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Newly Discovered Classes of Perfect Functions in Bitopological Spaces:
Applications and Conclusions
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ABSTRACT: Variable degrees of obscurity and immense quantities of information constitute the characteristics
of daily difficulties. Therefore, creating additional mathematical methods to address problems is essential. The
ideal tool for this goal is expected to possess the perfect functions, as discussed in this work. Consequently, in
this study, we explore the use of several set amplifiers to build perfect functions in bitopological spaces. The
associations between some kinds of pairwise perfect functions and their traditional topologies are associated
with uniformity. Alignment allows us to investigate the characteristics and actions of traditional topological
ideas by studying sets. We present and evaluate a new class of perfect functions in bitopological spaces,
which we call P-perfect, S-perfect and B-perfect functions, compact functions in bitoplogical spaces. We
additionally identify the connections among classes of generalized functions and this new class of perfect
functions. Additionally, we demonstrate this novel concept, explain the related connections identify the
prerequisites for their effective use, and provide instances and counter-examples while presenting and evaluating
the perfect functions that are suggested here. We look at the images and inverse images of particular topological
characteristics to provide new demonstrations regarding each of these functions. Finally, product theorems
associated with these ideas have been found.

Keywords: Biopological spaces, functional analysis, B-compact space, Hausdorff space, proper func-
tions.
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1. Overview and Foundational Definitions

There have been numerous broad topological architectures put forward within the last few years. See
([1,2,11,7]) for the significance of the topological space in analysis and in many applications. Perfect
functions are among the finest and most significant extensions of topological space. General Topology
informs us that the development of the novel configurations and important topological characteristics
of contemporary sets depends heavily on open sets. Large amounts of knowledge and different degrees
of vagueness are characteristics of everyday challenges. Therefore, it is essential to create innovative
mathematical methods to address them. The ideal tool for this goal is expected to be the right functions
in this situation. Consequently, in this study, we explore the use of several set processors to build perfect
functions. The associations between some kinds of perfect functions and their classical topologies are
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associated with symmetry. Because of alignment, we may utilize the examination of causes to investigate
the characteristics and actions of traditional topological ideas.

Vainstein initially proposed the perfect functions in the scope of locally-compact spaces in 1950 [28].
On the other hand, he constructed and first presented during lessons of perfect functions in the discipline
of metric spaces.The study of bitopological spaces was started by Kelly (1963) [20]. A non-empty set £
with arbitrary topologies 71,72 is called a bitoplogical space (£,11,72). Pervin (1967) [25], fletcher, et
al. (1969) [16], Birsan (1969) [12], Reilly (1970)[26], Datta (1976)[15], Steen (1978)[Steen1978], Hdeib
and Fora (1982,1983)([17], [18]), Bose (2008)[14], Kilicman and Salleh (2008, 2009)( [21], [22]), and
Mahmood(2013) [24], Atoom (2024, 2025) [3,4,5,6] are only a few of the authors who have investigated
bitoplogical spaces.

The topologies generalized by the sets using reals gave rise to the concept of bitopological space.

B, ={mef /l,m)<e}

and

B, ={meg/((m)<e

where ¢ and ¢ are quasi-metric spaces £ with ¢(I, m) = (I, m).

Many topological properties found in single topologies, including compactness, paracompactness, sep-
aration axiomes [19], connected functions, and other topics, are generalized into bitopological spaces
since Kelly proposed the idea of bitopological spaces in 1963. (P*) will be used to indicate pairwise;
for example, P* —compact is an acronym for pairwise compact.These include 7; and 7y have feature Q
when (£,71,712) has it. As an illustration, (£,71,72) is Te-space if additionally (£,7;) and (£,12) are
Ts-spaces. Bitopological spaces are defined and the arguments are introduced, including P" —continuous
[23], P* —closed [17], (P¥—T3) [20], B-compact [15], s-compact [12], P*—compact [12], will be utilized
for determining certain essential data that will support our key discoveries in the future.The sets of reals,
rationals, and natural numbers are represented by the letters R, Q, and N, accordingly. In the context
of metric spaces, Vainstein initially proposed the class of perfect functions in 1947.In 1950 and 1951,
respectively, Leray and Bourbaki [13] proposed and examined perfect functions (in the context of locally
compact spaces). Whenever £ is a Hausdorff space, v is closed, and the fibers ¥~!(m) are compact
subsets of £, then a continuous function ¢ : £ — 9 is considered perfect. Subsequently, a number
of mathematicians studied on perfect functions and demonstrated a number of findings on their impact
on various topological spaces. S. Balasubramanian, (2010) [10], Hdeib (1982) [18], and Atoom (2024)
[8,9] are a few examples. Determining pairwise perfect functions in bitopological spaces and examin-
ing some of their features and implications on various types of spaces are the goals of this work. Four
perfect functions in bitopological spaces will be introduced in this work. According to paired perfect
functions, we provide different descriptions of these perfect functions, images, and inverse images having
specific bitopological features. In the bitopological spaces, we provide a few combination theorems in
these perfect functions. We also show how the newly developed category of perfect functions is related
to families of extended functions. and examine them.Illustrations and counter-examples are provided,
together with an explanation of the related interconnections and the circumstances required for the im-
plementation to be successful. Additional results are also given for the compact topological spaces and
the Hausdorff topological spaces. pictures and inverse pictures of certain topological properties have
been examined for each of these functions. Finally, product theorems have been found that relate to
these ideas.We also show how the newly developed category of perfect functions is related to families of
extended functions and examine them.Illustrations and counter-examples are provided, together with an
explanation of the related interconnections and the circumstances required for the implementation to be
successful. Additional results are also given for the compact topological spaces and the Hausdorff topo-
logical spaces. Images and inverse images of certain topological properties have been examined for each
of these functions. Finally, product theorems have been found that relate to these ideas.There are eight
distinct parts in the present article. The historical context of bitopological spaces and perfect functions
in single topology significant definitions and theorems in bitopological spaces are covered in examined in
this initial section. The definition of P,—perfect functions and the images and inverse images of specific
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bitoplolgical features underneath pairwise perfect functions are examined in the following section 2. We
define S-perfect functions while offering specific description for such perfect functions in the next section
3. In fourth part we construct an entirely novel class entitled B-perfect functions 4. A newly developed
function known as compact functions in bitoplogical spaces will be described in the fifth section 5. We
offer alternative examples of various categories in the sixth section 6. The implementation of our study
and its benefits are presented in the final section 7.

2. pairwise perfect functions and Their Role in Preserving Bitopological Properties

The second part explores the concept of perfect functions in bitopological spaces. Pairwise perfect
(PwPet) functions are an assortment of function that arises from these functions. Furthermore, we
analyze depending on these terms the pictures and inverse images which have particular bitopological
properties. Finally, certain product arguments related to these ideas were found.

Definition 2.1 A function v : (£,m1,72) — (M, (1,(2) is referred to as PYPCt whenever it is
P¥ —continuous, PV —closed, and 1~ (m) is P¥—compact for every m € IN.

Theorem 2.2 Assuming that ¥ : (£,m1,1m2) — (M, (1, C) is a PYPC function, then any PY—compact
subset (M, 11,t2) C (M, (1, C2) has an inverse image =1 (N, 11, 12).

