh(t)− Sh(t1)}∥

+ p∥{Sh(t)− Sh(t1)}∥

≤ (bβ1A + µh + p)∥{Sh(t)− Sh(t1)}||, (5.5)

where
∥∥∥ Iv
1+αhIv

∥∥∥ ≤ A . Taking Ξ1 = bβ1A + µh + p, we get

||B1(t,Sh)− B1(t,Sh1
)|| ≤ Ξ1||Sh(t)− Sh(t1)||. (5.6)

As a result, the condition of Lipschitz is proved for B1, also the contraction can be obtained from
0 ≤ bβ1A + µh + p < 1. We may also determine the remaining as

||B2(t,Vh)− B2(t,Vh1
)|| ≤ Ξ2||Vh(t)− Vh(t1)||,

||B3(t, Ih)− B3(t,Ih1)|| ≤ Ξ3||Ih(t)− Ih(t1)||,

||B4(t,Rh)− B4(t,Rh1
)|| ≤ Ξ4||Rh(t)− Rh(t1)||,

||B5(t,Sv)− B5(t,Sv1)|| ≤ Ξ5||Sv(t)− Sv(t1)||,

||B6(t, w)− B6(t,Iv1)|| ≤ Ξ6||Iv(t)− Iv(t1)||. (5.7)

From (5.2), we get the following

Sh(t) = Sh(0) +
2(1−ξ)

(2−ξ)M(ξ)B1(t,Sh) +
2ξ

(2−ξ)M(ξ)

∫ t

0
(B1(z,Sh))dz,

Vh(t) = Vh(0) +
2(1−ξ)

(2−ξ)M(ξ)B2(t,Vh) +
2ξ

(2−ξ)M(ξ)

∫ t

0
(B2(z,Vh))dz,

Ih(t) = Ih(0) +
2(1−ξ)

(2−ξ)M(ξ)B3(t,Ih) +
2ξ

(2−ξ)M(ξ)

∫ t

0
(B3(z,Ih))dz,

Rh(t) = Rh(0) +
2(1−ξ)

(2−ξ)M(ξ)B4(t,Rh) +
2ξ

(2−ξ)M(ξ)

∫ t

0
(B4(z,Rh))dz,

Sv(t) = Sv(0) +
2(1−ξ)

(2−ξ)M(ξ)B5(t,Sv) +
2ξ

(2−ξ)M(ξ)

∫ t

0
(B5(z,Sv))dz,

Iv(t) = Iv(0) +
2(1−ξ)

(2−ξ)M(ξ)B6(t,Iv) +
2ξ

(2−ξ)M(ξ)

∫ t

0
(B6(z,Iv))dz.

(5.8)

Moreover, we obtain

Sh℘
(t) = 2 (1−ξ)

(2−ξ)M(ξ)B1(t,Sh(℘−1)
) + 2 ξ

(2−ξ)M(ξ)

∫ t

0
(B1(z,Sh(℘−1)

))dz,

Vh℘(t) = 2 (1−ξ)
(2−ξ)M(ξ)B2(t,Vh(℘−1)

) + 2 ξ
(2−ξ)M(ξ)

∫ t

0
(B2(z,Vh(℘−1)

))dz,

Ih℘(t) = 2 (1−ξ)
(2−ξ)M(ξ)B3(t,Ih(℘−1)

) + 2 ξ
(2−ξ)M(ξ)

∫ t

0
(B3(z,Ih(℘−1)

))dz,

Rh℘
(t) = 2 (1−ξ)

(2−ξ)M(ξ)B4(t,Rh(℘−1)
) + 2 ξ

(2−ξ)M(ξ)

∫ t

0
(B4(z,Rh(℘−1)

))dz,

Sv℘(t) = 2 (1−ξ)
(2−ξ)M(ξ)B5(t,Sv(℘−1)

) + 2 ξ
(2−ξ)M(ξ)

∫ t

0
(B5(z,Sv(℘−1)

))dz,

Iv℘(t) = 2 (1−ξ)
(2−ξ)M(ξ)B6(t,Iv(℘−1)

) + 2 ξ
(2−ξ)U(ξ)

∫ t

0
(B6(z,Iv(℘−1)

))dz,

(5.9)
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where

S 0
h (t) = Sh(0),V

0
h (t) = Vh(0),I

0
h (t) = Ih(0),R

0
h(t) = Rh(0),S

0
v (t) = Sv(0),I

0
v (t) = Iv(0).

