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New Classes of Meir-Keeler Type Contractive Mappings

Deepak Khantwal1 and Rajendra Pant1,2∗

abstract: In this paper, we answer some open questions raised in [Filomat 34 (2020), no. 11, 3855–3860] by
introducing some new classes of contractive mappings, including several classes as a special case. We establish
some existence results for these mappings and present illustrative examples in their support. Moreover, we
demonstrate that several well-known results follow as direct consequences of our findings.
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1. Introduction

We start this paper by listing some Meir-Keeler-type conditions. We consider (W,ϱ) a metric space
and P : W → W a self-mapping and Φ denotes the class of mappings φ : R+ → R+ satisfying φ(ℓ) < ℓ
for ℓ > 0 throughout the paper. Let us consider the following conditions for i = 1, 2, 3, 4.

(ai) For any ε > 0 ∃ δ > 0 such that for ω, ν ∈W ,

ε ≤ mi(ω, ν) < ε+ δ ⇒ ϱ(Pω, Pν) < ε,

(bi) for any ε > 0 ∃ δ > 0 such that for ω, ν ∈W ,

ε < mi(ω, ν) < ε+ δ ⇒ ϱ(Pω, Pν) ≤ ε,

(ci) ϱ(Pω, Pν) < mi(ω, ν) for ω, ν ∈W with mi(ω, ν) > 0,

(di) ϱ(Pω, Pν) ≤ φ(mi(ω, ν)) for ω, ν ∈W and φ ∈ Φ,

where

m1(ω, ν) = ϱ(ω, ν),

m2(ω, ν) = max{ϱ(ω, Pω), ϱ(ν, Pν)}
m3(ω, ν) = max{ϱ(ω, ν), ϱ(ω, Pω), ϱ(ν, Pν)},

m4(ω, ν) = max

{
ϱ(ω, ν), ϱ(ω, Pω), ϱ(ν, Pν),

ϱ(ω, Pν) + ϱ(ν, Pω)

2

}
.
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It is evident that (di) implies to (ci). In [11] Jackymski studied various (ε, δ)-contractive conditions and
have the following observations:

(i) (ai) =⇒ (bi) and (ci) but not conversely

(ii) (a1) =⇒ (a3) =⇒ (a4)

(iii) (b1) =⇒ (b3) =⇒ (b4).

The condition (a1) is an original Meir-Keeler contraction (MKC, in short). These mappings not only
contain the classical contractions but also some nonlinear contractions previously explored by Matkowski
[17], Browder [6], and Boyd and Wong [5]. Matkowski and Wegrzyk (see [18], also [8]) slightly generalized
the MKC by proposing the condition (b1). Note that the condition (b1) is not sufficient enough to
ensure the fixed point of the underlying mapping, so it requires an additional condition of (c1). Several
generalizations of these mappings can be found in [4,11,16,23,27,28].

In 1999, Pant [24] established an existence result for mappings satisfying conditions (b2) and (d2).
This result does not force the underlying mapping to be continuous at the fixed point and also provides
an answer to the Rhoades problem posed in [30]. In 2017, Bisht and Pant [3] provided another answer
to the Rhoades problem, considering (ε, δ)-contractive mappings satisfying conditions (b4) and (d4) along
with an additional assumption of continuity of P 2. In 2020, Joshi et al. [13] further studied (ε, δ)-
contractive mappings under an alternative set of conditions. They considered (ε, δ)-contractive mappings
satisfying conditions (bi) and (ci) for i = 2 or 3 under the hypothesis of weak-orbital continuity (see [22]).
They established some existence results for these mappings and raised two open questions regarding the
solutions of the Rhoades problem:
Q1 Does there exist a solution of Rhoades problem which satisfies (bi) and (ci) but not (di)?
Q2 Does there exist a Meir-Keeler type (ai) solution of Rhoades problem which also satisfies (di)?

In this paper, we provide affirmative answers to the open questions discussed above. We do this by
introducing some new classes of contractive mappings, including MKCs, Proinov contractive mappings,
F-contractions, weak contractions and many more. We establish some existence results for these mappings
and show that the assumption of continuity of P 2 remains redundant in the main result of [2]. We present
some supportive examples and deduce several results as corollaries of our findings. Our findings generalize
several existing results in the literature, including some recent results presented in [2,4,13,26,29] and many
others.

2. Preliminaries

We denote by N and R+, the set of natural numbers and positive real numbers, respectively. We
represent the orbit of P at a point ω ∈W by

O(P, ω) = {ω, Pω, P 2ω, . . . , Pnω, . . . }.