Proof. Allow H = {h, : a € x} be a P”—open cover of £, with which h, € 1, @ € x. And
£= (£77717772)’ Mm = (ma <17 CQ)? N= (ma L1, [/2)'

For this reason Vm € 9, ¢~ (m) is P¥—compact, and =1 () is undoubtedly P —Hausdorff space,
Just demonstrating that for every H of P¥—open cover of £, which union consists of 1»~1(N), 3 a finite

subsets xm, X,\n of x, that is to say
P M) C Uneyn{Pa i@ € Xm} U Uaex}“{Za T € X%},

at which {hy : @ € xm} is m-open, {z, : a € an} is mo-open. Permit Sy, Sy be the family of finite
subsets of xm, xt\n, and

He =UaeB{ha : @ € Xm}UUges {20 1 € an}n
BES, BES,

Additionally, for every n € M, ¥ ~!(n) is a P¥ —compact, consequently, it is included in the set Hp for
some « € B, here are the following:

ne ®
(V(£)\MB)
and
NCHs e ——N 3B, By,... By e Sy,and3B,, By, ..., By € Ss,
(V(£)\MB)

k N
N C Ui menis,)
Y H(om) k £ k

1 koo v ) gk = i L
’(/) (‘ﬁ) C U, (’(/}(2)\7_[61) =U; ¢_1¢(£)\"H& C U;— S\HBl

= Uf:l/HBzz =H,

where xm = B1, Ba, ..., Bi, X = B), By, ..., B). =
Corollary 2.3 Several PYP¢ functions can be mized to create a PYPt function.
Lemma 2.4 Assuming that A be a dense subspace of a P*—Hausdorff space £ = (£,m1,12), and ¢ :

(L,m1,m2) = (M, (1, ¢2) be P™ —continuous function.
When the PY—homomorphism \(A) : A — ¥ (A) CM is true, then Y(L)\(A)) NY((A)) = ¢.
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Proof. Assume 3l € £ = (£,11,72)\(A), such that () € ¥((A)), without loss of generality, Considering
that 9 (l) € 1((A)) while sacrificing broadness, allow [ € £ = (£, 11,72)\(A).
Allow’s say that £ = AU {l}, M = y(A), ¥(I) = ¥(m), in which m € A, and h,z C £ be disjoint
neighborhoods of [, m accordingly.
Therefore, 1((A)\z) = ¥\A(A\z) has become closed in £ = ¥(A), 1\ A\ = A\z is also closed in
M =m

Please take into account an additional Lemma, which is also applied later in this concept, and the
mentioned Lemma will be used in the argument of another proposition:

Lemma 2.5 It is not possible to P —continuously extend a PYPc function 1 : (£,n1,m2) — (M, (1, ()
over any P¥— Hausdorff space (M, 11,t2) that has (£,m1,m2) as a suitable subset.

Proof. Make the assumption that § : (9, e1,t2) — (MM, (1, ¢2) is a P¥—continuous extension to a
P¥—Hausdorff space. (I, t1,t2) which incorporates (£,71,72) as a proper subset, with no loss of
broadness, providing that (9,t1,c2) = (£,m1,72) U {I}, where the point [ is not associated to the
P¥—compact, thus 3 open sets h,z C (M, 11,t2), where [ € h, ¥»~5F) C z, hNz = ¢. The set
Y(L,m1,m2)\2) is P¥—closed in (£,71,72), and F1((L,n1,n2)\z)) is P¥—closed in (M, 11,12), and
((€,m1,1m2)\2)) = v 1(L,m1,m2)\2) C (£,m1,m2), and [ € z, implying that (£,71,72) is P¥—closed
in (M,01,2). M

Proposition 2.6 If the composition po) of the P*—continuous functions, ¥ : (£,11,72) — (M, (1, ),
p o (¢, G) — (DM, x1,x2), is a PY—closed then the restriction p\¢((£,n1,m2)) : ¥ (L,m,172) —
(M, x1, x2) is P* —closed.

Proposition 2.7 Let M = (M, (1,(2) be a P¥—Hausdorff space, and £ = (£,n1,m2), M = (N, 11, 2),
Y (Lm,me) = M, G, EG), p: (M, G, E) — (M, i1, 2) be PY—continuous functions. If the composition
potp is PUP function, then v and (p\v((£,n1,m2)) are PPt functions.

Proof. Vn € M, (p\£))"1(n) = ¥(£) Np~t(n) = ¥(py) 1 (n) is P¥—compact, the reality that p\£
is P¥—closed, from the earlier suggestion, so (p\¢(£)) are P¥P function. Vm € M, ¢~ 1(m) =
(p)"L(p~t(m)(p(m) Nyp~L(m)) is a P*¥—compact, in addition to each closed set § C £, the func-
tion (p)\F is PYPc, by the initial portion of the evidence, (p\(F) is PP function, so it is
P¥—continuously for f(F). Thus ¥ (F) = ¥(F). Consequently, ¥ is P¥—closed function. m

Proposition 2.8 If ¢ : (£,m1,m2) — (M, 1,E) is a PY—closed function. Therefore, regarding any
subspace L C (M, (1,(2), then the restriction 1y, : f~*(L) — L is closed.

Corollary 2.9 If ¢ : (£,m1,m2) — (M, ¢1,C2) is PYPC function, therefore for anything PY—closed,
(AC (&= 2Lmm), BCM=(M,{_,C), therefore the limitations P\A : A — (M, (1,C2), Y5 :
Y~1(B) = B are PYP functions.

Theorem 2.10 Let ¢ : (£,m1,1m2) — (M, (1, C2) be a P —contiunous function, in which £ = (£,11,12),
M = (M, 1, C2) be a PY—Tychonoff spaces is PYP. If ) isn’t able to be P¥ — continuously extended over
any P —Hausdorff space M = (M, 11, t2), it includes (£,m1,m2) a proper subspace with P¥ —denseness.

Proof. Assume that instead, v : (£,71,72) — (9, (1,¢2) be not a PYPc function, so using the earlier
theorem, regarding the extension function
'S : (B‘S’ 7717"72) - (Bm7 <17C2)7 then

S((BL,n1,m2) \ (£,01,12)) N (M, 1, () # &,

in order for v to stretch throughout the space M = F~1(M), A P¥P with an amount in k-space is
described by the aforementioned theorem. m
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Definition 2.11 Assuming the argument that follows is true, a bitopological space (£,m1,m2) is referred
to as k-space: A subset A C (M, (1,(2) is mi-closed (na-closed) in (£,m1,m2) iff ANW is n-closed
(n2-closed). Regarding each P™—compact set W in (£,11,12).

Theorem 2.12 When considering a P*— continuous function ¥ : (£,m1,12) — (M, (1,C2), specified on
a P*—Hausdorff space £ = (£,m1,m2), to a M = (M, (1,2) s k-space
The circumstances listed below are comparable:

1) The function 1 is PYPt.
2) For each one P™—compact subspace M C M, then the restriction 1y : v~ 1(N) — N is PYP.

