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Higher Order Orthogonal Spline Collocation Method for Periodic Boundary Value
Problems

Nitisha Pandey∗ and Reena Jain

abstract: This work thoroughly investigates various high-accuracy collocation methods for solving periodic
boundary value problems (PBVPs), highlighting their efficiency and rapid convergence. The study demon-
strates that collocation techniques can achieve high-order accuracy while reducing the computational resources
required, making them a powerful alternative to traditional methods. Numerical experiments are conducted
to validate the effectiveness of our proposed approach and confirmed sixth-order accuracy in both, the solution
and its derivative. This finding is supported by error analysis and convergence rates for periodic boundary
conditions in second-order differential equations. During the comparison of our method to the finite difference
method, we found that our approach is superior. Specifically, increasing the number of grid points signifi-
cantly reduces the error while maintaining a consistent order of convergence. Overall, the results underscore
the effectiveness of collocation methods in addressing PBVPs for differential equations and complex boundary
conditions.

Key Words: Linear ordinary differential equation, orthogonal spline collocation, periodic boundary
conditions, superconvergence.
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1. Introduction

Periodic boundary value problems arise frequently in scientific and engineering applications, especially
in modeling multiple periodic events like wave propagation and multiple oscillatory systems. PBVPs are
an important class of problems that are dealt with in the study of differential equations. Their popularity
owes almost exclusively to their applicability in the modeling of phenomena exhibiting intrinsic periodicity.
Interestingly, scientists Max Born and Theodore von Karman greatly developed the notion of periodic
boundary conditions in the early part of the 20th century. They proposed what has come to be called
the Born–von Karman boundary condition, which prescribes that a wave function must be periodic on a
given Bravais lattice. This boundary condition has played a crucial role in solid-state physics, especially
in the theory of ideal crystals.

The objective of this study is to investigate the higher-order convergence of periodic boundary value
problems. Earlier research has played a significant role in developing the theory surrounding these
problems for differential equations and their systems. Recent researches on PBVPs have expanded into
various complex systems. For instance, Benner et al. [1] investigated weakly nonlinear PBVPs in ordinary
differential equation systems with switching behaviors under nonlinear perturbations. They proposed an
iterative algorithm to find solutions in critical cases and successfully applied their methodology to a
mathematical model of nonisothermal chemical reactions.
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Wang et al. [2] studied Caputo-type fractional semilinear nonautonomous differential equations with
periodic boundary value problems involving non-instantaneous impulses. Using semigroup theory in
combination with the measure of non-compactness and fixed-point theorems, they proved the existence
of PC-mild solutions. They also presented an example for demonstration.

The study of PBVPs has also been extended to fractional differential equations. Xue et al. [3] examined
the existence of solutions for fractional PBVPs that involve the p(t)-Laplacian operator. They established
a continuation theorem and included illustrative examples to support their results. The study explores the
existence of positive solutions for systems governed by second-order, two-point PBVPs [4]. The analysis
has also addressed the existence and multiplicity of positive solutions for systems of PBVPs of second-
order, three-point [5]. Liu et. al. [6], have presented sufficient conditions for nontrivial periodic solutions
to second-order, two-point periodic boundary value problems. Additionally,Yao [7] demonstrated the
existence and multiplicity of positive solutions, which were further investigated for second-order two-
point PBVPs. Solvability and an iterative scheme for systems of first-order PBVPs have been explored
by Smadi et. al. [8] through the Reproducing Kernel Hilbert Space Method (RKHSM). Recently, Arqub [9]
introduced analytical-numerical solutions for systems of second-order two-point singular PBVPs using
the RKHSM.

Since the invention of digital computing, collocation techniques have been essential to the numerical
solution of differential equations. The basic principle of collocation is to fit a function that satisfies
the differential equation at specific discrete points, referred to as collocation points, to approximate the
solution. High convergence and low errors can be obtained by applying a collocation point. When working
with complicated boundary conditions, smoothness is essential, and this method successfully manages it.
Additionally, increased precision reduces cumulative errors in time-dependent situations.

There are several approaches to solving differential equations with PBVPs, but collocation methods
[10] have proven to be valuable tools. They provide high-order accuracy using fewer grid points and
enjoy super convergence [11], which enhances solutions without additional computational expense. These
methods ensure the accuracy of both the solution and its derivatives. This approach yields a smooth
and highly precise solution while minimizing errors and remaining sensitive to stability conditions. This
results in a balanced and consistent outcome. In this analysis, we will compare the finite difference
method with our approach to determine the conditions under which our method performs optimally.