A fixed point of P is called contractive (see [28,15]) if all Picard iterates {Pnω} converge to this fixed point.
A mapping P :W →W is an orbitally continuous (see [7]) at ω∗ ∈W if {ωn} ⊆ O(P, ω) for some ω ∈W
such that ωn → ω∗ implies Pωn → Pω∗ as n→ ∞. A mapping P :W →W is a k-continuous (see [21]),
k ∈ N, at ω∗ ∈W if for every sequence {ωn} ⊆W , the condition P k−1ωn → ω∗ implies P kωn → Pω∗ as
n → ∞. In 2019, authors [22] proposed a weaker assumption than orbital continuity and k-continuity,
referred to as weak orbital continuity. A mapping P : W → W is weakly orbitally continuous if the

set
{
ν ∈W : lim

i
Pniν = ω∗ ⇒ lim

i
PPniν = Pω∗

}
̸= whenever the set

{
ω ∈W : lim

i
Pniω = ω∗

}
̸= ∅.

In 2021, Nguyen [20] proposed the notion of P -orbitally lower semicontinuous (P -OLS, in short) which
states if P : W → W and G : W → R be mappings then G is called P -OLS at a point ω∗ ∈ W if, for any
sequence {ωn} ⊆ O(P, ω) for some ω ∈ W , lim

n→∞
ωn = ω∗ =⇒ G(ω∗) ≤ lim infn→∞ G(ωn). It is evident

that these mappings are independent of weakly orbitally continuous mappings (see [20,1]).
In 1999, Pant [24] proved the following result, which answers the Rhoades problem.

Theorem 2.1 If P is a selfmapping in a complete metric space (c.m.s., in short) W that satisfies
conditions (b2) and (d2), then P has a unique fixed point ω∗ ∈ W . Moreover, P is continuous at ω∗ iff
lim

ω→ω∗
m2(ω, ω

∗) = 0.
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In 2017, Bisht and Pant [3] provided another answer to the Rhoades problem.

Theorem 2.2 Let P be a selfmapping in a c.m.s. W such that P 2 is continuous and satisfying conditions
(b4) and (d4). Then P has a contractive fixed point ω∗ ∈ W . Moreover, P is discontinuous at ω∗ iff
lim

ω→ω∗
m4(ω, ω

∗) ̸= 0.

3. Generalized (ε, δ)-Contractive Mappings

In this section, we propose the following conditions for i = 1, 2, 3, 4.

For each w ∈W and given ε > 0, there exist δ > 0 and nε ∈ N such that

mi(P
nευ, Pnεν) < ε+ δ implies ϱ(Pnε+1υ, Pnε+1ν) ≤ ε (Di)

for any υ, ν ∈ O(P, ω).

It is easy to see that a mapping satisfying condition (Di) also satisfies (ai), (bi), (ci) or (di) for each
i ∈ {1, 2, 3, 4} and D1 =⇒ D2 =⇒ D3 =⇒ D4.

Definition 3.1 A mapping P : W → W is said to be a generalized (ε, δ)-contractive mapping if P
satisfies condition (D4).
The following example demonstrates that generalized (ε, δ)-contractive mappings is different from

those satisfying either (ai), (bi), (ci) or (di).

Example 3.1 Let W = R and P :W →W defined by

Pω =


−1, if ω < 0,

0, if ω = 0,

1, if ω > 0.

Then P is a generalized (ε, δ)-contractive mappings with δ(ε) = ε and nε = 2. However P does not satisfy
any one of the conditions (ai), (bi), (ci), (di) for i = 1, 2, 3, 4.

Example 3.2 Let (W,ϱ) be a usual metric space, where W = [0, 1] and P :W →W such that

Pω =

{
1 if ω = 1,

0 if ω ̸= 1.

Then, P satisfies condition (D4) for each ω ∈W .

Example 3.3 Let (W,ϱ) be a usual metric space, where W = [−1, 1] and P :W →W such that

Pω =

{
ω, if ω ≤ 0,

ω/2, if ω > 0.

Then, P is a generalized (ε, δ)-contractive mapping with δ = ε/2 and nε = 1.

4. Main Results

The following lemma is essential for our findings.

