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Non-Coercive Elliptic Problems with Measure Data in Musielak—Orlicz Spaces

ABDESLAM TALHA

ABSTRACT: In this research, we investigate a class of nonlinear elliptic equations with measure data in
Musielak—Orlicz spaces, under non-coercive growth conditions. Using the framework of renormalized solutions,
we establish existence results by combining modular estimates and truncation techniques. No Ag-condition is
assumed on the Musielak function, and the datum is assumed to belong to L!(Q2) + W1 Ex(Q2). This work
extends previous results to operators with nonstandard growth without coercivity.

Key Words: Renormalized solution, Musielak-Orlicz-Sobolev spaces, elliptic equations, lower order
term.

Contents
1 Introduction 1
2 Preliminaries 2
2.1 Musielak-Orlicz function: . . . . . . . . . . . e e 2
2.2 Musielak-Orlicz space: . . . . . . . . o o e e e 3
3 Auxiliary Results 5
4 Assumptions and Main Result 7
5 Proof of the Main Result 8

1. Introduction

Nonlinear elliptic equations in Musielak—Orlicz spaces arise naturally in various applied contexts.
These spaces are particularly suited to model physical phenomena with nonstandard behavior, such
as non-Newtonian fluids whose viscosity depends on external factors like electric or magnetic fields.
They are also used in image processing, for example in noise reduction and edge detection, and play
an important role in the study of variational problems and partial differential equations involving low
regularity data [11,17].

In the present paper, we deal with an existence result for a nonlinear elliptic problems associated to
the following equation:

P) { Zl(g)o— d;;,l((;((;f)) +g(x,u,Vu) = f —divF in Q,

where ) is a bounded open subset of RY(N > 2) and A(u) = —div a(x,u, Vu) is a Leray-Lions operator
defined on A : D(A) C W} Ly,(Q) — W1L5(Q) where ¢ and § are two complementary Musielak-Orlicz
functions. The lower order term @ is a continuous function on R. The function g(x, u, Vu) is a non linear
lower order term with natural growth with respect to Vu, satisfying the sign condition and the source
term f € L1(Q) and F € (Ez(Q))V.

The notion of renormalized solutions, originally formulated by DiPerna and Lions in [13] for the
Boltzmann equation, has been successfully adapted to nonlinear elliptic problems. In [10], Boccardo
et al. applied this concept to equations with right-hand sides in the dual space W‘Lp/(Q), where the
nonlinearity depends only on x and w. This approach was later extended by Rakotoson in [21] to cases
where the data belong to L!(Q), and subsequently by Dal Maso et al. in [12] to encompass general
measure data.
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In the context of Sobolev spaces with variable exponent, Bendahmane and Wittbold [6] addressed
the existence and uniqueness of renormalized solutions for the nonlinear problem

—div (|VuP®=2Vu) = f  inQ,
u =0 on 012,

where f € L'(Q) and the function p(-) is continuous on Q with values in (1, +00).
In a different approach, Sanchén and Urbano [22] considered quasilinear equations involving general
nonlinearities of the form
—div(a(z,Vu)) = f inQ,
u=0 on 0f,

also with f € L'(Q). They proved the existence and uniqueness of renormalized solutions and provided
additional regularity properties.

On Orlicz-Sobolev spaces and variational problems, Benkirane and Bennouna studied in [9] the prob-
lem (P) assuming that the nonlinearity g depends solely on  and u, under the additional assumption that
the associated N-function satisfies the As-condition. This result was later generalized in [1] by Aharouch
et al. by removing the Ag-assumption. When the function g also depends on Vu, the problem (P) was
addressed in [2] by Benkirane et al. without imposing the As-condition on the N-function.

In the framework of Musielak—Orlicz spaces, the existence of solutions in the case ® = 0 was first
investigated by Oubeid, Benkirane, and Sidi El Vally in [20]. Later, Ait Khellou and Benkirane [3]
studied problem (P) in the case where the right-hand side belongs to L!(€2). A large number of papers
was devoted to the study of the existence solutions of elliptic and parabolic problems under various
assumptions and in different contexts for a review on classical results see [10,14,17,23].