Table 1: Summary of Collocation Methods
Ref. ODE PBVP Collocation Types Superconvergence

[12] ✓ × Chebyshev ×
[13] ✓ ✓ Uniform ×
[8] ✓ ✓ RKHS ×
[9] × ✓ Kernel ✓
[14] ✓ × Chebyshev Gauss Lobatto ×
[10] × × Spline collocation ✓
[2] × ✓ Analytic ×
[1] ✓ ✓ Iterative ×
[3] × ✓ Analytic ×
This Paper ✓ ✓ Gauss quadrature points ✓

2. Collocation Method

Let n order linear differential equation with periodic boundary conditions. And r be the order of the
approximate solution

bn(x)
dnu

dxn
+ bn−1(x)

dn−1u

dxn−1
+ · · ·+ b1(x)

du

dx
+ b0(x)u = g(x), (2.1)

where bn(x), bn−1(x), . . . , b0(x) are given functions, and g(x) is the non-homogeneous term.
With interval

D : 0 = x0 < x1 < · · · < xN−1 < xN = N,
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let’s denote a partition of the interval [0, N ] such that x ∈ D, and set,

Ii = [xi, xi+1], hi = xi+1 − xi, i = 0, 1, . . . , N − 1.

in [0, N ], the two-point Gauss quadrature points

ξ2i−1 = xi +
1

2

(
1−

√
1

3

)
hi,

ξ2i = xi +
1

2

(
1 +

√
1

3

)
hi.

where, i = 0,1, 2, . . . , N - 1.

The solution of equation (2.1) satisfies the periodic boundary conditions

u(x0) = u(xN ), u′(x0) = u′(xN ).

On each subinterval Ii, i = 0, 1, . . . , N−1, We express the collocation point using an approximate solution
in the following form

Uh(x) = yi1 + (x− xi)yi2 + (x− xi)
2zi1 + (x− xi)

3zi2. (2.2)

We take r = 3, so the superconvergence of order 2r − 2 = 4 is observed, as well as in its derivative.
The equation involving the four unknowns yi1, yi2, zi1, and zi2.
By differentiating (2.2) with respect to x, we find the following result,

U ′
h(x) = yi2 + 2(x− xi)zi1 + 3(x− xi)

2zi2. (2.3)

On differentiating (2.3) a second time, it follows that,

U ′′
h (x) = 2zi1 + 6(x− xi)zi2. (2.4)

Using (2.2),(2.3), and (2.4) in (2.1), the collocation points on the interval Ii at x = ξ2i−1 and x = ξ2i are
for n = 2,

b2(x)
[
2zi1 + 6(ξ2i−1 − xi)zi2

]
+ b1(x)

[
(ξ2i−1 − xi) + 2(ξ2i−1 − xi)zi1 + 3(ξ2i−1 − xi)

2zi2

]
+ b0(x)

[
yi1 + (ξ2i−1 − xi)yi2 + (ξ2i−1 − xi)

2zi1 + (ξ2i−1 − xi)
3zi2

]
= g(ξ2i−1 − xi),

(2.5)

b2(x)
[
2zi1 + 6(ξ2i − xi)zi2

]
+ b1(x)

[
(ξ2i − xi) + 2(ξ2i − xi)zi1 + 3(ξ2i − xi)

2zi2

]
+ b0(x)

[
yi1 + (ξ2i − xi)yi2 + (ξ2i − xi)

2zi1 + (ξ2i − xi)
3zi2

]
= g(ξ2i − xi),

(2.6)
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We can express this linear equation in matrix form. There are 2N collocation points and two boundary
conditions; therefore, we derive a linear system of order 4N + 2 that is almost block diagonal (ABD).

Da

A1 B1

C1 D1 I2
. . .

Ai Bi

Ci Di I2
. . .

. . .

AN BN

CN DN I2
Db





y0
z0
y1
...

yN−2

zN−2

...
yN−1

zN−1

yN


=



g0
f1
0
...

gn−1

fn−1

...
fn
0
g1


(2.7)

where Da = (u(x0), ...., u(xN ),.), Db = (., u′(x0), ......, u
′(xN )) boundary conditions respectively, and the

matrices Ai, Bi, Ci,Di and I2 are given by:

Ai =

[
b0 b0(ξ2i−1 − xi) + b1(x)
b0 b0(ξ2i − xi) + b1(x)

]
,

Bi =

[
2b1(x)(ξ2i−1 − xi) + b0(x)(ξ2i−1 − xi)

2 b0(x)(ξ2i−1 − xi)
3 + 3b1(x)(ξ2i−1 − xi)

2

2b1(x)(ξ2i − xi) + b0(x)(ξ2i − xi)
2 b0(x)(ξ2i − xi)

3 + 3b1(x)(ξ2i − xi)
2

]
,

Ci =

[
−1 −h
0 −1

]
, Di =

[
−h2 −h3

−2h −3h2

]
, I2 =

[
1 0
0 1

]
.