We get the difference terms as

ϱ1℘(t) = Sh℘
(t)− Sh(℘−1)

(t) =
2(1− ξ)

(2− ξ)M(ξ)
(B1(t,Sh(℘−1)

)− B1(t,Sh(℘−2)
))

+2
ξ

(2− ξ)M(ξ)

∫ t

0

(B1(z,Sh(℘−1)
)− B1(z,Sh(℘−2)

))dz,

ϱ2℘(t) = Vh℘(t)− Vh(℘−1)
(t) =

2(1− ξ)

(2− ξ)M(ξ)
(B1(t,Vh(℘−1)

)− B1(t,Vh(℘−2)
))

+2
ξ

(2− ξ)M(ξ)

∫ t

0

(B1(z,Vh(℘−1)
)− B1(z,Vh(℘−2)

))dz,

ϱ3℘(t) = Ih℘
(t)− Ih(℘−1)

(t) =
2(1− ξ)

(2− ξ)M(ξ)
(B1(t,Ih(℘−1)

)− B1(t,Ih(℘−2)
))

+2
ξ

(2− ξ)M(ξ)

∫ t

0

(B1(y,Ih(℘−1)
)− B1(z,Ih(℘−2)

))dz,

ϱ4℘(t) = Rh℘
(t)− Rh(℘−1)

(t) =
2(1− ξ)

(2− ξ)M(ξ)
(B1(t,Rh(℘−1))− B1(t,Rh(℘−2)

))

+2
ξ

(2− ξ)M(ξ)

∫ t

0

(B1(y,Rh(℘−1)
)− B1(z,Rh(℘−2)

))dz,

ϱ5℘(t) = Sv℘(t)− Sv(℘−1)
(t) =

2(1− ξ)

(2− ξ)M(ξ)
(B1(t,Sv(℘−1)

)− B1(t,Sv(℘−2)
))

+2
ξ

(2− ξ)M(ξ)

∫ t

0

(B1(z,Sv(℘−1)
)− B1(z,Sv(℘−2)

))dz,

ϱ6℘(t) = Iv℘(t)− Iv(℘−1)
(t) =

2(1− ξ)

(2− ξ)M(ξ)
(B1(t,Sv(℘−1)

)− B1(t,Iv(℘−2)
))

+2
ξ

(2− ξ)M(ξ)

∫ t

0

(B1(z,Iv(℘−1)
)− B1(z,Iv(℘−2)

))dz. (5.10)

Thus, the below is obtained 

S℘(t) =
∑℘

ℏ=1 ϱ1ℏ(t),

Vh℘(t) =
∑℘

ℏ=1 ϱ2ℏ(t),

Ih℘
(t) =

∑℘
ℏ=1 ϱ3ℏ(t),

Rh℘
(t) =

∑℘
ℏ=1 ϱ4ℏ(t),

Sv℘(t) =
∑℘

ℏ=1 ϱ5ℏ(t),

Iv℘
(t) =

∑℘
ℏ=1 ϱ6ℏ(t).