The aim of this paper is to establish the existence of renormalized solutions to problem (P) in
Musielak—Orlicz spaces with nonstandard growth and non-coercive operators. Since classical weak formu-
lations fail in the presence of measure data and lack of coercivity, we employ the framework of renormalized
solutions combined with modular convergence and truncation techniques. Our results, obtained without
assuming the As-condition, extend and generalize existing theories for elliptic problems with irregular
data.

Specific examples of equations to which our result can be applied

(el [Vu)Vu
div (|Vu|2

—div (|Vu|p72Vu10gB(1 + | Vul) + |u|su> = pinQ,

Hlulu) + (e Fu) = in €,

where p > 1,5 > 0,8 > 0 and pu is a given Radon measure on 2.

The paper is organized as follows. In Section 2, we recall some preliminaries and background material.
Section 3 is devoted to several technical lemmas that will be instrumental in proving our main result. In
Section 4, we state the basic assumptions, introduce the notion of renormalized solution, and present the
main result. Finally, Section 5 is dedicated to the proof of the main theorem.

2. Preliminaries
2.1. Musielak-Orlicz function:

Let © be an open set in RY and let ¢ be a real-valued function defined in  x R, and satisfying the
following conditions:
(a) ¢(z,-) is an N-function for all € Q (i.e. convex, strictly increasing, continuous, ¢(z,0) = 0, p(z,t) >
0, for all ¢ > 0, lim sup M =0and lim inf M = 00)
t—=0 2cQ t t—o0 €N t
(b) (-, t) is a measurable function.
The function ¢ is called a Musielak—Orlicz function.

)
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For a Musielak-orlicz function ¢ we put ¢, (t) = ¢(x,t) and we associate its non-negative reciprocal
function ¢!, with respect to t, that is

oy (o, 1) = oz, 0, (1) = t.

The Musielak-orlicz function ¢ is said to satisfy the As-condition if for some k£ > 0, and a non negative
function h, integrable in €2, we have

o(x,2t) < ko(z,t)+ h(x) for all z € Q and ¢t > 0. (2.1)

When (2.1) holds only for t > tg > 0, then ¢ is said to satisfy the As-condition near infinity.
Let ¢ and v be two Musielak-orlicz functions, we say that ¢ dominate v and we write v < ¢, near
infinity (resp. globally) if there exist two positive constants ¢ and tg such that for almost all x € Q

Y(z,t) < @(x,ct) for all t > tg, (resp. for allt > 0ie. tg=0).

We say that v grows essentially less rapidly than ¢ at 0 (resp. near infinity) and we write v << ¢ if
for every positive constant ¢ we have

t t
lim (sup v, )> =0, (resp. tlim (sup Ve )) =0).

t—0 \seq ¢(z, 1) —oo \zeq #(2,1)

Definition 2.1 A Musielak function ¢ is called locally integrable on Q) if

[ etwtitr = [ o txp@)ar <+

for allt > 0 and all measurable set E C Q@ with mes(E) < +o00.

Remark 2.1 If v << ¢ and 7 is locally integrable on €2, then Vc > 0 there exists a nonnegative
integrable function h such that

v(z,t) < (x,ct) + h(zx), for all t > 0 and for a.e. z € Q. (2.2)

Definition 2.2 A Musielak function ¢ satisfies the log-Hélder continuity condition on § if there exists
a constant A > 0 such that
A
(%t) < t(log(ﬁ))
(y:1)

for allt > 1 and for all x,y € Q with |z —y| < 3.

S

BS)

Lemma 2.1 [5]. Let Q be a bounded open of RN (N > 2) and let ¢ be a Musielak function satisfying the
log-Hélder Continuity, then there exists an N -function M such that

o(x,t) < M(t), for allt > 1 and for all x € Q.

Remark 2.2 The latter Lemma proves that the log-Holder Continuity condition implies the local
integrability.

2.2. Musielak-Orlicz space:

For a Musielak-Orlicz function ¢ and a measurable function u : @ — R, we define the functional
o) = [ (o fu(@)) da.