Now, extended this for r = 4, and for three-point Gauss quadrature points

The three-point Gauss quadrature points

ξ3i = xi +
1

2

(
1−

√
3

5

)
hi,

ξ3i+1 = xi +
1

2
hi,

ξ3i+2 = xi +
1

2

(
1 +

√
3

5

)
hi.

where, i = 0,1, 2, . . . , N - 1.
On each subinterval Ii, i = 0, 1, . . . , N−1, We express the collocation point using an approximate solution
in the following form

Uh(x) = yi1 + (x− xi)yi2 + (x− xi)
2yi3 + (x− xi)

3zi1 + (x− xi)
4zi2. (2.8)

We take r = 4, so the superconvergence of order 2r − 2 = 6 is observed, as well as in its derivative.
The equation involving the five unknowns yi1, yi2,yi3, zi1, and zi2.
By differentiating (2.8) with respect to x, we find the following result,

U ′
h(x) = yi2 + 2(x− xi)yi3 + 3(x− xi)

2zi1 + 4(x− xi)
3zi2. (2.9)

On differentiating (2.9) a second time, it follows that,

U ′′
h (x) = 2yi3 + 6(x− xi)zi1 + 12(x− xi)

2zi2. (2.10)
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Using (2.8),(2.9), and (2.10) in (2.1) for n=2, the collocation points on the interval Ii at x = ξ3i, x = ξ3i+1

and x = ξ3i+2 are

b2(x)
[
2yi3 + 6(ξ3i − xi)zi1 + 12(ξ3i − xi)

2zi2

]
+ b1(x)

[
yi2 + 2(ξ3i − xi)yi3 + 3(ξ3i − xi)

2zi1 + 4(ξ3i − xi)
3zi2

]
+ b0(x)

[
yi1 + (ξ3i − xi)yi2 + (ξ3i − xi)

2yi3 + (ξ3i − xi)
3zi1 + (ξ3i − xi)

4zi2

]
= g(ξ3i − xi),

(2.11)

b2(x)
[
2yi3 + 6(ξ3i+1 − xi)zi1 + 12(ξ3i+1 − xi)

2zi2

]
+ b1(x)

[
yi2 + 2(ξ3i+1 − xi)yi3 + 3(ξ3i+1 − xi)

2zi1 + 4(ξ3i+1 − xi)
3zi2

]
+ b0(x)

[
yi1 + (ξ3i+1 − xi)yi2 + (ξ3i+1 − xi)

2yi3 + (ξ3i+1 − xi)
3zi1 + (ξ3i+1 − xi)

4zi2

]
= g(ξ3i+1 − xi),

(2.12)

b2(x)
[
2yi3 + 6(ξ3i+2 − xi)zi1 + 12(ξ3i+2 − xi)

2zi2

]
+ b1(x)

[
yi2 + 2(ξ3i+2 − xi)yi3 + 3(ξ3i+2 − xi)

2zi1 + 4(ξ3i+2 − xi)
3zi2

]
+ b0(x)

[
yi1 + (ξ3i+2 − xi)yi2 + (ξ3i+2 − xi)

2yi3 + (ξ3i+2 − xi)
3zi1 + (ξ3i+2 − xi)

4zi2

]
= g(ξ3i+2 − xi).

(2.13)

There are 3N collocation points and two boundary conditions therefore, We derive a linear system of
order 5N + 2 that is almost block diagonal.

Da

A1 B1

C1 D1 I2
. . .

Ai Bi

Ci Di I2
. . .

. . .