3) Each and every PY —compact subspace 0 C M then the inverse image ~1(N) is P¥—compact.

Proof. Observe that (2) and (3) are equal, and that (1) — (2) is evident.

(2) = (1): Let m € M = (M, 1, Co) = p\m: 1 (m) — {m} is P¥P, and {m} is P¥—compact, so
1~ 1(m) is P¥—compact. It is adequate to demonstrate that 1 is P¥—closed function.

Let A be any closed subset of £. With this in mind

D(A) NN =p((A) NY~H(M)) = da(A) Ny~ (N)

We obtain 1(.A) is closed in 91 since 1\ is closed, while ¥(.A) is closed in (9, (1, 2) depending on
the P —compact subset 91 or M provided 9N is k-space. =

Next, we will examine the inverse and invariant of topological features for P¥P¢* functions.

Theorem 2.13 When ) : (£,m1,1m2) — (MM, (1, () onto a space M = (M, (1, C2) is PYP, thus W(IM) <
W(L).

Proof. Because for m < Ny is valid, allow W(£) = m, resulting in m > Ny

Let H = {ho : @ € x} be a P¥—open cover of (£,71,n2). With this in mind |x| = m, where n be
the family of all finite subset of x, given that |n| = m, desire {Wr}re, = M\ ¥(£) \ UaexHa be a
P¥—open cover (M, (1, 2), consequently Wr is open. Let m € (9, (1, (2) is {3-neighborhood. The kind
that W C 9 of m, the inverse ¢! (m) is P* —compact subset of 1»~1(W), 3T € 5. To the extent that

YH(m) C UpeyHa C U HW).

Evidently, m € Wr. Considering that (9, (1, ¢) \ W = (L) \ v ' (W) C (L) \ UsexHa. For this
reason Wpr C V. m

Theorem 2.14 Let ¢ : (£,m1,72) — (M, (1,¢) be a PY—continuous function, where
(27 m, 772)7 (ma Cla CQ) be a P*— Tychonoﬁ spaces,
The following circumstances are interchangeable: 1) The function v is PYP.
2) The extension Vo : (BL,m,n2) — (a9, (1,(2) of the function b meets the requirements for each
(a9, (1, C2)-
SO{(BS’ 7717772) \ (£777177]2) C (O‘Sﬁ’ Clv CQ) \ (mr <17 CQ)

3) The expansion §qo : (BL,m1,m2) = (M, (1,2) of the function ¥ matches the criteria if (oM, (1, (o)
occurs:
the circumstances

SOZ(BSv 7717772) \ (37771»772) C (O‘m’ Clv CQ) \ (m7 417 §2)
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Proof. Consider that the function ¥ : (£,n1,1m2) — (9, (1, (2) and its extension Fo : (BL,n1,1m2) —
(a9, (1, (2) are PP functions. Given that ¢ is extendable over (Z,x1,x2) = § (M, (1, C), Us-
ing the prior theorem, without altering the range, we obtain (91, x1, x2) = (£,71,72), what it implies

S_l((m7 C17<2) - (2’7 7717772)7 and 1?{OZ«BQW n1a772) \ (277717772)) - (agﬁ’ <17C2) \ (m7 ClaCQ))?

Therefore, (1) — (2) is demonstrated, and (2) — (3) is evident.

(3) — (1) begin to Fo : (BLm1,m2) — (M, (1,¢2) be a PYP function, subsequently Fo(m) :
FHON, (1, G) — (M, ¢, ) is PUPC function, given that F1((IM, 1, ) = (£,71,72)), We receive
Sa (m) =1.

Whatever it indicates 1 : (£,n1,12) = (M, (1, ¢2) be a PYPC function. m We present various image
and inverse image results of P*P< functions in this part of the paper.

Theorem 2.15 Assume that (£,11,72) — (M, (1, C2) is a PY—compact and that ¥ : (£,11,1m2) —
(M, ¢1, () is a PUPC function.

Proof. Let H = {h, : @ € x} be a P¥—open cover of (£,71,72). Since Vm € M, )~ (m) is P* —compact,
3 finite subsets xm, X1§1 of x,
such that ¢~1(m) C Uneyn tha 1@ € xm}bUU
and {z, : @ € Xt\n} is 7j9-open.
Define Om = M\¢(L\ U, ey,
(2-open set containing m, where:

wex {2 1 € X,\n}, where {h, : @ € xm} is n1-open

he) as a (1-open set containing m, and On = M\P(L\U _ \ 2z4) as a

AEXm

Uha and ! Uza

aEXm anm

Let O = {On :m € E)ﬁ}u{Os1 :m € M} be a P*¥—open cover of M. Since (M, (1, (2) is P* —compact,
O has a finite subcover {On, :i=1,2,...,n1} U {Oé11 1=1,2,...,n2}.
Thus M = U2} Om, UU2, O, Therefore:

(L,m1,m2) U Pt U Pt ) C finite union of H

Hence (£,7n1,12) is P*¥ —compact. ®

Remark 2.16 Inverse invariance under a PPt function characterizes a P™ —compact space.

Definition 2.17 Any space (£,n1,12) that has an open intersection of members of n;, i = 1,2 is referred
to as a P" —space.

Lemma 2.18 Let £ = (£,m1,n2) be P —Hausdorff space, P"—space. Then every 1;-compact subset of
(£,m,m2) is ni-closed, i # j, 4,5 =1,2.

Proof. Let A be n;-compact subset of (£,71,72) and [ € £—.A. Since (£, 11, 72) is a P —Hausdorff space,
{ = ﬁaex{hgi, he is pj-open of £ fori # 4, 4,57 = 1,2} Then A < £ — {I},
so {&€ — hd', hg is n-open of £, for i # j, i,j = 1,2} is n;-open cover of ;- compact set A.

Thus, 3X1 C x such that A C Ugey, {€ — WL, by is nj-open of £, for i # j, i,j =1,2}.

Given that £ is a P —space, we get H = Naex, Mo as a 1n;-open set with [ € H C £\ A, indicating
that A is 7;-closed. m

Theorem 2.19 Consider the P — continuous bijection v : (£,m1,m2) — (M, (1, C2).
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¥ is a P* —homeomorphism when (£, 71, 72) is P¥ —compact and (M, (1, (2) is P* —Hausdorfl space,
P —space.
Proof. It suffices to demonstrate ¢ is P¥—closed. Let § be a n;-closed proper subset of £. For
1% j, 1,5 =1,2, § is n;-compact.

¥ (F) is (j-compact as a 1;-closed proper subset of P —compact space is n;-compact (i # j, i,7 = 1,2).
Since (M, (1, ¢2) is P* —Hausdorff P* —space where every n;-compact subset is 7;-closed, ¥ (§) is (;-closed.
Hence 1 is P*” —homeomorphism. =

Definition 2.20 A P¥ —strongly function ¥ : (£,1n1,12) — (M, (1, (2) satisfies: for each P* —open cover
H = {ho : @ € X}, there exists PY—open cover Z = {zy, : v € T} of M such that v~(z) CU{hy : a0 €
X1,X1 C X, finite}, Vz € Z.