(5.11)

After simplification we get that

||ϱ1℘(t)|| = ||Sh℘(t)− Sh(℘−1)
(t)|| =

∥∥∥∥2 (1− ξ)

(2− ξ)M(ξ)
(B1(t,Sh(℘−1)

)− B1(t,Sh(℘−2)
))

+2
ξ

(2− ξ)M(ξ)

∫ t

0

(B1(z,Sh(℘−1)
)− B1(z,Sh(℘−2)

))dz

∥∥∥∥. (5.12)
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From (5.12), we get

∥Sh℘
(t)− Sh(℘−1)

(t)∥ ≤ 2
(1− ξ)

(2− ξ)M(ξ)
∥(B1(t,Sh(℘−1)

)− B1(t,Sh(℘−2)
))∥

+2
ξ

(2− ξ)M(ξ)

∥∥∥∥∫ t

0

(B1(z,Sh(℘−1)
)− B1(z,Sh(℘−2)

))dz

∥∥∥∥. (5.13)

Here, the following is obtained

∥Sh℘
(t)− Sh(℘−1)

(t)∥ ≤ 2
(1− ξ)

(2− ξ)M(ξ)
Ξ1∥Sh(℘−1)

− Sh(℘−2)
∥+ 2

ξ

(2− ξ)M(ξ)
Ξ1

×
∫ t

0

∥Sh(℘−1)
− Sh(℘−2)

∥dz. (5.14)

Additionally

∥ϱ1℘(t)∥ ≤ 2
(1− ξ)

(2− ξ)M(ξ)
Ξ1∥ϱ1(℘−1)(t)∥+ 2

ξ

(2− ξ)M(ξ)
Ξ1

∫ t

0

∥ϱ1(℘−1)(z)∥dz. (5.15)

Comparative analysis implies

∥ϱ2℘(t)∥ ≤ 2
(1− ξ)

(2− ξ)M(ξ)
Ξ2∥ϱ2(℘−1)(t)∥+ 2

ξ

(2− ξ)M(ξ)
Ξ2

∫ t

0

∥ϱ2(℘−1)(z)∥dz,

∥ϱ3℘(t)∥ ≤ 2
(1− ξ)

(2− ξ)M(ξ)
Ξ3∥ϱ3(℘−1)(t)∥+ 2

ξ

(2− ξ)M(ξ)
Ξ1

∫ t

0

∥ϱ3(℘−1)(z)∥dz,

∥ϱ4℘(t)∥ ≤ 2(1− ξ)

(2− ξ)M(ξ)
Ξ4∥ϱ4(℘−1)(t)∥+ 2

ξ

(2− ξ)M(ξ)
Ξ4

∫ t

0

∥ϱ4(℘−1)(z)∥dz,

∥ϱ5℘(t)∥ ≤ 2
(1− ξ)

(2− ξ)M(ξ)
Ξ5∥ϱ5(℘−1)(t)∥+ 2

ξ

(2− ξ)M(ξ)
Ξ5

∫ t

0

∥ϱ5(℘−1)(z)∥dz,

∥ϱ6℘(t)∥ ≤ 2
(1− ξ)

(2− ξ)M(ξ)
Ξ6∥ϱ6(℘−1)(t)∥+ 2

ξ

(2− ξ)U(ξ)
Ξ6

∫ t

0

∥ϱ6(℘−1)(z)∥dz. (5.16)

2

Theorem 5.2 If we get a t0 such that the below satisfies

2
(1− ξ)

(2− ξ)M(ξ)
Ξ1 + 2

ξ

(2− ξ)M(ξ)
Ξ1t0 < 1,

then, for system (3.2) we get an exact coupled-solution.

Proof: Since Sh(t), Vh(t), Ih(t),Rh(t), Sv(t) and Iv(t) are bounded and the Lipschitz condition holds
true. Then, from (5.15) and (5.16) we get the following:

∥ϱ1℘(t)∥ ≤ ||Sh℘
(0)||

[(
2

(1− ξ)

(2− ξ)U(ξ)
Ξ1

)
+
(
2

ξ

(2− ξ)U(ξ)
Ξ1t

)]℘
,

∥ϱ2℘(t)∥ ≤ ||Vh℘
(0)||

[(
2

(1− ξ)

(2− ξ)M(ξ)
Ξ2

)
+

(
2

ξ

(2− ξ)M(ξ)
Ξ2t

)]℘
,

∥ϱ3℘(t)∥ ≤ ||Ih℘(0)||
[(

2
(1− ξ)