AN BN

CN DN I2
Db





y0
z0
y1
...
...
...

yN−1

zN−1

yN


=



g0
f0
...
...

gn−1

fn−1

...
gn
fn
g1



(2.14)

where Da = (u(x0), ..., u(xN ), .), Db = (., u′(x0), ..., u
′(xN )) boundary conditions respectively, and the

matrices Ai, Bi, Ci and Di are given by:

Ai =

[
b0 b0(ξ3i − xi) + b1(x) 2b2(x) + 2b1(x)(ξ3i − xi) + b0(x)(ξ3i − xi)

2

b0 b0(ξ3i+1 − xi) + b1(x) 2b2(x) + 2b1(x)(ξ3i+1 − xi) + b0(x)(ξ3i+1 − xi)
2

b0 b0(ξ3i+2 − xi) + b1(x) 2b2(x) + 2b1(x)(ξ3i+2 − xi) + b0(x)(ξ3i+2 − xi)
2

]
,

Bi =

 b2(x)6(ξ3i − xi) + b1(x)3(ξ3i − xi)
2 + b0(x)(ξ3i − xi)

3 b2(x)12(ξ3i − xi)
2 + b1(x)4(ξ3i − xi)

3 + b0(x)(ξ3i − xi)
4

b2(x)6(ξ3i+1 − xi) + b1(x)3(ξ3i+1 − xi)
2 + b0(x)(ξ3i+1 − xi)

3 b2(x)12(ξ3i+1 − xi)
2 + b1(x)4(ξ3i+1 − xi)

3 + b0(x)(ξ3i+1 − xi)
4

b2(x)6(ξ3i+2 − xi) + b1(x)3(ξ3i+2 − xi)
2 + b0(x)(ξ3i+2 − xi)

3 b2(x)12(ξ3i+2 − xi)
2 + b1(x)4(ξ3i+2 − xi)

3 + b0(x)(ξ3i+2 − xi)
4


Ci =

[
−1 −h −h2

0 −1 −2h

]
, Di =

[
−h3 −h4

−3h2 −4h3

]
.

In particular, a fourth-order accurate scheme is obtained by using cubic basis functions with two
collocation points per element. Similarly, the accuracy level is raised to six by employing quartic basis
functions. For the degree of the basis r, the method achieves an accuracy of the order 2r − 2.
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3. Numerical Illustrations

We present results from various numerical experiments that involve periodic boundary conditions. In
each case, we calculate the experimental convergence rate of the error using

Rate =
log(EN1

/EN2
)

log(N2/N1)
,

where EN denotes the norm of the error using the subintervals N .

In the numerical analysis of differential equations, particularly in collocation methods, superconver-
gence refers to a phenomenon where the numerical solution and its derivatives demonstrate a higher level
of accuracy. Increasing the number of subintervals results in a more refined discretization of the domain,
which enhances the accuracy of approximations of function values and derivatives. At these particular
locations, both the numerical solution and its first derivative achieve an accuracy order of 2r − 2, as
discussed in the previous section. This is significantly higher than the typical order of convergence.

We tested it on standard PBVPs for cubic and quartic approximate solutions, i.e., the Helmholtz
equation, the Poisson equation, and the numerical approach. These results confirm that the high-accuracy
collocation method is effective and efficient for solving periodic boundary value problems. Its ability to
enforce periodicity precisely, achieve superconvergence, and maintain high accuracy makes it well-suited
for applications in physics, engineering, and computational mathematics. Algorithm 1 is provided at the
end of the paper as an appendix.

3.1. Example 1

Evaluate the effectiveness of the one-dimensional Helmholtz equation with periodic boundary condi-
tions.

d2y

dx2
− αy = g(x). (3.1)

where α is the real number. The domain is defined as

D = {x | x0 ≤ x ≤ xf}, (3.2)

x0 and xf are are known boundary points, and g(x) is a defined source function.
We apply periodic boundary conditions to the boundaries of the domain x = x0 and x = xf .

y(x0) = y(xf ), y′(x0) = y′(xf ).

The problem parameters are assigned the following values

x0 = 0, xf = 4, h = L = xf − x0 = 4.

The Helmholtz equation (3.1) has an analytic solution

y(x) = sin [3π(x+ 0.05)] cos [2π(x+ 0.05)] + 2.

This function is periodic with a period of L = 4 and satisfies the boundary conditions. After solving for
y(x), we get

g(x) = (−13π2 − α) sin (3π(x+ 0.05)) cos (2π(x+ 0.05))

− 12π2 cos (3π(x+ 0.05)) sin (2π(x+ 0.05))− 2α. (3.3)
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We express the approximate solution for r = 4 using three collocation points in the following form

Uh(x) = yi1 + (x− xi)yi2 + (x− xi)
2yi3 + (x− xi)

3zi1 + (x− xi)
4zi2. (3.4)

Differentiating (3.4) two times, it follows that

U ′′
h (x) = 2yi3 + 6(x− xi)zi1 + 12(x− xi)

2zi2. (3.5)