Lemma 4.1 If P :W →W is a generalized (ε, δ)-contractive mapping satisfies the following condition

ϱ(Pω, P 2ω) < ϱ(ω, Pω) for each ω ∈W with ω ̸= Pω. (4.1)

Then the sequence of iterations {Pnω} for each ω ∈W is Cauchy in W .
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Proof: Take ω ∈ W and construct a sequence of iterations {Pnω} for n ∈ N. We assume that Pnω ̸=
Pn+1ω and so ϱ(Pnω, Pn+1ω) > 0 for n ∈ N. Applying condition (4.1), we get

ϱ(Pn+1ω, Pn+2ω) < ϱ(Pnω, Pn+1ω) for all n ∈ N. (4.2)

Let ϱn := ϱ(Pnω, Pn+1ω). Then from (4.2), the sequence {ϱn} is strictly decreasing with n. If lim
n→∞

ϱn =

ε > 0 and since m4(P
nω, Pn+1ω) = ϱn, then by hypothesis (D4), there exist δ > 0 and nε ∈ N such that

ϱn < ε+ δ =⇒ ϱn+1 ≤ ε for n ≥ nε. (4.3)

Moreover, ϱn ↓ ε so δ > 0, there exists ℓ ∈ N (without any ambiguity we may assume ℓ ≥ nε) such that

ε < ϱn < ε+ δ, whenever n ≥ ℓ. (4.4)

Then the hypothesis (4.3) implies ϱn+1 ≤ ε for n ≥ ℓ which fails to (4.4). Hence, ϱn ↓ 0 and for δ > 0,
there exists ℓ ∈ N (we may choose ℓ ≥ nε) such that ϱn < δ/2 for n ≥ ℓ.

We first prove that
ϱ(P ℓω, P ℓ+mω) < ε+ δ/2 (4.5)

is true for all m ∈ N. We use the induction method to validate (4.5). For m = 1, (4.5) is true as ϱn ↓ 0.
Suppose that (4.5) is true for some m ∈ N, we will prove it for m+1. By the triangle inequality, we have

ϱ(P ℓω, P ℓ+m+1ω) ≤ ϱ(P ℓω, P ℓ+1ω) + ϱ(P ℓ+1ω, P ℓ+m+1ω).

It would be suffice to prove that ϱ(P ℓ+1ω, P ℓ+m+1ω) ≤ ε. For which, we first show that
m4(P

ℓω, P ℓ+mω) < ε + δ and then apply the hypothesis (D4) to achieve it. Since, ϱn < δ/2 for n ≥ ℓ
and by assumption ϱ(P ℓω, P ℓ+mω) ≤ ε+ δ/2, we have

1

2

[
ϱ(P ℓω, P ℓ+m+1ω) + ϱ(P ℓ+1ω, P ℓ+mω)

]
≤ 1

2

{
ϱ(P ℓω, P ℓ+mω) + ϱ(P ℓ+mω, P ℓ+m+1ω)
+ϱ(P ℓ+1ω, P ℓω) + ϱ(P ℓω, P ℓ+mω)

}
< ε+ δ.

Thus, m4(P
ℓω, P ℓ+mω) < ε + δ and then apply the hypothesis (D4), we have ϱ(P ℓ+1ω, P ℓ+m+1ω) ≤ ε.

Thus, by the induction method, the condition (4.5) holds for every m ∈ N. Hence {Pnω} is a Cauchy
sequence by hypothesis (D4). 2

We present the following result which ensures the existence of fixed points for generalized (ε, δ)-contractive
mappings.

Theorem 4.1 Let P be a generalized (ε, δ)-contractive mapping satisfying condition (c4) in a c.m.s. W .
If P satisfies any one of the following assumptions:

(1) P is weakly orbitally continuous;

(2) the mapping ω 7→ ϱ(ω, Pω) is P -OLS;

then P has a contractive fixed point.

Proof: Taking ν = Pω in (c4) reduces to (4.1). Hence from Lemma 4.1, we have the sequence of iterates
{Pnω} for each ω ∈W is Cauchy in W . Since W is complete, there exists ω∗ ∈W such that Pnω → ω∗

and the set {ω ∈ W : lim
i
Pniω = ω∗} ̸= ∅. Now, if hypothesis (1) is true, then by assumption of

weak orbital continuity, there exists ν ∈ W for which Pnν → ω∗ and Pn+1ν → Pω∗. However, it
follows from the uniqueness of the limit that ω∗ = Pω∗. Next, suppose that hypothesis (2) is true.
Since {Pnω} ⊆ O(P, ω) and Pnω → ω∗ with ϱ(Pnω, PPnω) = ϱ(Pnω, Pn+1ω) → 0 as n → ∞, by
the P -OLS of ω 7→ ϱ(ω, Pω), we get ϱ(ω∗, Pω∗) ≤ lim infn→∞ ϱ(Pnω, Pn+1ω) = 0, which implies that
ϱ(ω∗, Pω∗) = 0, i.e., Pω∗ = ω∗. Hence, ω∗ is a contractive fixed point of P . 2
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Theorem 4.2 Theorem 4.1 remains true by replacing the hypothesis of weak orbital continuity with the
assumption of either continuity, orbital continuity, or k-continuity.