(2− ξ)M(ξ)
Ξ3

)
+

(
2

ξ

(2− ξ)U(ξ)
Ξ3t

)]℘
,

∥ϱ4℘(t)∥ ≤ ||Rh℘
(0)||

[(
2

(1− ξ)

(2− ξ)M(ξ)
Ξ4

)
+

(
2

ξ

(2− ξ)U(ξ)
Ξ4t

)]℘
,



10 M. Shutaywi, Z. Shah, R. Jan, W. Deebani, E. Antonescu, A. Hasegan

∥ϱ5℘(t)∥ ≤ ||Sv℘(0)||
[(

2
(1− ξ)

(2− ξ)M(ξ)
Ξ5

)
+
(
2

ξ

(2− ξ)M(ξ)
Ξ5t

)]℘
,

∥ϱ6℘(t)∥ ≤ ||Iv℘(0)||
[(

2
(1− ξ)

(2− ξ)M(ξ)
Ξ6

)
+

(
2

ξ

(2− ξ)M(ξ)
Ξ6t

)]℘
. (5.17)

Hence, the solutions’ continuity and existence are obtained. For the solution model (3.2) of dengue, we
will proceed in the following manner

Sh(t)− Sh(0) = Sh℘
(t)− P1℘(t),

Vh(t)− Vh(0) = Vh℘
(t)− P2℘(t),

Ih(t)− Ih(0) = Ih℘(t)− P3℘(t),

Rh(t)−Rh(0) = Rh℘
(t)− P4℘(t),

Sv(t)− Sv(0) = Sv℘(t)− P5℘(t),

Iv(t)− Iv(0) = Iv℘(t)− P6℘(t). (5.18)

Moreover, we have

∥B℘(t)∥ =
∣∣∣∣∣∣ 2(1− ξ)

(2− ξ)M(ξ)
(B1(t, Sh℘

)− B1(t, Sh(℘−1)
)) +

2ξ

(2− ξ)M(ξ)
×∫ t

0

(B1(z, Sh℘
)− B1(z, Sh(℘−1)

))dz
∣∣∣∣∣∣,

≤ 2(1− ξ)

(2− ξ)M(ξ)
∥(B1(t, Sh℘)− (B1(t, Sh(℘−1)

))∥+ 2ξ

(2− ξ)M(ξ)
×∫ t

0

||(B1(z,Sh)− B1(z, Sh(℘−1)
))||dz,

≤ 2(1− ξ)

(2− ξ)M(ξ)
Ξ1∥Sh − Sh(℘−1)

∥+ 2ξ

(2− ξ)M(ξ)
Ξ1∥Sh − Sh(℘−1)

∥t, (5.19)

and

∥P1℘(t)∥ ≤
( 2(1− ξ)

(2− ξ)M(ξ)
+

2ξ

(2− ξ)M(ξ)
t
)℘+1

Ξ℘+1
1 a. (5.20)

Here, at t0 we have the following:

∥P1℘(t)∥ ≤
( 2(1− ξ)

(2− ξ)M(ξ)
+

2ξ

(2− ξ)U(ξ)
t0

)℘+1

Ξ℘+1
1 a. (5.21)

Similarly proceeding and utilizing (5.21), we obtained the following

∥P1℘(t)∥ −→ 0, as ℘ → ∞.

Similarly, one can get that P2℘(t),P3℘(t),P4℘(t),P5℘(t),P6℘(t) ⇒ 0 as ℘ ⇒ ∞. 2

To show the uniqueness of the solution of our model, let (Sh1(t), Vh1(t), Ih1(t), Rh1(t), Sv1(t), Iv1(t))
is another solution of model (3.2):

Sh(t)− Sh1
(t) =

2(1− ξ)

(2− ξ)M(ξ)
(B1(t,Sh)− B1(t,Sh1

)) +
2ξ

(2− ξ)M(ξ)
×
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0

(B1(z,Sh)− B1(z,Sh1)) dz. (5.22)