A PY—weakly function v : (£,m,m2) = (M, (1, 2) satisfies: for any PY—open cover H = {hq : o €
x}, there exists P¥—open cover Z = {z, : v € T'} of M such that v~ (z) C Uf{hy : @ € x1,x1 C
X, finite}, Vz € Z.

nto

Theorem 2.21 If ¢ : (£,m1,m2) —% (M, (1,C2) is a PY—strong function and (M, (1, () is PV —
compact, then (£,n1,12) is P* —compact.

Proof. Let H = {hy : @ € x} be a P*—open cover of (£,1;,72). Since 1) is P¥ —strong, there exists
P¥—open cover Z = {z, : v € I'} of (M, (1,(2) with

Y H2) CU{hy @ € x1,x1 C X, finite}, Vz € Z

As (M, (1, ¢2) is P¥—compact, 3 finite I'y C T such that M = U,er, 2y. Thus £ = Uyer, ¥ 1(2,).
Since each 1 ~!(z,) is covered by finite Ay, £ is P¥—compact. =

Definition 2.22 £ = (£,n1,72) is a bitopological space that is PY —weakly compact whenever each finite

PY—open cover H of £ has a subcover z of H that is P¥—open finite, which means £ = U{z\z € z}m,
where i =1, 2.

Definition 2.23 The term P¥—pseudo function refers to a function ¢ : (£,m1,m2) — (M, (1, (2).

Assuming that for every P* —open cover H = {hy : @ € x} of £, there is a corresponding P* —open
cover z of 9, such that for every z € Z, ¥~1(z) C UanI’HQm, 1 =1,2, x1 C x infinity.
Theorem 2.24 Given a P¥ —continuous, P* —pseudo function ¥ : (£,11,m2) onto, (M, ¢1, Ca),

In the event that (91, (1, (2) is P¥—weakly compact, then (£,71,12) is as well.

Proof. Assume (£,71,72) be P*—open and H = {hy :a € x}. ® _

When ¢ is a P¥—pseudo function, for any z € z. The kind that ¢ "(z) C UpeyHa i = 1,2,
X1 C x finite, we have a P*—open cover z of (I, (y,(2). However, given M is a P* —weakly compact
space, it includes a P* —open finite subfamily W of z that produces 0t = U {w\w € W}Ci, 1=1,2, and
L=U{v 1 (w)\we W}M], i = 1,2, indicating that £ is a P“—weakly compact region.

The distinctive features of the topological structure P are described in the next remarks, along with
how they relate to other topological spaces.

Remark 2.25 Whenever (n;,n;)—P is an imitation of a topological property P, thenn; has characteristic
P with reference to n;, and P*—P represents the conjugation (n1,m2) —p it is equivalent (I,n;) has feature
fori=1,2.

Remark 2.26 Permit P be a guarantee of PYP< functions belonging to the (finitely) cumulative topol-
ogy. Whenever a P* —closed subspace (£,m1,12) has a locally finite family (£,m1,m2) that is individually
a P* — Hausdorff space with feature P, while (£,n1,12) additionally possesses feature P.
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Remark 2.27 To be hereditary with regard to P —closed subsets of P —Hausdorff space, a topology
characteristic P must be an opposite variance of a PYPc function and generational with regard to
P¥—open and P*—closed sets.

Theorem 2.28 A k-space is (£,11,12) whenever there is a PYP° function ¢ : (£,m1,m2) = (M, (1, C2),
Of (Sa 7717772> onto a k-SpCl,C@ <m7 Cla CQ)

Proof. Take (k£,m1,m2), (k9M,(1,¢2), and the function ki : (k€,m1,m2) — (KON, (1,¢2) be a PUPt
function. While (9, (1, (2) k-space, we obtain (9, (1, ¢2) = (KM, (1,¢2), and kv = (YL, n1,12), thus
(YrL,m,m2) be a PUP function. Although (L, 1m1,72) is 1 — 1, it is a P —homomorphism. =

Theorem 2.29 Assuming that 1 : (£,m1,m2) — (M, (1,C2) is a PYPC function, Ym € M, »~L(m) is
P¥—countably compact, and (M, (1, (2) is a PY —countably compact, therefore (£,11,1m2) is correct.

Proof. Enable H = {h, : @ € x} be a P*—open cover of (£,11,n2).
Given that Vm € 9, 1~ (m) is P¥—countably compact, 3 a finite subsets ym, Xr\n of x.
That is to say Y1 (m) C Unexniha : @ € Xm} U Usex) {2 : a € Xr\n}v in which {u, : @ € X} is

ni-open, {zo : & € xm} is na-open.
Enable O (o, m) = M\ (£ \ Uaey, ha) is a (1-open set comprising m, and

O (a,m) = M\ (L\ Uney) Za @ € X)
is a (o-open set comprising m, in which

lbil(om(a;m)) C Uaex hom

m

¥ (Onla,m) CU, 2o

Turn on
{O} = {Om(a,m) : m € M} U {Op (o, m) : m € M}
be a P —countable compact cover of .
Enable (91, (1, (2) is P*—countably compact, {O} has P* —finite subcover indicate that: {Oq;}it, and
{O;i 72, in order
(€:m1,m2) = UE, 9™ (Oai) U UZ2, 67 (O)-

Thus, (£,11,72) is a P¥—countably compact.

[

Theorem 2.30 As (£,11,1m2) = (M, (1, () is a PYP function and (M, (1, () is a PY —paracompact,
then (£,m1,12) is similarly.

Proof. Allow ourselves to H = {h, : a € x} be a P¥—open cover of (£,71,72). Due to Vm € 9, 1)~ (m)
is P¥—compact, 3 a finite subsets xu, Xr\n of x. With this in mind

\{ZQ:QEXI\n}a

P (M) C Upeym {ha : @ € Xm} U Unerd

at which {hq : @ € Xm} is m1-open, {7z, : @ € X,\n} is n2-open. Begin by O = M\ (L \ Uaey, ba) is
a (q1-open set including m as well as

Om =M\ Y(E\ U, ) 7)
is a (o-open set including m, at which

wil(om) g UO&GXm hOM
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YHOM) CU e 20

Allow ourselves to O = {Op, : m € M} U{O,}1 :m € M} be a P¥—open cover of M. Given that (M, (1, (2)
is P —paracompact, O has P*—open locally finite parallel refinement

indicate that: H = {Hg : B € T1} U {HL\% : B € T'a}, where {Hg : B € T'1} is (3-locally finite
paracompact of Oy, and {Hz\s : B € T'a} is (o-locally finite paracompact of O,}U I' =T; UT,. Begin
to S1 = {Y"HHg) Nha,,i =1,2,...,n,B € T'1,a € xm} is ni-open locally finite parallel refinement of
{ha : @ € x}, S2 = {wfl(Hl\g) N2zt = 1,2,...,n,B € Ty,a € X:\n} is n9-open locally finite parallel
refinement of {2z, : @ € x}. Permit & = {5 U S}, subsequently S is P” —open locally finite parallel
refinement of H, thereby (£,71,72) is P¥ —paracompact space. ®

Remark 2.31 Over PY P, the PY—paracompact is a the opposite consistent.
Theorem 2.32 With PYPct, the P¥— Hausdorff space remains immutable.