The collocation points on the interval Ii at a = ξ3i , b = ξ3i+1 and c = ξ3i+2 are we have,

a =
1

2
hi(1−

√
3

5
) (3.6)

b =
1

2
hi (3.7)

c =
1

2
hi(1 +

√
3

5
) (3.8)

Where h(i) =
xf−x0

Ni
, then using (3.4) and (3.5) in (3.1)

2yi3 + 6azi1 + 12a2zi2 − α(yi1 + ayi2 + a2yi3 + a3zi1 + a4zi2) = g(a), (3.9)

2yi3 + 6bzi1 + 12b2zi2 − α(yi1 + byi2 + b2yi3 + b3zi1 + b4zi2) = g(b), (3.10)

2yi3 + 6czi1 + 12c2zi2 − α(yi1 + cyi2 + c2yi3 + c3zi1 + c4zi2) = g(c). (3.11)

We can express the linear equation in the matrix for i = 1 where, the matrices A1, B1, C1 and D1 are
given by:

A1 =

−α −αa 2− αa2

−α −αb 2− αb2

−α −αc 2− αc2

 , B1

6a− αa3 12a2 − αa4

6b− αa3 12b2 − αb4

6c− αa3 12c2 − αc4

 ,

C1 =

[
−1 −h −h2

0 −1 −2h

]
, D1 =

[
−h3 −h4

−3h2 −4h3

]
.

Similarly, for i = 1, 2...N − 1 we get the almost block diagonal of 5N + 2 order. After solving this by
MatlabR2024a 2 reports a comprehensive analysis of errors and convergence rates for the Finite Difference
Method (FDM) and the Collocation Method (CM) with subintervals (N). Clearly, the outcomes show
that for different values of α, the CM achieves sixth-order accuracy both in the approximated solution
and the derivative.

The CM method demonstrates a higher-order and more stable rate of convergence, as shown in table
2. Despite some initial oscillations, most values converge to approximately sixth order for both ∥u−uh∥∞
and ∥u′ − u′

h∥∞.

CM offers several advantages, including improved accuracy at higher orders, consistent convergence
rates, and effective error reduction across a range of α values. It is particularly beneficial for problems
that require precise numerical solutions, as its accuracy continuously improves with additional subinter-
vals. In contrast, the finite difference method performs well but faces challenges on subintervals, making
it less suitable for those scenarios.
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Table 2: Error and Rate Comparisons for FDM and CM
α METHOD N Error ∥y − yh∥∞ Rate Error ∥y′ − y′h∥∞ Rate

10

FDM 10 1.07× 101 - - -
CM 2.0994× 10−1 2.6537 1.5286× 100 3.7364
FDM 20 2.05× 100 2.38 - -
CM 8.8854× 10−3 4.5624 7.7975× 10−3 7.615
FDM 40 2.00× 100 0.04 - -
CM 8.0491× 10−5 6.7865 1.4519× 10−4 5.747
FDM 80 2.00× 100 0 - -
CM 1.1109× 10−6 6.1791 2.2121× 10−6 6.0364
FDM 160 2.00× 100 0 - -
CM 1.6840× 10−8 6.0436 3.4292× 10−8 6.0114

-10

FDM 10 6.73× 100 0 - -
CM 1.4872× 101 4.8139 4.3433× 101 4.8836
FDM 20 2.10× 100 1.68 - -
CM 1.4303× 10−2 10.022 5.1530× 10−2 9.7191
FDM 40 2.10× 100 0.06 - -
CM 9.2245× 10−5 7.2766 3.6471× 10−4 7.1425
FDM 80 2.00× 100 0 - -
CM 1.2231× 10−6 6.2368 4.9341× 10−6 6.2078
FDM 160 2.00× 100 0 - -
CM 1.8383× 10−8 6.056 7.4518× 10−8 6.049

16

FDM 10 7.45× 100 - - -
CM 2.1289× 10−1 2.3889 1.2604× 100 3.6945
FDM 20 2.05× 100 1.86 - -
CM 7.6597× 10−3 4.7967 1.7495× 10−3 9.4928
FDM 40 2.00× 100 0.03 - -
CM 7.7233× 10−5 6.6319 7.8358× 10−5 4.4807
FDM 80 2.00× 100 0 - -
CM 1.0811× 10−6 6.1587 1.3540× 10−6 5.8548
FDM 160 2.00× 100 0 - -
CM 1.6439× 10−8 6.0392 2.1519× 10−8 5.9755

