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New Classes of Meir-Keeler Type Contractive Mappings
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ABSTRACT: In this paper, we answer some open questions raised in [Filomat 34 (2020), no. 11, 3855-3860] by
introducing some new classes of contractive mappings, including several classes as a special case. We establish
some existence results for these mappings and present illustrative examples in their support. Moreover, we
demonstrate that several well-known results follow as direct consequences of our findings.
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1. Introduction

We start this paper by listing some Meir-Keeler-type conditions. We consider (W, ) a metric space
and P: W — W a self-mapping and ® denotes the class of mappings ¢ : RT — RT satisfying ¢(¢) < ¢
for ¢ > 0 throughout the paper. Let us consider the following conditions for ¢ = 1,2, 3, 4.

(a;) For any € > 0 3 ¢ > 0 such that for w,v € W,
e <m;(w,v) <e+d= o(Pw, Pv) < g,
(b;) for any € > 0 3 § > 0 such that for w,v € W,
e <mi(w,v) <e+d= o(Pw, Pv) <ce,
(¢;) o(Pw,Pv) < m;(w,v) for w,v € W with m;(w,v) > 0,
(d;) o(Pw,Pv) < o(m;(w,v)) for w,v € W and ¢ € P,
where

ml(w,V) = g(w,u),
m2(w7 V) = max{g(w, Pw)a Q(Vv PV)}
ms(w,v) = max{o(w,v), o(w, Pw), o(v, Pv)},

oo.P)+ ot )},

ma(,) = max { o), gl P, o P), .
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It is evident that (d;) implies to (¢;). In [11] Jackymski studied various (g, d)-contractive conditions and
have the following observations:

(i) (a;) = (b;) and (¢;) but not conversely
(i) (a1) = (a3) = (aa)

The condition (aq) is an original Meir-Keeler contraction (MKC, in short). These mappings not only
contain the classical contractions but also some nonlinear contractions previously explored by Matkowski
[17], Browder [6], and Boyd and Wong [5]. Matkowski and Wegrzyk (see [18], also [8]) slightly generalized
the MKC by proposing the condition (b;). Note that the condition (b1) is not sufficient enough to
ensure the fixed point of the underlying mapping, so it requires an additional condition of (¢1). Several
generalizations of these mappings can be found in [4,11,16,23,27,28].

In 1999, Pant [24] established an existence result for mappings satisfying conditions (b3) and (dz).
This result does not force the underlying mapping to be continuous at the fixed point and also provides
an answer to the Rhoades problem posed in [30]. In 2017, Bisht and Pant [3] provided another answer
to the Rhoades problem, considering (&, §)-contractive mappings satisfying conditions (bs) and (d4) along
with an additional assumption of continuity of P2. In 2020, Joshi et al. [13] further studied (e,d)-
contractive mappings under an alternative set of conditions. They considered (g, §)-contractive mappings
satisfying conditions (b;) and (¢;) for i = 2 or 3 under the hypothesis of weak-orbital continuity (see [22]).
They established some existence results for these mappings and raised two open questions regarding the
solutions of the Rhoades problem:

Q1 Does there exist a solution of Rhoades problem which satisfies (b;) and (¢;) but not (d;)?
Q2 Does there exist a Meir-Keeler type (a;) solution of Rhoades problem which also satisfies (d;)?

In this paper, we provide affirmative answers to the open questions discussed above. We do this by
introducing some new classes of contractive mappings, including MKCs, Proinov contractive mappings,
F-contractions, weak contractions and many more. We establish some existence results for these mappings
and show that the assumption of continuity of P? remains redundant in the main result of [2]. We present
some supportive examples and deduce several results as corollaries of our findings. Our findings generalize
several existing results in the literature, including some recent results presented in [2,4,13,26,29] and many
others.

2. Preliminaries

We denote by N and R™, the set of natural numbers and positive real numbers, respectively. We
represent the orbit of P at a point w € W by

O(P,w) = {w, Pw, P’w,...,P"w,...}.