The set K,(Q) = {u :  — R measurable / p, qo(u) < oo} is called the Musielak-Orlicz class
(or generalized Orlicz class). The Musielak-Orlicz space (the generalized Orlicz spaces) L, (€2) is the
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vector space generated by K, (), that is, L,(12) is the smallest linear space containing the set K, ().
Equivalently

L,(Q {u 2 — R measurable /Pw Q( ) < o0, for some A > 0}

For a Musielak-Orlicz function ¢ we put: @(z,s) = sup;sq {st — ¢(z,t)},
% is the Musielak-Orlicz function complementary to ¢ (or conjugate of ) in the sense of Young with
respect to the variable s.

In the space L, (£2) we define the following two norms:

|ullm—mf{/\>0// L)d <1}

which is called the Luxemburg norm and the so—called Orlicz norm by:

lulllpo = sup /\u 2)| de,

lvllz<

where P is the Musielak Orlicz function complementary to ¢. These two norms are equivalent [19].
We will also use the space E, () defined by

E,(Q {u 2 — R measurable /,0@ Q( ) < o0, forall A > 0}

Remark 2.3 [5] The set E, is a closed subset of L.

Theorem 2.1 [5] Let Q be a bounded open of RV (N > 2) and let ¢ be a Musielak function satisfying
the log-Hélder Continuity condition. Then (E,(2))" is isomorphic to Lz(f).

We say that sequence of functions u,, € L,(€) is modular convergent to u € L, () if there exists a
constant A > 0 such that

lim p, 0 (y) =0.

n—oo

For any fixed non-negative integer m we define
W™L,(Q) = {u € L,(Q) :V|a| <m, D% € Lw(Q)}.

and
WME,(Q) = {u € E,(Q) :V]a| <m, D e EW(Q)}.

where a = (ay, ..., @, ) with non-negative integers «;, |a| = |a1| + ... + |an| and D*u denote the distribu-
tional derivatives. The space W™ L, (Q) is called the Musielak Orlicz Sobolev space.

Let
- a m : _ u
Pp0lu) = Z Pp.Q (D U) and [|ul|7q = inf {A >0: p%Q(X) < 1}
la<m
for u € W™L,(Q), these functionals are a convex modular and a norm on W™ L, (), respectively, and

the pair (WmLW(Q), I HZLQ) is a Banach space if ¢ satisfies the following condition [19]:

there exist a constant ¢y > 0 such that xnelg o(z,1) > co. (2.3)
The space W™ Ly, () will always be identified to a subspace of the product ], <,, Ly(©2) = IIL
this subspace is o(IIL, IIEg) closed.
The space WL, (S2) is defined as the o(IIL,,IIE5) closure of D(2) in W™L,(€Q). and the space
Wi E,(§2) as the (norm) closure of the Schwartz space D(Q) in W™ L, ().
Let W§" L, (£2) be the o(IIL,,,IIE5) closure of D(Q2) in W™L, ().

®s
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The following spaces of distributions will also be used:

W"L5(Q) = {f eD'(Q); f= > (-1)Df, with f, € LW(Q)}.

lal<m

and

W "EA(Q) = {f eD'(Q); f= > (-1)IDf, with £, € E@(Q)}.

|| <m

We say that a sequence of functions u,, € W™ L,(Q2) is modular convergent to u € W™ L () if there
exists a constant k£ > 0 such that

. — Up — U
dmpen(*5) =0
For ¢ and its complementary function @, the following inequality is called the Young’s inequality [19]:

ts < o(x,t) + p(x,s), Vit,s>0,2 €. (2.4)

This inequality implies that
lullle.0 < pp.alu) +1. (2.5)

In L,(€2) we have the relation between the norm and the modular
[ullo.0 < ppa(u) if fullp,o > 1. (2.6)

0.2 = ppa(u) if luflpo < 1. (2.7)

For two complementary Musielak Orlicz functions ¢ and @, let u € L,(2) and v € Lz(2), then we
have the Holder inequality [19]

[l

< Jullpallvllpe: (2.8)

/Qu(x)v(x) dx

3. Auxiliary Results

This subsection is devoted to some auxiliary lemmas and key inequalities used later in the prove of
our results.