Proof. If (£,n;,72) is a P¥—Hausdorff space, as well as m; # my in (9, (1,¢2) is a PYPC function,
therefore ¢»~1(my), ¥ ~1(my), while ¢»~!(my) are disjoint and subset of (£,7;,72) that is P —compact.
Here is a 7;_neighborhood h of £ and a 7,_neighborhood z, ¥~t(my) C h, ¥~ (my) C z, hNz = 0,
provided (£, 71, 72) is to be a P¥ —Hausdorff space. Imagine that 91— (£\h) is a (1-open set in (M, (1, )
and that 2t — (£ —2) is a (a-open set in (M, (1, (2) and that My. M — (L —h) NP — (£ — 2) contains
my.

B(E—R)UB(L\ 2) =M — (L — hnz)=M—p(l) = 0.

]
Remark 2.33 Reverse invariance is exhibited by the P — Hausdorff space over PYPct,
Theorem 2.34 An inverted resilient space with a PYPC function is a P¥—regularity space.

Proof. Attempt to ) : (£,1m1,172) — (9, (1, ¢2) be a PYP function, (M, (1, (2) is a P¥—regular space.
For all points [in (£,71,72), every individual n; _closed set §. The kind that [ ¢ F, v~ 1(F(1))NT = K,
K is P¥—compact subset of (£,71,72), [ ¢ § C K. Given that ¢~ (F(I)) is P¥—closed set in (M, (1, (a),
[ ¢ 3\z1, v(I) € Y(F\2), and (9N, 1, (2) is to be P —regular space, 3 (1-open set hy, and (2-open set za,
P(I) € h2, (F\21) C 2,
h = hy N~ 1(hy) be n;_open set, z = 2 N~ () be n2_open set, then [ € h, FC 2z, hN 2z = ¢.
Consequently (£,71,72) is a P* —regular space. ®

Theorem 2.35 A space that is both inversely and P™—locally invariant with a PYP° function.

Proof. Let ¢ : (£,n1,m2) — (M, ¢1,¢2) be a PYP function, (£,11,72) is a P¥—locally compact,

n1 is locally compact with respect to 12, along with Vm € 9, ¢~ (m) is P* —compact. VI € £, n;_open
set h containing [, Il € 2z C n2 cl 2 C h, 2 cl z is P¥—compact. We're going to W = M\ (L — z) be
¢1-open set in (M, (1, (2),

meW, G edWCM—y(L\n2cl z) Cp(ng cl 2), n2 cl z is P¥—compact,

m e W C (el W. To put it simply, if 7, is locally compact in relation to 7y, then (9, (1, (2) is
P —locally compact.

On the other hand, if [ is a member of (£,n1,72), then ¥(I) € (M, (1,¢2), I¢1 open-neighborhood z
in (M, ¢1,C2), 2 () € 2 C (o cl 2, where ¥~ 1(2) C ¥~1(¢;_open set), and yp=1(2) C ¥~1((s cl 2) is
P¥ —compact. This means that

Leyp™(2) Cv™ (Gael 2) Sl ¥71(2).
¥ (z) is P*¥ —compact, as we can see. (£,11,72) is consequently a P¥—locally compact. ®

Remark 2.36 A perfect function is not inversely correlated with normality or complete regularity.
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Theorem 2.37 Let ¢, : (L4,m1,72) = (Ma, (1,C2) be a family of functions,
1/1 = Haexd)a : Haex(saa 7717772) — HOLEX(S‘)IQ7 Cla CZ); Zﬁ 1/101 : (Eonnla 772) — (ma7 Clu CQ) 18 owpct'

Proof. = It is evident that every function 1), is P¥P¢t.

< The cartesian product II,ey (Lo, m1,m2) is P¥—Hausdorff space, Vm € {my} € Iloey (Mo, (1, o),

P m) = Iaey Pyt (my), is a P¥—compact. Begin to first demonstrate that ¢ is a P*¥—closed. Let

H={ho:a€x}U{z:a€x}beaP”—open cover of (£,m,n2), where hy, € 11, 2o € 12, @ € X.
Since Vm € M, ¢~ (m) is P¥—compact, 3 a finite subsets xm, X:\n of x,

P (M) C Upeym {ha : @ € Xm} U Uaex,\n{z“ T € X.ﬁ},
where {hq : @ € xm} is m1-open, {z, : @ € Xt\n} is 79-open,
Maexta ' (Ma) € Unern (ot @ € xm} UU 1 {70 @ € X,
3 an open set S, in (La,m1,m2), where
So={Sa:a€x}U{Sy acx},
S # (Laymr,m2) for a = {og, a0, ..., ar} Ck,
P m) = aey ¥ (Ma) C Mgy Sa T H.

Since {tq, }7; are P —closed functions, 3 an open sets
Om, = {00 : 0 € xu} U{O) : @ € xa},

Oma E (mon C17 <2)7 w;} (Om"‘i) E SaL

Let O = [[aex O, , then m € O, O # (Mo, C1,C2),
i=1 ¢ ‘

vH0) =[] va' (Om) E J] S EH.

acx acx
Hence, 1 is P¥—closed function. m

Corollary 2.38 A finite P¥— closed cover of a P — Hausdorff space (£,m1,12) is represented as {A;}_,,
and {;}F_1, Since ; : (A, m1,m2) — (M, (1, C2) is a family of appropriate PP functions, that means
that 1 = 1 Vhy ... Vby is a PYPC function from (£,m1,m2) to (M, (1, ().

Definition 2.39 The constant function can be expressed by v : (£,m1,1m2) — p = {c}, whose ¢ is any
point that isn’t part of £. Let (£,m1,12) be any PY—compact bitopological space.

Theorem 2.40 The projection py : (£ XM, m1 X (1,12 X 2) — (M, (1, C2) is a PYPC function provided
(£,m1,m2) is every P*—compact and (M, (1,(2) is a PY—Hausdor(f space.

Proof. Given any P —compact (£,71,12), let ¥ : (£,m1,1n2) = p = {c}, where ¢ is some point that is
unrelated to £, be a constant function that is obviously P¥P¢. Suppose I, : (M, 1, C) — (M, (1, )
is P¥Pct function, ¥ X I, = £x M — P x M ~ M, is PYP function, but p, = ¥ x I,. Thus,
Pm (XM ny X C1,m2 X C2) = (M, (1, ¢) is a PUPC function. m
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3. S-Perfect Functions in Bitopological Spaces

This section explores s-perfect functions, combines conventional compactness theory with the more
subtle framework of bitopological spaces, in which dual topologies coexist. We focus on compact functions,
which are functions that preserve compactness across both topologies of a bitopological structure.

Definition 3.1 An s-perfect function is defined as v : (£,m1,12) = (M, (1, () if ¥ is PY— continuous,
PY—closed, and 1)~ (m) is s-compact for any m € IN.

Theorem 3.2 Every s-compact subset, (M, 11,t2) € (M, (1,C2), has an inverse image, Y=L (M, 11,12),
that is s-compact provided ¥ : (£,m1,m2) = (M, (1,(2) is an s-perfect function.