A fixed point of P is called contractive (see [28,15]) if all Picard iterates { P"w} converge to this fixed point.
A mapping P : W — W is an orbitally continuous (see [7]) at w* € W if {w,,} C O(P,w) for some w € W
such that w,, — w* implies Pw,, — Pw* as n — co. A mapping P : W — W is a k-continuous (see [21]),
k€N, at w* € W if for every sequence {w,} C W, the condition P*~'w, — w* implies Pfw, — Pw* as
n — oo. In 2019, authors [22] proposed a weaker assumption than orbital continuity and k-continuity,
referred to as weak orbital continuity. A mapping P : W — W is weakly orbitally continuous if the

set {1/ eW: hmP”W =w" = hmPP"W = Pw* } # whenever the set {w eWw: hmP"%u =w } £ .

In 2021, Nguyen [20] proposed the notion of P-orbitally lower semicontinuous (P- OLS in short) which

states if P: W — W and G: W — R be mappings then G is called P-OLS at a point w* € W if, for any

sequence {w,} C O(P,w) for some w € W, 1i_>m wp =w* = G(w*) < liminf, o G(wy,). It is evident
n o0

that these mappings are independent of weakly orbitally continuous mappings (see [20,1]).
In 1999, Pant [24] proved the following result, which answers the Rhoades problem.

Theorem 2.1 If P is a selfmapping in a complete metric space (c.m.s., in short) W that satisfies
conditions (b2) and (dz), then P has a unique fized point w* € W. Moreover, P is continuous at w* iff

lim mo(w,w*) =0.
w—rw*
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In 2017, Bisht and Pant [3] provided another answer to the Rhoades problem.

Theorem 2.2 Let P be a selfmapping in a c.m.s. W such that P? is continuous and satisfying conditions
(bg) and (dy). Then P has a contractive fived point w* € W. Moreover, P is discontinuous at w* iff

lim my(w,w*) # 0.
w—rw*

3. Generalized (g, §)-Contractive Mappings

In this section, we propose the following conditions for ¢ = 1,2, 3, 4.
For each w € W and given € > 0, there exist § > 0 and n. € N such that
m;(P" v, P"v) < ¢ + § implies o(P™= ™o, P"<t1y) < ¢ (D;)
for any v,v € O(P,w).

It is easy to see that a mapping satisfying condition (D;) also satisfies (a;), (b;), (¢;) or (d;) for each
1€ {1,2,3,4} and D — Dy — D3 — Dy.

Definition 3.1 A mapping P : W — W is said to be a generalized (e, §)-contractive mapping if P
satisfies condition (Dy).

The following example demonstrates that generalized (g,0)-contractive mappings is different from
those satisfying either (a;), (b;), (¢;) or (d;).

Example 3.1 Let W =R and P: W — W defined by

-1, ifw<0,
Pw =<0, ifw=0,
1, if w > 0.

Then P is a generalized (g, d)-contractive mappings with §(¢) = € and n. = 2. However P does not satisfy
any one of the conditions (a;), (b;), (¢;), (d;) for i =1,2,3,4.

Example 3.2 Let (W, o) be a usual metric space, where W = [0,1] and P : W — W such that

Pw_{1 ifw=1,
0 ifw#1.

Then, P satisfies condition (Dy4) for each w € W.

Example 3.3 Let (W, ) be a usual metric space, where W = [—1,1] and P : W — W such that

w, if w <0,
Pw =
w/2, ifw>0.

Then, P is a generalized (g, d)-contractive mapping with 6 = €/2 and n. = 1.