Theorem 4.3 (Meir-Keller Contraction Principle) Let P be a mapping satisfying condition (a1)
in a c.m.s. W . Then P has a contractive fixed point.

Remark 4.1 Theorem 4.1 provides an answer to Question 1 raised in [13] by Joshi et al.

Our next result provides an answer to Question 2 posed in [13]

Theorem 4.4 Let P be a generalized (ε, δ)-contractive mapping satisfying (d4) in a c.m.s. W . Then P
has a contractive fixed point ω∗ ∈W . Moreover, ω∗ is a point of continuity for P iff lim

ω→ω∗
m4(ω, ω

∗) = 0.

Proof: Taking ν = Pω in (d4), it reduces to ϱ(Pω, P 2ω) ≤ φ(ϱ(ω, Pω)) < ϱ(ω, Pω), hence P satisfies
the condition (4.1). By Lemma 4.1, it follows that for each ω ∈ W , {Pnω} ⊆ W is a Cauchy sequence.
Then there has ω∗ ∈ W , by completeness of W , such that Pnω → ω∗. Suppose that Pω∗ ̸= ω∗, and let
ϱ(ω∗, Pω∗) = ℓ > 0. Since Pnω → ω∗ ∃ nℓ ∈ N such that ϱ(Pnω, ω∗) < ℓ/2 for n ≥ nℓ. Then for n ≥ nℓ,

ϱ(Pnω, Pn+1ω) ≤ ϱ(Pnω, ω∗) + ϱ(Pn+1ω, ω∗)

< ℓ/2 + ℓ/2 = ℓ,

and

1

2
[ϱ(Pn+1ω, ω∗) + ϱ(Pnω, Pω∗)] ≤ 1

2
[ϱ(Pn+1ω, ω∗) + ϱ(Pnω, ω∗) + ϱ(ω∗, Pω∗)]

<
ℓ/2 + ℓ/2 + ℓ

2
= ℓ.

Thus,

m4(P
nω, ω∗) = max

 ϱ(Pnω, ω∗), ϱ(ω∗, Pω∗), ϱ(Pnω, Pn+1ω),
ϱ(Pn+1ω, ω∗) + ϱ(Pnω, Pω∗)

2


= ϱ(ω∗, Pω∗) for n ≥ nℓ.

From the hypothesis (d4), we have

ϱ(Pn+1ω, Pω∗) ≤ φ(ϱ(ω∗, Pω∗)) for all n ≥ nℓ.

Making n→ ∞, we get

ϱ(ω∗, Pω∗) ≤ φ(ϱ(ω∗, Pω∗))

< ϱ(ω∗, Pω∗)

a contradiction. Hence, ω∗ is a fixed point of P . From (d4), we can easily prove the uniqueness of ω∗.
Thus, ω∗ is a contractive fixed point of P .

Suppose that P is continuous at ω∗ and Pnω → ω∗. Then, Pn+1ω → Pω∗ = ω∗, and so
lim

n→∞
m4(P

nω, ω∗) = 0. Conversely, let lim
n→∞

m4(P
nω, ω∗) = 0 then ϱ(Pnω, ω∗) → 0. Hence Pnω → ω∗

implies Pn+1ω → ω∗ = Pω∗. Thus P is continuous at ω∗. 2

The following result generalizes Theorem 2.1 and Theorem 2.2, and shows that the assumption of conti-
nuity of P 2 is redundant in Theorem 2.2.

Theorem 4.5 Let P be a selfmapping on a c.m.s. W . If P meets the conditions (b4) and (d4) then P
has a contractive fixed point. Moreover, P is discontinuous at ω∗ iff lim

ω→ω∗
m4(ω, ω

∗) ̸= 0.

Proof: The proof follows easily by following the proof of Theorem 4.4. 2

Corollary 4.1 Let P be a selfmapping on a c.m.s. W . If P satisfies the conditions (a4) then P has a
contractive fixed point.
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5. Supportive Examples

Now, we present some illustrative examples in support of our findings.

Example 5.1 Let (W,ϱ) be a usual metric space, where

(1) W = [0, 2] and P :W →W such that

Pω =


ω + 1

2
, if 0 ≤ ω ≤ 1,

0, if ω > 1.

If we take δ = 1 − ε, nε = 1 for each ω ∈ W and ε > 0, then P satisfies hypothesis (D4), also all
the assumptions of Theorem 4.1 are true, hence P has a contractive fixed point at ω = 1.

(2) W = [0, 4] and P :W →W by

Pω =

{
ω/3, if ω is rational,

0, otherwise.