100

FDM 10 2.87× 100 - - -
CM 1.3081× 10−1 2.1746 5.4364× 10−1 3.1449
FDM 20 2.02× 100 0.51 - -
CM 1.4533× 10−3 6.492 6.4166× 10−2 3.0828
FDM 40 2.00× 100 0.01 - -
CM 3.8186× 10−5 5.2502 8.6369× 10−4 6.2152
FDM 80 2.00× 100 0 - -
CM 7.4974× 10−7 5.6705 1.1852× 10−5 6.1873
FDM 160 2.00× 100 0 - -
CM 1.2195× 10−8 5.942 1.7837× 10−7 6.0542

Table 3 presents the results obtained using the Collocation Method (CM) with both cubic and quartic
basis functions for α = −10.
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Table 3: Error and Rate for cubic and Quartic
Cubic α = −10

N Error ∥y − yh∥∞ Rate Error ∥y′ − y′h∥∞ Rate

10 1.07× 102 – 5.17× 101 –
20 1.86× 102 0.80 5.66× 102 3.46
40 2.51× 10−1 9.53 1.13× 100 8.97
80 5.97× 10−3 5.40 3.56× 10−2 4.09
160 3.52× 10−4 4.09 1.97× 10−3 4.07

Quartic
10 1.4872× 101 4.8139 4.3433× 101 4.8836
20 1.4303× 10−2 10.022 5.1530× 10−2 9.7191
40 9.2245× 10−5 7.2766 3.6471× 10−4 7.1425
80 1.2231× 10−6 6.2368 4.9341× 10−6 6.2078
160 1.8383× 10−8 6.056 7.4518× 10−8 6.049

By examining the figures, the differences in error and rate between the methods are evident. Figure
1 shows the comparison of the error and rate for α = 10, while figure 2 displays the errors and rate for
α = 100.
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Figure 1: Comparison of Errors & Rate for α = 10
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Now, figure 3 shows the convergent order and exact solution graph for α = 10, and figure 4 displays
the prime convergent order and numerical solution graph for α = 10.
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Figure 3: Convergent Order & Exact Solution Graph for α = 10
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Figure 4: Prime Convergent Order & Numerical Solution Graph for α = 10

3.2. Example 2

We analyze the Poisson equation in one dimension.

d2y

dx2
= f(x), x ∈ [0, 2π] (3.12)

With periodic boundary conditions

y(0) = y(2π), y′(0) = y′(2π). (3.13)

Table 4: Periodic Solutions for Different Functions f(x).
f(x) Exact Solution y(x)

sin(x) − sin(x)
sin(2x) −1

4 sin(2x)

We present the errors, convergence rates for both methods in table 5. This also indicates that both the
approximate solution and its derivative achieve sixth-order accuracy using CM.
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Table 5: Error and Rate Comparisons for for f(x) =sin(x)
METHOD N Error ∥y − yh∥∞ Rate Error ∥y′ − y′h∥∞ Rate

FDM 10 3.58× 10−1 - - -
CM 1.4790× 10−7 6.0832 3.0935× 10−8 6.0593
FDM 20 2.28× 10−1 0.65 - -
CM 2.3956× 10−9 5.9481 4.7849× 10−10 6.0146
FDM 40 2.48× 10−2 3.2 - -
CM 3.7304× 10−11 6.0049 7.4580× 10−12 6.0035
FDM 80 4.94× 100 -7.64 - -
CM 5.7976× 10−13 6.0077 1.2002× 10−13 5.9575

The data from the CM method shows higher accuracy, stability, and reliability compared to the FDM
method. FDM is less reliable for solving the problem because it exhibits signs of numerical instability
and implementation flaws. These issues suggest that this method is not dependable. In contrast, CM
demonstrates a consistent and predictable convergence rate close to 6, indicating that the numerical
technique used regularly achieves sixth-order accuracy. Therefore, our approach is clearly superior, as
higher convergence rates signify a more precise and effective method.

The difference in errors and rate can be observed clearly in Figure 5.
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Figure 5: Comparison of Errors & Rate for f(x) = sin(x)

Table 6 and table 7 reports the performance of the Collocation Method using cubic and quartic basis
functions, highlighting the order of solution accuracy.