4. Main Results

The following lemma is essential for our findings.
Lemma 4.1 If P: W — W is a generalized (g, 0)-contractive mapping satisfies the following condition
o(Pw, P?w) < o(w, Pw) for each w € W with w # Puw. (4.1)

Then the sequence of iterations {P"w} for each w € W is Cauchy in W.
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Proof: Take w € W and construct a sequence of iterations { P"w} for n € N. We assume that P"w #
Pl and so o(P"w, P"w) > 0 for n € N. Applying condition (4.1), we get

o(P"Hlw, PP20) < o(P"w, PHw) for all n € N. (4.2)

Let 0, := o(P"w, P"*lw). Then from (4.2), the sequence {o,} is strictly decreasing with n. If lim g, =
n—oo
£ > 0 and since m4(P"w, P"*lw) = g, then by hypothesis (D,), there exist § > 0 and n. € N such that

Oon<e+0 = op11 <e forn>n.. (4.3)
Moreover, g, | € so § > 0, there exists £ € N (without any ambiguity we may assume ¢ > n.) such that
€ < on <€+9, whenever n > /. (4.4)

Then the hypothesis (4.3) implies g,4+1 < & for n > ¢ which fails to (4.4). Hence, g, | 0 and for § > 0,
there exists £ € N (we may choose ¢ > n.) such that g, < §/2 for n > £.
We first prove that
o(Pfw, PH™Mw) < e 44/2 (4.5)

is true for all m € N. We use the induction method to validate (4.5). For m = 1, (4.5) is true as g, J 0.
Suppose that (4.5) is true for some m € N, we will prove it for m+ 1. By the triangle inequality, we have

Q(Pew,P”mJ“lw) < Q(Pgw,Ple) + Q(PZJrlw, Pl+m+1w).

It would be suffice to prove that o(P‘lw, P“4™*ly) < e For which, we first show that
my4(Pfw, P*™w) < e+ § and then apply the hypothesis (D) to achieve it. Since, g, < §/2 for n > ¢
and by assumption o(P‘w, P*"w) < e + §/2, we have

1
3 [Q(Péw, PAHMHLG) 4 (P, P“‘mw)]
1 Q(Pevaumw) 4 g(P”mw,P“m“w)
<3 0+1 ‘ ¢ e+m

2 +o(P"w, Pw) 4 o(Pfw, P*™w)

<e+d.

Thus, m4(P‘w, P ™w) < € + 6 and then apply the hypothesis (D), we have o( P**lw, PTm+1w) < e.
Thus, by the induction method, the condition (4.5) holds for every m € N. Hence {P"w} is a Cauchy
sequence by hypothesis (Dy). O

We present the following result which ensures the existence of fixed points for generalized (g, §)-contractive
mappings.

Theorem 4.1 Let P be a generalized (e, §)-contractive mapping satisfying condition (cq) in a c.m.s. W.
If P satisfies any one of the following assumptions:

(1) P is weakly orbitally continuous;
(2) the mapping w — o(w, Pw) is P-OLS;

then P has a contractive fixed point.

Proof: Taking v = Pw in (c4) reduces to (4.1). Hence from Lemma 4.1, we have the sequence of iterates
{P"w} for each w € W is Cauchy in W. Since W is complete, there exists w* € W such that P"w — w*
and the set {w € W : lim P"w = w*} # 0. Now, if hypothesis (1) is true, then by assumption of

weak orbital continuity, there exists v € W for which P"v — w* and P""'v — Pw*. However, it
follows from the uniqueness of the limit that w* = Pw*. Next, suppose that hypothesis (2) is true.
Since {P"w} C O(P,w) and P"w — w* with o(P"w, PP"w) = o(P"w, P""w) — 0 as n — oo, by
the P-OLS of w — o(w, Pw), we get o(w*, Pw*) < liminf, . o(P"w, P"*lw) = 0, which implies that
o(w*, Pw*) =0, i.e., Pw* = w*. Hence, w* is a contractive fixed point of P. O
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Theorem 4.2 Theorem /.1 remains true by replacing the hypothesis of weak orbital continuity with the
assumption of either continuity, orbital continuity, or k-continuity.