Lemma 3.1 [5] Let Q be a bounded Lipschitz domain of RN (N > 2) and let p be a Musielak function
satisfying the log-Hélder continuity such that

D(z,1) < c1 a.ein Q for some c; > 0. (3.1)

Then D(R) is dense in L, () and in Wi L,(Q) for the modular convergence.

t

Remark 3.1 Note that if lim inf gl t) = 00, then (3.1) holds.
t—o0 €N t

Example 3.1 Let p € P(Q) a bounded variable exponent on 2, such that there exist a constant A > 0

such that for all points z,y € Q with |z — y| < %, we have the inequality

A
p(z) —p(Y)l < ———
log ( 7y|)
We can verify that the Musielak function defined by o(z,t) = tP(*) log(1 + t), satisfies the conditions
of Lemma 3.1.

|z

Consequently, the action of a distribution S in W' L5() on an element u of W L, () is well defined.
It will be denoted by < S, u >.
The following lemma gives the modular Poincaré’s inequality in Musielak-Orlicz spaces.
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Lemma 3.2 [5] Let Q be a bounded Lipschitz domain of RN (N > 2) and let p be a Musielak function
satisfying the conditions of lemma 3.1. Then there exist positive constants 5,n and X depending only on
Q and ¢ such that

/ oz, lu(z))dx < B+ 77/ o(z, \\Vu(z))dz Yu € Wi L,(Q). (3.2)
Q Q

Corollary 3.1 [5] (Poincaré Inequality) Let Q be a bounded Lipschitz domain of RN (N > 2) and let ¢
be a Musielak function satisfying the same conditions of Lemma 3.2 Then there exists a constant C > 0
such that

lolly < ClIVull, Yo € WoLo(9).

Lemma 3.3 [§] Let F : R — R be uniformly Lipschitzian, with F(0) = 0. Let ¢ be a Musielak—Orlicz
function and let w € W§L,(2). Then F(u) € Wi L, (). Moreover, if the set D of discontinuity points
of F' is finite, we have

0 B F’(u)% a.e in {x € Q:u(x) € D}
8xiF(u) B { 0 8a.e in{z € Q:u(zx) € D}.

Lemma 3.4 Let up,u € L,(Q). If u, — u with respect to the modular convergence, then u, — u for
0(Ly (), L5(12)).

Up — U

Proof. Let A > 0 be such that /(p(x, )dz — 0. Thus, for a subsequence, u,, — u a.e. in Q. Take
Q

v € L(2). Multiplying v by a suitable constant, we can assume Av € Lz(€2). By young’s inequality,

Up — U

A

|(un = wv] < p(z, ) +3(2, Av),

which implies, by Vitali’s theorem, that (up, — u)v|dx — 0.

|
Q

Definition 3.1 Let Q be an open subset of RN. We say that Q has the segment property if there exist
a locally finite open covering {O;} of the boundary 0 of Q and corresponding vectors {y;} such that if
x € QNO; for some i, then x + ty; € Q for 0 <t < 1.

Lemma 3.5 [7] Suppose that ) satisfies the segment property and let w € Wi L, (S). Then, there exists
a sequence (u,) C D(Q2) such that

uy, — u for modular convergence in Wq L,(9).

Furthermore, if u € Wi Ly,(Q) N L>®(Q) then ||upl|oo < (N + 1)|u]so-

Lemma 3.6 [9] Let Q be an open bounded subset of RN satisfying the segment property. If u €
(W3 Ly ()N then

/ divudz = 0.

Q

Lemma 3.7 Let (f,),f € L*(Q) such that
i) fn >0 a.einQ,

it) fn — [ a.ein Q,

ii) [ fu(z)de — [ f(z)dz,

then f, — f strongly in L'(Q).
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Lemma 3.8 (The Nemytskii Operator) Let 2 be an open subset of RN with finite measure and let ¢ and
@ be two Musielak-Orlicz functions. Let f : Q@ x RP — R? be a Carathéodory function such that for a.e.
xeQand all s e RP :

|f(,8)] < () + k1B p(x, kals). (3.3)

where ky and ky are real positives constants and c(.) € E5(Q).
Then the Nemytskii Operator Ny defined by N¢(u)(z) = f(z,u(x)) is continuous from

1.\’ 1
<7>(E¥,(Q), k2)> =11 {u € Ly,(Q) : d(u, E,()) < k2}
into (Lz(2))? for the modular convergence.
P
Furthermore if ¢(-) € E,(Q) and v << @ then Ny is strongly continuous from (”P(E@(Q)”i)) to
(B, ()7
4. Assumptions and Main Result