Table 6: Error and Rate for cubic and Quartic for f(x) = sin(x)
Cubic

N Error ∥y − yh∥∞ Rate Error ∥y′ − y′h∥∞ Rate

10 4.83× 10−3 – 1.53× 10−3 –
20 2.73× 10−4 4.15 8.98× 10−5 4.09
40 1.67× 10−5 4.04 5.53× 10−6 4.02
80 1.03× 10−6 4.01 3.44× 10−7 4.01
160 6.45× 10−8 4.00 2.15× 10−8 4.00

Quartic
10 1.4790× 10−7 6.0832 3.0935× 10−8 6.0593
20 2.3956× 10−9 5.9481 4.7849× 10−10 6.0146
40 3.7304× 10−11 6.0049 7.4580× 10−12 6.0035
80 5.7976× 10−13 6.0077 1.2002× 10−13 5.9575
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Table 7: Error and Rate for cubic and Quartic basis for f(x) = sin(2x)
Cubic

N Error ∥y − yh∥∞ Rate Error ∥y′ − y′h∥∞ Rate

10 1.6045× 10−2 – 2.5857× 10−7 –
20 7.6369× 10−4 4.3930 1.2087× 10−3 4.256
40 4.4917× 10−5 4.0877 6.8266× 10−5 4.1462
80 2.7660× 10−6 4.0214 4.1626× 10−6 4.0356
160 1.7224× 10−7 4.0053 2.5857× 10−7 4.0088

Quartic
10 1.4790× 10−7 6.0832 3.0935× 10−8 6.0593
20 2.3956× 10−9 5.9481 4.7849× 10−10 6.0146
40 3.7304× 10−11 6.0049 7.4580× 10−12 6.0035
80 5.7976× 10−13 6.0077 1.2002× 10−13 5.9575

Table 8 presents the errors and convergence order for both methods when applied to f(x) = sin(2x).

Table 8: Error and Rate Comparisons for f(x) =sin(2x)
METHOD N Error ∥y − yh∥∞ Rate Error ∥y′ − y′h∥∞ Rate

FDM 10 5.56× 10−2 - - -
CM 2.5069× 10−6 6.3578 1.0315× 10−6 6.2534
FDM 20 1.48× 10−1 -1.41 - -
CM 3.6975× 10−8 6.0832 1.5467× 10−8 6.0593
FDM 40 8.80× 10−2 0.75 - -
CM 5.9891× 10−10 5.9481 2.3924× 10−10 6.0146
FDM 80 2.97× 10−2 1.57 - -
CM 9.3271× 10−12 6.0048 3.7287× 10−12 6.0037

The graph in Figure 6 shows the variation in errors and the rate that highlights their differences.
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Figure 6: Comparison of Errors & Rate for f(x) = sin(2x)
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Figure 7 and figure 9 illustrate the convergence order and exact solution graphs for f(x) = sin(x) and
f(x) = sin(2x), respectively. Meanwhile, figure 8 and figure 10 present the prime convergence order and
numerical solution graphs for f(x) = sin(x) and f(x) = sin(2x), respectively.
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Figure 7: Convergent Order & Exact Solution Graph f(x) =sin(x)
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Figure 8: Prime Convergent Order & Numerical Solution Graph f(x)=sin(x)
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Figure 10: Prime Convergent Order & Numerical Solution Graph f(x) = sin(2x)

3.3. Example 3

Examine the following second-order linear non-homogeneous ODE

−0.4y′′ + 2y′ + 0.5y = f(x). (3.14)

with boundary conditions.

y(0) = y(1) = 1, y′(0) = y′(1) = 3. (3.15)

The function f(x) is given by

f(x) = 2.9e3x + (1− e3)(−2.4x+ 6x2 + 0.5x3). (3.16)

The exact solution is

y(x) = e3x + (1− e3)x3. (3.17)

Table 9 displays the errors, convergence rates for both methods.

Table 9: Error and Rate Comparison for FDM and CM Methods
METHOD N Error ∥y − yh∥∞ Rate Error ∥y′ − y′h∥∞ Rate

FDM 10 2.0378× 10−2 - - -
CM 1.6765× 10−7 6.0202 7.7206× 10−7 6.0202
FDM 20 4.7052× 10−3 2.1147 - -
CM 2.6162× 10−9 6.0018 1.2054× 10−8 6.0018
FDM 40 1.1316× 10−3 2.0559 - -
CM 4.0986× 10−11 5.9962 1.8877× 10−10 5.9962
FDM 80 2.7754× 10−4 2.0275 - -
CM 6.5281× 10−13 5.9962 2.9439× 10−12 5.9723

FDM demonstrates a second-order convergence rate, leading to a predictable pattern of error reduc-
tion. In contrast, CM exhibits a sixth-order convergence rate, which means that the error decreases
significantly more rapidly as the grid size increases. For larger values of N, the error levels in CM are
noticeably lower, indicating that it produces much more precise solutions.
When evaluating effectiveness at larger grid sizes, FDM does reduce error but at a slower rate. In com-
parison, CM is both more accurate and efficient, as it minimizes error much more quickly. Due to its
higher-order convergence, CM achieves faster error reduction, making it the superior choice. This im-
proved accuracy makes CM ideal for high-precision numerical solutions, especially when working with
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Figure 11: Comparison of Errors & Rate

larger grid sizes.
Figure 11 graphically represents the errors and rate for both methods.