Proof. Let H = {h, : @ € x} be a mne-open cover of £, where h, € m, a € x.
For every family, H of 11m2-open cover of £, which together includes ¢~ (1), it is adequate to demonstrate

that 3 a finite subsets xu, Xt\n of x, where Vm € 9, ~!(m) is P*—compact, and ¢~ () is obviously
P —Hausdorff space.

\{Za:aEXle}v

PHM) C Uneyn {Ua : @ € Xm} U Uner

where {hy : @ € xm} s n1-open, {z, : a € xt\n} is 7g-open. Take steps to Sy, So finite of xm, xt\n, and
Hp =UaesB {ha RS Xm}UUaEB {Za RS Xl\n}v
BES, BES,

and for each n € M, ¥~!(n) is a s-compact is therefore included in the set Hp for some a € B,
Y Y \ i) \
n e W and N C HB € W(C)\Hz)’ 361,;82,...78[( S Sl, and HBI’BQ""7BK S SQ, N C

k
Vi1 Genws,)

—1(90) g Iy
O e i) Y (e s, U S, e
where Xm = B1,Ba, ..., B, X = By, B, ..., B).

Corollary 3.3 An s-perfect function is created when two s-perfect functions are composed.

Theorem 3.4 Let ¥ : (£,m1,m2) — (M, (1,¢2) be a s-perfect function, and (M, (1, (2) is a s-compact,
then (£,11,12) is so.

Proof. Let H = {h, : @ € x} be a n1ms-open cover of (£,11,12), since Vm € M, 1»~1(m) is s-compact, 3
a finite subsets xm, X; of x,

Y7 m) C Uney {ha 1 € Xm}UUaEXh‘{za ta € X;}, where {hy : & € xm} is m1-open, {z, : @ € Xt\n}
is mo-open.
Let Om = M — (L — Unexy, ha) 1S a (1-open set comprising m, and O =M — (L — Upey), Za o € X)
is a (o-open set comprising m,

where 11 (Om) € Unex o, $7HOM) U\ Za-

Let O = {Op : m e M} U {O‘}1 :m € M} be a P¥—open cover of m. Since (m, (1, () is s-Compact O
has a finite subcover say {Ogy,,7 =1,2,...,n1} U {Os1 1i=1,2,...,n2},

M = UM, (Om,) UUM,(On,). Thus (€,11,72) = UM, 9~ 1(O,) U U4~ 1(O%,) € combination of
finite of H. Hence (£, 11, 12) is s-Compact.

|

As corollaries, we obtain the following findings by applying the comparable techniques in Theorem
3.4:
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Corollary 3.5 Considering an s-perfect function, a P —compact space is inversely consistent.
Corollary 3.6 For s-perfect, the P* —Hausdorff space is inversely stable.

Corollary 3.7 Considering an s-perfect function, a P¥ —reqularity space is inversely robust.

Definition 3.8 A function ¢ : (£,m1,12) = (M, (1, (o) is known as an s-strongly (s-weakly) function if,
for each minz-open cover H = {hq : o € X}, we have a mna-open cover Z = {z, : v € T'} of M, such that
Yp71(2) CU{ha : @ € x1,x1 C X, finite}, Vz € Z.

Theorem 3.9 Let ¢ : (£,1m1,72) onto, (M, (1, C2) be a PY—closed function, and ¢~ (m) is s-compact
for all m € M, then ¢ is s-weak function.

Proof. Let H = {hy : a € x} be a mime-open cover of (£,11,m2). For m € (IM,(1,¢2), ¥~ 1(m) is
s-compact. Thus, there is y1 C x finite, 71 (m) C Naeyy hay 0m = M — Y(L€ — Uney, ha), then oy is
mnz-open in M. Define O = {oy, : m € M},

then O is n1ns-open cover of 9N,

hence 1~ (on) is seen in a limited number of members of H, thus 1 is s-weak function. m

Theorem 3.10 Let ¢ : (£,m1,m2) — (M, (1, E2) be a PY—continuous s-strong function, and let K €
m Une be s-compact in (M, (1, Ca).
Then =1 (K) is s-compact in (£,11,72).

Proof. Let H = {hq : a € x} be a minz-open cover 1K), W =HU{£ - ¢y (K)},

then W is a nyns-open cover of (£,171,72). Because ¢ is s-strong function, there exists ny72-open cover
z={zy:y €T} of (M {1, ¢), v 1K) is seen in a limited number of members of H, but K is s-compact,
so K contains limited number of members of z. Hence, 1) ~1(K) is s-compact in (£,71,72). =

Corollary 3.11 Let ¢ : (£,m1,12) = (9, (1,¢2) be a PY—continuous s-weak function, and let K €
m Unge be s-compact in (M, (1, Ca).
Then ~Y(K) is s-compact in (£,1m1,m2)-

Definition 3.12 Let £ = (£,11,12) be a bitopological space. ny-locally compact with respect ns.
VI e £, 3 n1-open set H comprising | with H" is s-compact.

Definition 3.13 Let £ = (£,11,12) be a bitopological space is called Bg-locally compact
if m is s-locally compact with deference 1, 1 is s-locally compact with respect 1.

Theorem 3.14 Consider the v : (£,m1,m2) — (M, (1, (2) be s-compact function, and M is Bs-locally
compact, then i is s-weak function.

Proof. Let H = {h, : @ € x} mne-open cover of £ m € (M, (1,Ca),

since (MM, (1, (2) is Bs-locally compact, 3 a (1-open set Wy, (2-open set zy,, comprising m,

such that W, > and zz™ are s-compact, w_l(Wmnz) C Uaexi ha, X1 C x finite, and =1 (zz™) C
Uaexs o, X2 C X finite,

then O = {Wy, : m € M} U {2y : m € M} is (1(2-0open cover, and ¢ is s-compact function. m

Definition 3.15 Let £ = (£,m1,7m2) be a bitopological space is called Kq-space if A C £ is n;-open
(ni-closed), if AN K is n;-open (n;-closed) in K, i = 1,2, for each s-compact set K in (£,11,12).

Theorem 3.16 If £ = (£,m1,n2) is Bs-locally compact, then £ is K-space.
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Proof. Let A be a subset of £, and for any s-compact subset K in £, we have AN K, is a n;-open,
1=1,2,1€ A, Jan;-open set (in £) containing [, Z is s-compact for ¢ # j, i = 1,2. Now ANZ" n;-open,
i#j,1=1,2, ANz=(ANZY)Nz is n;-open, and [ € ANz C A, so Ais n;-open,i=1,2. ®

Theorem 3.17 Let ¢ : (£,1m1,m2) = (M, (1,(2) be PY—continuous function, and M is Bs-locally com-
pact, PY—Hausdorff, Consequently, the following are comparable:

(1) o is s-weak function.

(2) ¥ is s-compact function.

(3) 3 is s-perfect function.

Proof. (1) — (2): From theorem 3.11 we get the result.

(2) — (3):

It suffices to demonstrate that ¢ is P¥—closed. Let M be a s-compact subset of (M, (1, (2) and P\n :
»=1(91) — N, A be n;-closed subset of »~1(91), then A is s-compact set in £, but v is P* —continuous,
so Y\n(A) is s-compact in M, then \n(A) is a n;-closed for ¢ = 1,2, then ¢ is P”—closed, hence ¢ is
s-perfect function.