Simplification yields the following

∥Sh(t)− Sh1
(t)∥ ≤ 2(1− ξ)

(2− ξ)M(ξ)
∥B1(t,Sh)− B1(t,Sh1

)∥+ 2ℓ

(2− ℓ)M(ℓ)
×∫ t

0

∥B1(z,Sh)− B1(z,Sh1
)∥dz. (5.23)

Further, we get

∥Sh(t)− Sh1
(t)∥ ≤ 2(1− ξ)

(2− ξ)M(ξ)
Ξ1∥Sh(t)− Sh1

(t)∥+ 2ξ

(2− ξ)M(ξ)
×∫ t

0

Ξ1t∥Sh(t)− Sh1
(t)∥dz. (5.24)

From (5.24), we get

∥Sh(t)− Sh1(t)∥
(
1− 2(1− ξ)

(2− ξ)M(ξ)
Ξ1 −

2ξ

(2− ℓ)M(ξ)
Ξ1t

)
≤ 0. (5.25)
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Figure 1: Time series analysis of infected hosts and infected vectors of our model (3.2) with various values
of ξ, i.e., ξ = 0.70, 0.80, 0.90, 1.00 to conceptualize the impact of memory on the dynamics.

Theorem 5.3 We can get a solution of system (3.2), if(
1− 2(1− ξ)

(2− ξ)M(ξ)
Ξ1 −

2ξ

(2− ξ)M(ξ)
Ξ1t

)
> 0. (5.26)

Proof: To show the existence of the solution, we get the below from the above is (5.26), when (5.25) is
satisfied

∥Sh(t)− Sh1
(t)∥ = 0. (5.27)
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Figure 2: Time series analysis of infected hosts and infected vectors of our model (3.2) with various values
of ξ, i.e., ξ = 0.50, 0.55, 0.60, 0.65 to conceptualize the impact of memory on the dynamics.
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Figure 3: Plotting the solution pathways of infected hosts and infected vectors of our model (3.2) with
various values of biting rate b, i.e., b = 0.88, 0.92, 0.96, 1.000.

Further, we get

Sh(t) = Sh1
(t). (5.28)

Proceeding similarly, we get the following

Vh(t) = Vh1
(t),Ih(t) = Ih1

(t),

Rh(t) = Rh1
(t),Sv(t) = Sv1(t),Iv(t) = Iv1(t).

2
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Figure 4: Plotting the solution pathways of infected hosts and infected vectors of our model (3.2) with
various values of transmission rate β1, i.e., β1 = 0.521, 0.621, 0.721, 0.821.
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Figure 5: Illustration of the dynamical nature of infected hosts and infected vectors of the model (3.2)
of the infection with the variation of p, i.e., p = 0.28, 0.38, 0.48, 0.58 to visualize the effect of vaccination
on the system.

6. Result and discussion

The dynamical behavior of dengue infection within a population is complex and can be effectively
described using mathematical models that incorporate various epidemiological factors. Factors such as
population density, memory, human mobility, climate, and immunity levels contribute significantly in the
transmission of this vector-borne infection. Mathematical analyses, numerical simulations, and sensitivity
studies help in understanding the implications of these factors on the spread of the virus and can aid in
designing effective public health interventions. Furthermore, the potential for severe outcomes, like DHF
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Figure 6: Illustration of the dynamical nature of infected hosts and infected vectors of the model (3.2)
of the infection with the variation of ξ2, i.e., ξ2 = 0.32, 0.38, 0.44, 0.50.
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Figure 7: Solution pathways of infected hosts and infected vectors of the model (3.2) of the infection with
the variation of ξ1, i.e., ξ1 = 0.281, 0.341, 0.401, 0.461.

and DSS, adds another layer of complexity to the dynamical behavior of dengue infection, necessitating
comprehensive and adaptive strategies for disease control and prevention. Here, we will demonstrate how
the various input elements of the suggested system affect the solution pathways of the infection.