Table 10 reports the performance of the Collocation Method using cubic and quartic basis functions,
highlighting the effect of basis order on solution accuracy.

Table 10: Error and Rate for cubic and Quartic basis
Cubic

N Error ∥y − yh∥∞ Rate Error ∥y′ − y′h∥∞ Rate

10 2.45× 10−3 – 2.93× 10−2 –
20 1.38× 10−4 4.16 1.75× 10−3 4.07
40 8.71× 10−6 3.98 1.08× 10−4 4.02
80 5.46× 10−7 4.00 6.77× 10−6 4.00
160 3.42× 10−8 4.00 4.23× 10−7 4.00

Quartic
10 1.6765× 10−7 6.0202 7.7206× 10−7 6.0202
20 2.6162× 10−9 6.0018 1.2054× 10−8 6.0018
40 4.0986× 10−11 5.9962 1.8877× 10−10 5.9962
80 6.5281× 10−13 5.9962 2.9439× 10−12 5.9723

figure 12 illustrates the convergence order alongside the exact solution graph. Furthermore, figure 13
shows the prime convergence order and the numerical solution graph.
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Figure 12: Convergent Order & Exact Solution Graph
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Figure 13: Prime Convergent Order & Numerical Solution Graph

4. Concluding Remarks

In this work, we examined high-accuracy collocation techniques to solve periodic boundary value
problems. Our numerical experiments demonstrated that these techniques converge very quickly with
high-order accuracy, highlighting their effectiveness in solving periodic differential equations. The ex-
amples show that with more node points, the collocation method significantly reduces the error while
maintaining a stable convergence order. These results reinforce the notion that collocation methods are
particularly effective for problems where periodicity is a crucial factor.

Furthermore, our numerical results indicate that our approach provides highly accurate approxima-
tions for both the numerical solutions and their derivatives, requiring fewer computational resources
compared to conventional methods. Overall, the findings presented here collectively showcase the ef-
fectiveness of Collocation-based methods used to address periodic differential equations in engineering,
physics, computational chemistry, and applied mathematics.

Our analysis demonstrates that the strategy is effective in managing discontinuities even when an
interface is present at a node position. Future work will focus on a thorough convergence investigation
and error analysis in suitable function spaces.
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Appendix

Algorithm 1 High-Accuracy Orthogonal Spline Collocation for PBVP

1: Step 1: Initialize Parameters
2: Define problem parameters: x0, xf

3: Set number of sub-intervals N for refinement
4: Step 2: Discretization

5: Define step size h =
(xf−x0)

N
6: for j = 1 to N + 1 do
7: Generate grid points: x[j] = x0 + (j − 1) · h
8: end for
9: Compute collocation points using Gaussian quadrature nodes

10: Step 3: Construct System of Equations
11: Initialize matrix A (system coefficients) and vector d (right-hand side)
12: Apply boundary conditions
13: for j = 1 to N do
14: Populate matrix A using the differential equation coefficients
15: Evaluate f(x) and store in vector d
16: end for
17: Step 4: Solve the Linear System
18: Solve for the solution vector: sol = A−1d
19: Step 5: Compute Numerical and Exact Solutions
20: for j = 1 to N + 1 do
21: Numerical solution: Asol[j] = sol[5j − 4]
22: Compute exact solution: exact[j] = (insert exact formula)
23: end for
24: for j = 1 to N + 1 do
25: Compute numerical derivative: Asol1[j]
26: Compute exact derivative: exact1[j]
27: end for
28: Step 6: Error and Convergence Analysis
29: Compute maximum error: error = max |exact−Asol|
30: Compute derivative error: error1 = max |exact1−Asol1|
31: for j = 1 to p− 1 do

32: order[j] = log(error[j]/error[j+1])
log(h[j]/h[j+1])

33: order1[j] = log(error1[j]/error1[j+1])
log(h[j]/h[j+1])

34: end for
35: Step 7: Visualization of graphs
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