Theorem 4.3 (Meir-Keller Contraction Principle) Let P be a mapping satisfying condition (a)
in a c.m.s. W. Then P has a contractive fixed point.

Remark 4.1 Theorem 4.1 provides an answer to Question 1 raised in [13] by Joshi et al.
Our next result provides an answer to Question 2 posed in [13]
Theorem 4.4 Let P be a generalized (g,0)-contractive mapping satisfying (ds) in a c.m.s. W. Then P

has a contractive fized point w* € W. Moreover, w* is a point of continuity for P iff lim my(w,w*) = 0.
w—w*

Proof: Taking v = Pw in (d4), it reduces to o(Pw, P*w) < ¢(p(w, Pw)) < o(w, Pw), hence P satisfies
the condition (4.1). By Lemma 4.1, it follows that for each w € W, {P"w} C W is a Cauchy sequence.
Then there has w* € W, by completeness of W, such that P"w — w*. Suppose that Pw* # w*, and let
o(w*, Pw*) = £ > 0. Since P"w — w* 3 ny € N such that o(P"w,w*) < £/2 for n > n,. Then for n > ny,
o(P"w, P"w) < o(P"w,w*) + o(P"w,w*)
<Uj2410/2 =1,
and

1 1
Slo(P"w,w") + o(Prw, Pu™)] < Slo(P"w,w”) + o( PMw,w”) + o(w”, Pw”)]

2
0240241
< . —
2

= /.

Thus,
o(P"w,w"), o(w*, Pw*), o(P"w, P"*1w),
max o(P" 1w, w*) + o(P"w, Pw*)
2

ma(P"w,w™)

= o(w*, Pw*) for n > ny.
From the hypothesis (dy), we have
o(P" 1w, Pw*) < p(o(w*, Pw*)) for all n > ny.
Making n — oo, we get
o(w", Pw") < p(o(w”, Pw®))
< o(w", Pw")
a contradiction. Hence, w* is a fixed point of P. From (d4), we can easily prove the uniqueness of w*.
Thus, w* is a contractive fixed point of P.

Suppose that P is continuous at w* and P"w — w*. Then, P"t'w — Pw* = w* and so

lim my(P"w,w*) = 0. Conversely, let lim my(P"w,w*) = 0 then o(P"w,w*) — 0. Hence P"w — w*
n—oo n—roo

implies P*"thw — w* = Pw*. Thus P is continuous at w*. O

The following result generalizes Theorem 2.1 and Theorem 2.2, and shows that the assumption of conti-
nuity of P? is redundant in Theorem 2.2.

Theorem 4.5 Let P be a selfmapping on a c.m.s. W. If P meets the conditions (by) and (dy4) then P
has a contractive fixed point. Moreover, P is discontinuous at w* iff lim my(w,w*) # 0.
w—w*

Proof: The proof follows easily by following the proof of Theorem 4.4. O

Corollary 4.1 Let P be a selfmapping on a c.m.s. W. If P satisfies the conditions (a4) then P has a
contractive fized point.
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5. Supportive Examples
Now, we present some illustrative examples in support of our findings.
Example 5.1 Let (W, p) be a usual metric space, where
(1) W=10,2] and P: W — W such that

w41
—_— ] < <
Pu — 5 if0<w<1,

0, if w> 1.

If we take 6 =1 —e,n. =1 for each w € W and € > 0, then P satisfies hypothesis (Dy), also all
the assumptions of Theorem 4.1 are true, hence P has a contractive fized point at w = 1.

(2) W=[0,4 and P: W — W by

£ is rati
P — w/3, ifw is fa ional,
0, otherwise.

Then P satisfies condition (Dy) with §(¢) = 2¢/3 and n. = 1 for each w € W and ¢ > 0, and
condition (ds) with ¢(¢) = /3. Thus all the assumptions of Theorem 4.4 are ture and P has a
contractive fized point at w = 0. Note that in this example P and P? are not continuous at any
point except at w = 0.