We perform numerous simulations to visualize the variation in the endemic level of the infection.
For simulation purposes, we assumed the values of state-variable and the parameters of the system. We
illustrate our conceptual understanding of the effect of memory on infected hosts and vectors in Figures
1 and 2. We took the values of ξ to be 0.70.0.80, 0.90, and 1.00 in Figure 1, and the values of ξ to be
0.55, 0.60, 0.65, 0.70. A comparative study of integer and non-integer systems is also shown in the first
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Figure 8: Visualization of the dynamics of the infected hosts and infected vectors of the model (3.2) with
υ, i.e., υ = 0.05, 0.15, 0.25, 0.35.

Figure, demonstrating the greater flexibility of non-integer systems over classical systems. It has been
observed that the index of memory is a desirable feature that has the potential to lower the level of
infection. For the purpose of infection control and prevention, we thus advise policymakers to implement
it. We elucidate the effect of vector biting rate on the dynamics of infected individuals across both classes
in Figure 3 with b equal to 0.42, 0.52, 0.62 and 0.72. Our findings underscore the critical role of the biting
rate b as a pivotal element for the level of the infection. Global worming can increase the biting rate and
hence raise the risk of this vector borne infection.

We emphasized the impact of transmission rate β1 on the behavior of infected people in Figure 4. In
this simulation, we took the values of β1 to be 0.521, 0.621, 0.721, and 0.821. It has been observed that
when β1 grows, so does the infection level of both hosts and vectors. As a result, it is advised to public
health professionals for improved management of infections. The impact of vaccination on the infected
individuals of the system is depicted in Figure 5. We used the values of p to be 0.28, 0.38, 0.48, and 0.58
in this simulation. We have observed that immunization can successfully treat systemically ill persons.
As a result, we recommended to the decision-makers that vaccine efficacy be increased for better control.
In Figure 6 and Figure 7, we have shown the impact of the efficacy of insecticide and the efficacy of drugs,
respectively. It can be observed that increased efficacy of insecticide reduce the level of infected vectors
quickly which reduce the infection level of hosts while the increased efficacy of drugs can decrease the
level of infected hosts quickly which decrease the level of infected vectors. These two policies are good
and can be used to lover the level of infection in the community.

The loss of immunity in dengue is a complex process that varies based on several factors, including the
specific serotype of the dengue virus, the host’s immune response, and the time elapsed since the infection.
In Figure 8, we illustrated the impact of losing rate of immunity on the dynamics of the infection. In
this simulation, we assumed the values of υ to be 0.05, 0.15, 0.25 and 0.35. It is obvious that this factor
poses a risk and makes the management of the infection more challenging. Our findings indicate that
the memory index can decrease infection levels and serve as a control parameter for managing dengue
infection. Conversely, the biting rate and transmission rate pose significant risks. Furthermore, our
research highlights that the rate of immunity loss is a critical factor, complicating dengue control efforts.
Additionally, we have demonstrated that drug efficacy and overall treatment effectiveness are promising
control strategies. Our results helps in understanding the disease dynamics, evaluate control policies,
assessing intervention impacts and supporting policy makers decisions.
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7. Conclusion

Dengue infection constitute a significant component of the global disease burden, underscoring the im-
perative need for efficacious strategies to protect individuals from these potentially fatal diseases. In this
work, we used Caputo-Fabrizio operator to formulate a novel model for dengue infection with the effect
of vaccination and saturated incidence rate. We introduced the fundamental results of fractional theory
associated with CF derivative for the analysis of proposed model. We investigated the steady-states and
determined the endemic indicator, symbolized by R0 through the approach of next-generation matrix.
It has been shown that the disease-free steady state is locally asymptotically stable if R0 < 1, otherwise
unstable. The existence theory is introduced, moreover, we examined the uniqueness and existence of
the solution of the recommended system. Time series analysis of the model was done with the help of
numerical results to show the most effective factors of the dynamics. Our numerical findings highlighted
essential factors of the dynamics for the control and management of the infection, providing valuable
insights for public health interventions and policy considerations.
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