Throughout the paper, Q will be a bounded Lipschitz subset of RN N > 2. and let ¢ and v two
Musielak—Orlicz functions such that ¢ satisfies the conditions of Lemma 3.2 and v << ¢.
Let A: D(A) C Wi Ly(Q) — W~1Lz(2) be a mapping given by

A(u) = — div a(z, u, Vu),

where @ is the Musielak—Orlicz function complementary to ¢ and a : QxRxRY — R¥ is a Carathéodory
function satisfying, for a.e. x € Q and for all s € R and all £,& € RV, £ #£ ¢

la(z,5,8)] < k1 (C(fﬂ) +%5 (@, ko s)) +%0;1<P($J€3|€)>a (4.1)
(a(m, 5,€) — a(x, s,§’)) (€-¢)>0, (4.2)
a(zr,s,€).£ > ap(z, [¢]), (4.3)

where ¢(.) belongs to Ez(€), ¢(.) > 0 and o, k; € RY.. for i = 1,2,3.
Furthermore, let g(z,s,£) : Q x R x R¥Y — R be a Caratheodory function such that for a.e. 2 € Q
and for all s € R, £ € RY, satisfying the following conditions

lg(z, 5, )] < b(|s])(d(z) + ¢(x, [£])) (4.4)
g9(z,s,§)s 20, (4.5)

where b : R — RTis a continuous and increasing function while d is a given nonnegative function in
LY(Q).
The right-hand side of (P) and ® : R — RY| are assumed to satisfy

® e’ (R,RY), (4.6)

feL*Q) and F € (E5(Q)N. (4.7)

Note that no growth hypothesis is assumed on the function ®, which implies that the term —div(®(u))
may be meaningless, even as a distribution.
Let us define the truncation 7} : R — R at height &£ > 0 by

s it sl <k,
Tk(s){ ki 0 s> k.
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Definition 4.1 A measurable function u : Q@ — R is called renormalized solution of (P) if Tr(u) €
W3 Lo (9),a (z, T(u), VTi(u) € (La()™,

lim a(z,u, Vu)Vudr = 0,
m—+00 {zeQ:m<|u(z)|<m+1}

and
— diva(z, u, Va)h(u) — div(®(u)h(u)) + b (0)(w)V
+g(z,u, Vu)h(u) = fh(u) — div(Fh(u)) + A (u) FVu in D'(Q), (4.8)
for every h € CL(R).

The aim of this paper is to prove the following existence result:

Theorem 4.1 Suppose that assumptions (4.1)-(4.7) are fulfilled. Then, problem (P) has at least one
renormalized solution.

5. Proof of the Main Result
Step 1: Approximate problem.

For n € N*, let f,, be regular functions which strongly converge to f in L!(Q) such that ||f.||; < ¢
for some constant ¢ and ®,, is a Lipschitz continuous bounded function from R into R and set ®,,(s) =

(T (s)) and g, 5,€) = 740

Consider the approximate problem:

) un € WLy (),
" = diva (@, un, V) — div ®, (un) + gn (2, Un, Vu,) = fn — div F in D'(Q).

For fixed n > 0, it’s obvious to observe that g, (z, s,£)§ > 0, |gn(z, s,£)| < |g(z, s,&)| and |gn(z, s,&)| <
n, Since g,, is bounded for any fixed n, as a consequence, proving of a weak solution u,, € Wg L, () of
(Pr) is an easy task (see e.g. [7, Theorem 8], [15, Proposition 1]).

Step 2 : A priori estimates

Taking w,, as test function in (P,), we get

/ a(x,up, Vuy) - Vu,dz —|—/ D, (uy,) - Vupde
@ @ (5.1)
+/ n (T, Uy, Vug) upde = / fnundx +/ FNu,dx.
Q Q Q

The Liptschitz character of ®,,, Stokes formula together with the boundary condition u,, = 0 on 912,
make it possible to obtain