6. Deduced Results

Recently, Proinov [29] established a generalization of the Banach contraction principle (BCP) which
includes several other generalizations of the BCP due to Geraghty [10], Dutta and Chaudhary [9],
Wardowski [31], Jleli and Samet [12], and many more. In this section, we show that the result of Proinov
[29, Theorem 3.1] can be derived from Theorem 4.3 and consequently from our findings.

Theorem 6.1 Let (W, ) be a c.m.s. and P: W — W be a mapping satisfying
Y(o(Pw, Pv)) < ¢(o(w,v)) for allw,v € W, (6.1)
where the functions 1, ¢ : (0,00) = R satisfy the following conditions:
(i) ¢ is nondecreasing;
(ii) for any £ >0, p(f) < (l);
(111) for any e > 0, limsup,_, + ¢(£) < (e™).

Then P has a contractive fixed point.

Proof: First we show that a mapping satisfying condition (6.1) also satisfies (a1). If not then for given
€ > 0, there exist w, v € W such that

e<plw,v)<e+d = p(Pw,Pr)>¢e foralld>0. (6.2)

Let S = {(w,v) € W x W for which (6.2) holds}. Then g(w,v) > ¢ for all (w,v) € S. Contrary, let
o(w,v) = ¢ for some (w,v) € S then from (6.1) and (6.2), we get
¥(e) < ¥(o(Pw, Pv))
< plo(w,v)) < Plo(w,v))
< ¥(e),

a contradiction. Now, we consider two cases here:



NEW CLASSES OF MEIR-KEELER TYPE CONTRACTIVE MAPPINGS 7

Case I When S is infinite set. Then there exists a sequence {(wy,v,,)} in S such that o(w,,v,) — ™.
Then from the condition (6.1), we have

Y(o(Pwn, Pry)) < @(0(wn; vn)).

Let t,, = o(wn, vy) for n € N. Making lim sup, and using property (iii), we get

b(e™) < limsupp(ty) < d(e™),

tn—et
a contradiction. Thus S cannot be infinite.

Case IT Let S be a finite set and ¢ = min p(w,v) for (w,rv) € S. . In this case, since o(w,r) > ¢, there
always exists § = ¢ —e > 0 such that antecedent of (a1) does not satisfy and the condition (a;)
holds obviously. Hence, S is an empty set in this case.

Thus, we conclude that P satisfies condition (a;) and by Theorem 4.3, it has a contractive fixed point.
O

For different choices for ¥ and ¢ in Theorem 6.1, we get different generalizations of the BCP.

—_

. Taking 1 (t) = t, we get the result of Boyd and Wong [5].
2. Taking o(t) = a(t)y(t) and ¥(t) = ¢, where a : (0,00) — (0,1) with limsup a(t) < 1, then we get

t—et

the well-known result of Geraghty [10].

3. Taking o(t) = ¥(t) — 7, where 7 > 0, in Theorem 6.1, we get an improved version of Wardowski’s
[31] result.

4. Taking o(t) = ¢(t)*, where a € (0,1), we get a generalized version of Jleli and Samet’s [12] result.
5. Setting ¢(t) = ¥(t) — ¢(t), where ¢ : (0,00) — (0, c0) satisfying lim ir+1f > 0 for any € > 0, we get
t—e
an generalized version of Dutta and Chaudhary’s [9] result.

Thus, all these results can be derived from our findings.

7. Conclusion

In this paper, we have introduced some new classes of MKCs which subsume several existing classes
as special cases. We established some existence results for these mappings, providing answers to open
questions posed in [13] and the Rhoades problem related to the existence of contractive mappings that
may exhibit discontinuity at the fixed point. Additionally, we presented illustrative examples to support
our findings and deduced several results as direct consequences of our work. Our findings generalize
numerous results found in [2,3,4,5,11,19,21,23,24,25 30]. These findings can be extended to more general
settings of metric spaces, such as semimetric spaces, b-metric spaces, partial metric spaces, and others.
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