Then P satisfies condition (D4) with δ(ε) = 2ε/3 and nε = 1 for each ω ∈ W and ε > 0, and
condition (d4) with φ(ℓ) = ℓ/3. Thus all the assumptions of Theorem 4.4 are ture and P has a
contractive fixed point at ω = 0. Note that in this example P and P 2 are not continuous at any
point except at ω = 0.

6. Deduced Results

Recently, Proinov [29] established a generalization of the Banach contraction principle (BCP) which
includes several other generalizations of the BCP due to Geraghty [10], Dutta and Chaudhary [9],
Wardowski [31], Jleli and Samet [12], and many more. In this section, we show that the result of Proinov
[29, Theorem 3.1] can be derived from Theorem 4.3 and consequently from our findings.

Theorem 6.1 Let (W,ϱ) be a c.m.s. and P :W →W be a mapping satisfying

ψ(ϱ(Pω, Pν)) ≤ φ(ϱ(ω, ν)) for all ω, ν ∈W, (6.1)

where the functions ψ,φ : (0,∞) → R satisfy the following conditions:

(i) ψ is nondecreasing;

(ii) for any ℓ > 0, φ(ℓ) < ψ(ℓ);

(iii) for any ε > 0, lim supℓ→ε+ φ(ℓ) < ψ(ε+).

Then P has a contractive fixed point.

Proof: First we show that a mapping satisfying condition (6.1) also satisfies (a1). If not then for given
ε > 0, there exist ω, ν ∈W such that

ε ≤ ϱ(ω, ν) < ε+ δ =⇒ ϱ(Pω, Pν) ≥ ε for all δ > 0. (6.2)

Let S = {(ω, ν) ∈ W ×W for which (6.2) holds}. Then ϱ(ω, ν) > ε for all (ω, ν) ∈ S. Contrary, let
ϱ(ω, ν) = ε for some (ω, ν) ∈ S then from (6.1) and (6.2), we get

ψ(ε) ≤ ψ(ϱ(Pω, Pν))

≤ φ(ϱ(ω, ν)) < ψ(ϱ(ω, ν))

≤ ψ(ε),

a contradiction. Now, we consider two cases here:
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Case I When S is infinite set. Then there exists a sequence {(ωn, νn)} in S such that ϱ(ωn, νn) → ε+.
Then from the condition (6.1), we have

ψ(ϱ(Pωn, Pνn)) ≤ φ(ϱ(ωn, νn)).

Let tn = ϱ(ωn, νn) for n ∈ N. Making lim sup, and using property (iii), we get

ψ(ε+) ≤ lim sup
tn→ε+

φ(tn) < ψ(ε+),

a contradiction. Thus S cannot be infinite.

Case II Let S be a finite set and t = min ϱ(ω, ν) for (ω, ν) ∈ S. . In this case, since ϱ(ω, ν) > ε, there
always exists δ = t − ε > 0 such that antecedent of (a1) does not satisfy and the condition (a1)
holds obviously. Hence, S is an empty set in this case.

Thus, we conclude that P satisfies condition (a1) and by Theorem 4.3, it has a contractive fixed point.
2

For different choices for ψ and φ in Theorem 6.1, we get different generalizations of the BCP.

1. Taking ψ(t) = t, we get the result of Boyd and Wong [5].

2. Taking φ(t) = α(t)ψ(t) and ψ(t) = t, where α : (0,∞) → (0, 1) with lim sup
t→ε+

α(t) < 1, then we get

the well-known result of Geraghty [10].

3. Taking φ(t) = ψ(t)− τ , where τ > 0, in Theorem 6.1, we get an improved version of Wardowski’s
[31] result.

4. Taking φ(t) = ψ(t)α, where α ∈ (0, 1), we get a generalized version of Jleli and Samet’s [12] result.

5. Setting φ(t) = ψ(t) − ϕ(t), where ϕ : (0,∞) → (0,∞) satisfying lim inf
t→ε+

> 0 for any ε > 0, we get

an generalized version of Dutta and Chaudhary’s [9] result.

Thus, all these results can be derived from our findings.

7. Conclusion

In this paper, we have introduced some new classes of MKCs which subsume several existing classes
as special cases. We established some existence results for these mappings, providing answers to open
questions posed in [13] and the Rhoades problem related to the existence of contractive mappings that
may exhibit discontinuity at the fixed point. Additionally, we presented illustrative examples to support
our findings and deduced several results as direct consequences of our work. Our findings generalize
numerous results found in [2,3,4,5,11,19,21,23,24,25,30]. These findings can be extended to more general
settings of metric spaces, such as semimetric spaces, b-metric spaces, partial metric spaces, and others.
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