(3) = (1):

Let H = {ha : @ € X} mma-open cover of £. Since 1 is s-perfect, Vm € MM, =1 (m) C U{h, : a € x},
but (m,(1,(2) is Bs-locally compact, 3 a n;-open set H,, containing m, ng-open set z, containing m,
He and zy™ are s-compact, so ¢~ (Hy ) C Uaexs Pas X1 C X finite, and ¥ 1(Za™) C Useys bas
X2 C x finite, thus O = {Hy :m € M} U {2y, : m € M} is (1(o-open cover of M. Hence ¢ is s-weak
function. m

Corollary 3.18 If there exists a s-perfect function v : (£,m1,m2) — (M, (1,C), of (£,m1,m2) onto a
k-space (M, (1,Ca), then (£,m1,m2) is a k-space.

Theorem 3.19 Let (M, (1,¢2) be a Ty-space such that each point in M has finite (1 or (2-open base,
then (£,11,12) is s-compact iff m: (£ x M, m X (1,m2 X (o) — (M, (1, () is s-weak function.

Proof. Let H = {h, : a € x} be a (n X (1)(n2 X (2)-open cover of (£ x M, 1y x (1,M2 X (2).

For m € 9, 3 a finite (;(o-base {z(m) :i € x} of m. Let [ € £,
3 H;([,h) Ty Une with ([,m) € H;(ILh) X z(m) CH, for h e H, i€ x.

Let H;(h) = U{H;(l,h) : H;(I,h) x z;(m) CH}, and H = {H;(h) : h € H,i € x} is a nin2-open cover
of £, but £ is s-compact, therefore H has a finite subcover

H* = {H;(h):heH,icx'},

and
7 (Nigyr 2 (M) € Uieys (H; (h) X z(m)) € Uicy b

Let z; = Miey=2i(m), 2 = {z : 4 € x*}, then z is a finite ¢1¢2-open cover of M.
Hence 7 is s-weak function. m

4. Structural Invariance Under B-Perfect functions

This section defines and examines B-perfect functions, which are a structured class of functions in
bitopological spaces that combine continuity, closedness, and fiberwise compactness.

Definition 4.1 A function v : (£,m,1m2) — (M, (1,(2) is called B-perfect, if v is PY—continuous,
PY—closed, and for each m € M, = (m) is B-compact.

As a result of applying the comparable techniques in section3, we have the following findings:
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Corollary 4.2 If ¢ : (£,m1,1m2) — (M, (1,¢2) is a B-perfect function, then every B-compact subset
(M, 11,12) C (M, (1, C), the inverse image =1 (M, 11,12) is a B-compact.

Corollary 4.3 A B-perfect function ¢ : (£,m,172) — (M, (1,¢) can‘t be PY—continuously extended
over any P¥— Hausdorff space (M, t1,t2), that contains (£,1m,12) as a proper subset.

Corollary 4.4 Let ¢ : (£,n1,1m2) = (M, (1,2) be a B-perfect function, and (M, (1,(2) is a B-compact,
then (£,m1,12) is so.

Corollary 4.5 The P*—compact space is invariant under B-perfect.
Corollary 4.6 A P¥—compact space is inverse invariant under B-perfect function.

Theorem 4.7 Suppose we are given a family of PY—continuous functions {¢;}acy, where
Vo (Laymsm2) = Ma, G, 2), if there exists an ag € X, such that Vs, is a B-perfect function, and
(M, C1,C2) is PY—Hausdorff space, for every a € x\{ao}, then the function diagonal xo € X, Vo is
B-perfect function.

Proof. Consider the diagonal h = ¥Vg of a B-perfect function, ¥ : (£,m1,7m2) = (M, (1,¢2) be a

P¥—continuous function, p : (M, (1,C) — (M, x1, x2) to P¥ —Hausdorff space (M, x1, x2). The combi-

nation may then offer the diagonal h, (£,11,72) fdxOm, (£ XM X x1,M2 X X2) xide, (M x N, ¢ x

X1,C2 X X2), the function id x Ap is a B-perfect. Hence, h is B-perfect. m

Corollary 4.8 If the cartesian product ¢ = Haex Vo, where o, @ (Laym,n2) = Ma, (1, 0), Lo # &
for a € x is P¥—closed, then all functions v, are P* —closed.

The following interesting characterization of B-perfect:

Theorem 4.9 For a PY—continuous function ¥ : (£,1m1,m2) = (M, x1, x2), defined on a P* —Hausdorff
space (£,m1,m2). The circumstances listed below are comparable:
1) The function v is a B-perfect.

2) For every PY— Hausdorff space (MM, (1,(2), the cartesian product 1 X idon is B-perfect.

3) For every P"—Hausdorff space (M, (1, (2), the cartesian product ¥ X idyy is P —closed.

Proof. The implications of 1) — 2) — 3) are clear, and we wish to demonstrate that all of ¢’s fibers are
B-Compact since 3) — 1. Let ang € (M, x1, x2), and (M, (1, () is P*¥ —Hausdorff space, the restriction
po = p\{no} x M : L (ng) x (M, (1, ¢) — {no} x (M, (1, (o), of the P¥—closed function p = v x idgy is
P —closed.

Thus, the composition pgpg, where pg : {ng}x (M, ¢1,¢2) — (M, (1, (2) is B-projection, and P* —closed.

popo the projection p: ¢~ (ng) x (M, ¢1,¢2) = (M, ¢1,C2),

so that ¥~ (ng) C (£,m1,m2) being P¥—Hausdorff space-the P¥—compactness of 1»~!(ng), hence )
is B-perfect. m

Theorem 4.10 Let P be a topology with attributes that are stable during Cartesian multiplication by
a P*—compact space and heritable in relation to a PY—closed set. If there exists a B-perfect ¢ :
(€,m,m2) = (M, (1, Ca), where (L£,m1,m2), (M, (1, C) be PY— Tychonoff spaces, and (M, (1,(2) that has
the property P, then the space (£,11,7m2) also has the property P.

Proof. The diagonal Ap : (£,11,1m2) — (MM x N, {1 X x1,C X x2) is both P* —homomorphism and
B-perfect function, hence (£,71,72) is P* —homomorphism to a P* —closed of (9 x N, {1 X x1,2 X X2),
thus has the property P. m
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5. Closed Projections and Perfectness: Structural Properties of Bitopological Compact
Functions

This section studies compact functions across bitopological spaces, focusing on their interactions with
continuity, perfectness, and product space properties.

Definition 5.1 A P —continuous function ¢ : (£,m1,1n2) = (MM, (1, (2) is called compact
function, iff ¢ : (£,m) — M, ¢1) and ¥ : (£,m2) — (M, (2) are compact functions.

Theorem 5.2 Let ¢ : (£,m1,12) — (M, (1, ) be PY—continuous function,

where (I, (1, (o) is a locally compact, Hausdorff space.
Then the following are equivalent:
(1) 9 is a compact function.
(2) ¢ is a PP function.
Proof. (1) — (2): Demonstrating that 1 is a P —closed function is sufficient.

Y (Lym) = (M, ¢G) and ¢ : (£,12) = (9, (2) are closed functions.

Let § be any closed subset in (£,71), and m be a cluster point ¥(F) in (IM, (1).

Since (M, (1, ¢2) is a locally compact 3 a (j-open set & containing m and &¢ is compact.

Y(F) NGBS cannot be compact, since if it’s true, then ¢ (F) N &S is closed and U = & — () N &S
is an open set and U N (F) = ¢, which is contradiction.

Hence, m € (F). Since &% is compact. w_l(@) NF is compact. Thus ¥ (FN ¢—1<@)) is compact
that contradicts itself. Then m € ¥(F), ¥(F) is closed.

Likewise, we can demonstrate that ¢ : (£,12) — (9, (2) is closed function.
(2) = (1): simple. m
Theorem 5.3 A function v : (£,n1,1m2) — (M, (1, a) is s-perfect, iff 1 is PYPC and compact function.

Proof. Sufficient to demonstrate that ¢~ (m) is s-compact iff 9p=*(m) is P*—compact and compact,
(since ¢ is P¥—closed, P* —continuous) Let H = {h, : @ € x} be any P“—open, 7;-open or ns-open
cover of £ is s-compact iff it is P¥ —compact and compact.

For each m € M, ¢~ (m) is P¥—compact and compact, there is a finite x1 C x, ¥~ (m) C Naey, fa-
Let Om = M — (L — Uaey, ha) is (1-open set or a (a-open set, it/s (1¢2-open in M. Define O =
{On : m € M} is (1¢e-open cover of M. ¢ is therefore s-perfect since it contains a member of H
(6~1(On)). m

On the other hand, we obtain the outcome by employing a similar approach.

Theorem 5.4 Let (£,m1,72), (M, (1, (2) be any bitopological spaces. If (£,m1,m2) is compact, then 7 :
(£ xMm X C,me X C) — (M, (1, ¢2) is closed.

Proof. If (£,11,72) is compact, then (£,7;) is compact, (£, 12) is compact, thus m1 : (£ XM, m X (1) —
(O, ¢1), w2 2 (£ X M,ma X C2) — (M, (o) are closed, thus 7 is closed. ®

Corollary 5.5 Let (£,11,m2) and (M, (1, 2) are s-compact (compact), then (£ x M, m X (1,12 X (2) is
s-compact (compact).

Corollary 5.6 The product of s-compact and P™—compact is a P*—compact.



16 ALt A. ATooM

6. Alternatives Examples

Here are some examples of different types of perfect functions in bitopological spaces.

Example 6.1 Assume that ¥ : (R, n, Nind) = (R, 9n,Mind) be the identity function, where nn and Ming
are the usual and indiscrete topologies, respectively, then v is PYPC function not B-perfect function.
Given that (R, nn, Nina) is P —compact but not compact, and therefore not B-compact, 1 is PYPt not
flawless.

Example 6.2 Let ¢ : (R, ny,nq) = (R, ny,na) be the identity function, where ny and ng are denoted the
cofinite topology on R and discrete topologies, respectively.

then v is PP not s-perfect. Since (R, ny,n4) is P —compact, and not s-compact, take {I} is n1n2-open
set has not a finite subcover, hence 1 is PYP not s-perfect.

Example 6.3 Let ¢ : (£,11,1m2) = (£,m1,1m2) be the identity function, then i is B-perfect function not
PYP function, not s-perfect function.

Let £ = [0,1], m = {6, £,{0}} U{(0,a),a € £}, n2 = {0, L,{1}} U {(a,1),a € £}, then (£,m1,1n2) is
B-compact, since for any ni-open cover of £, or any ma-open cover of £, must contain £ as member.
(£,m,n2) is neither P —compact, not s-compact, for the P*—open cover {{0} U (a,1],a € £,a # 0} of
£ has not finite.

Hence v is B-perfect function not PYP function, not s-perfect function.

Example 6.4 Consider the production function, m: (R X R, np X np,ns X ns) = (£,010,Ms), then m is not
closed, since (R,np,ns) is not compact.

Example 6.5 Let £ = (R, nn,Nind), then it's PY—compact, but not compact. However 7 : (R x R, np, x
Nhs Nind X Nind) = (£, Mk Mind) is not closed.

7. Dual Topologies, How Perfect Functions Architect Tomorrow’s Predictive Systems

Perfect functions in bitopological spaces are more than simply abstract mathematics; they are tools

with real world applications. These functions, which combine continuity, closedness, and compactness,
assist in representing systems in which several structures reside together, such as a city’s road network
covered with Wi-Fi signals or a healthcare dataset recording both genes and symptoms. Next how they’re
shaping predictions potentially changing our future:
A PYPct function operates as a clever organizer, reorganizing the chaos while preserving each category’s
essential structure. In machine learning, this ensures that data is compressed. Is the data crowded?
s-perfect functions demonstrate as a filter, preserving the ”"shape” of the data even when parts of it get
lost or fuzzy.

Compact functions serve as traffic controllers, detecting weak bridges (non-compact zones) before
they break down. They could identify dead zones in 5G networks by analyzing how signals shift from real
towers to virtual channels. Closedness in PP functions assures that suggested network architectures
do not contain unrealistic shortcuts, such as a GPS route that somehow transports you across a river.
Smart cities may employ these features to balance power grids and traffic lights in real time, avoiding
blackouts and delays during an event.

Doctors are frequently confronted with confuses: a patient’s genes point to heart disease, although
their symptoms tell elsewhere. B-perfect functions could represent these overlapping ”clues” as two
topologies, retaining linkages between genetic markers and clinical symptoms even when data is limited.
This aids in predicting which patients will have difficulties. Wearables might apply S-perfect functions to
detect abnormal heartbeats and sleep patterns, indicating potential dangers without requiring frequent
doctor visits.

Perfect functions are more than basically math; they connect theory and reality. They now help
us predict network failures and diseases risks. Tomorrow, they could change the way we construct Al,
secure data, and even populate Mars. The secret is their capacity to maintain structure under chaos. As
data grows more chaotic and systems become more complicated, these functions will quietly power the
algorithms that keep our world running, making the future a bit less unpredictable, one topology at a
time.
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8. Conclusions

The connections between the topological spaces generated by functions and the perfect functions
in those spaces were examined in this study. In accordance with the notion of perfect functions that
is provided here, the study established the prerequisites for harmonizing the compact space and other
functions. We looked at the connection between these two ideas and used several types of perfect functions
to describe them. One other purpose of this work was to spotlight some advanced properties of the perfect
functions and some of the peculiarities of the cartesian process of multiplication of these functions in
unexpected conditions. In addition, dominant elements of these principles and some instructive situations
were thoroughly investigated. We identified their main characteristics in general and made clear the
requirements for establishing comparable links between them. We talked about their main traits and
demonstrated how they work together. Additionally, the study highlighted these functions characteristics
and included numerous instances. Investigations into the various futures of these functions will begin
with these functions. Future studies might look into investigating more variations of these functions.
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