/ D, (u) - Vupdz = 0. (5.2)
Q

On the other hand, we have

/F - Vu,dz :/ gF gVunclav
Q foles 2

9 N (5.3)
< / %) <:c, |F> dz + —/ o (z,|Vuy,|) dx
) o 2 Jo
Since gy, (¢, Un, Vuy) uy, > 0, we obtain from (5.1)
/ a (z, Uy, Vuy) - Vuydr| < Cp + %/ o (x, |VT (un)]) dz. (5.4)
Q Q
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Thanks to (4.3), we have

| o @IV ) ds < e + o (5.5)

On the other hand we have

/ In (@, Up, Vug) upde < Cs. (5.6)
Q

Now, choosing v = (1/A) [Tk (un)] in (3.2) we obtain

1
/ ® <x, 5 |T% (un)> de < g8+ 77/ o (x, |VTE (un)]) de < c3 + cqk, (5.7)
Q Q
then
meas {|u,| > k} < - L / ( k>d
Un pl\x,~ |ax
inf o (2.5) Julsn A
<;/ (:v L7 )|>dm
- 1nf<p( %) Ty R (5.8)
< Cf?’+704kk Vi, Vk > 0,
infe (#.3)

which implies, for any v > 0,
meas {|un, — U | > v} < meas {Ju,| > k} + meas {Jun| > k} + meas {|Tx (un) — Tk (um)| > v}

and so that
2 (Cg + 041{7)

meas {|un, — Up,| > v} < = :
Bfe(e)

+ meas {|Ty (un) — Tk (um)| > v}. (5.9)

From (5.5), we deduce that T} (u,) is bounded in W L,(£2) and we can assume that Ty (u,) is a
Cauchy sequence in measure in ).

Let £ > 0, by using (5.9) and the fact that i%ﬂ — 0 as k — +oo there exists k(g) > 0 such that
EdS

fo(a.%)
meas {|u, — um| > v} <e, forall n,m > no(k(e),v).

This proves that (u,) is a Cauchy sequence in measure in €2, thus, u, converges almost everywhere
to some measurable function w. Finally, for all £ > 0, we have for a subsequence

{Tk (uy) = Ti(u)  weakly in WL, () for o (IIL,, I1E) (5.10)

Ty (un) = Tr(u)  strongly in E,(Q) and a.e. in .

Step 3: Boundedness of (a(x, Ty (un), Vi (un))),
Let 9 € (EW(Q))N such that [|9]|,,0 = 1. Thanks to (4.2), we can write,

/ﬂ { (2, T4 (tn) , VT (1)) — (a:,Tk (), Z)] [VTk )~ 2

}dmZO,
3
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hence
1
/ L . Ty (), VT (1)) 9da
a k3

< / a(x, Tk (un), VTg (up)) VT (uy,) do
Q

oo ) o 2)e

9
<kCy+Cy— / a <x,Tk (un), k:) VT (uy,) dz
Q 3

1 U
— Ty (uyn) , — .
+ " Qa (a:, % (Un) kg) ddx

By using Young’s inequality in the last two terms of the last side and (5.5) we get

/Qa (x, Tk (un) , VIi (up)) 9dz

_ ’a (x,Tk (un),k%)’
S (kCl + CQ) k3 + 3]€1 (1 + kg)/ @1, 3k dz
Q 1

+3k1k3/ o (2, VT (un)|)d:c+3/<;1/ o, [9])de
Q Q

< (k‘Cl + 02) k‘3 + 3k)1]€3 (k’Cl + 02) + 3k1

43k (1+k3)/9¢ (:r ’a (T (un)”i>’) da.

3k

From (4.1) and the convexity of @, it follows that

P (m o (=2 (“")’liM) <

(@2, d(x)) +7 (2, k2 | Tk (un)]) + @(x, [9])) -

Wl =

3k

By Remark 2.1, there exists a function h € LY(Q) satisfying v (z, k2 | Tk (un)]) < v (2, k2k) < p(x,1) +
h(x). Integrating over €2 then yields

o e(w T, &)
/Qw(xva<ka3Z)k) dz

< % ( /Q B(z, c(x))dz + /Q h(z)der
+ [ pleds s [ oo ohar) < g,

where ¢}, is a constant depending on k. Thus,
/ a(z, Ty (up), VT (un))ddx < ), VI € (EW(Q))N with |9, 0 =1,
Q

and thus ||a (z, Ty (un) , VI (un))|l5 o < ), which implies that,

(a(z, Ty (un), VT (uy))), is bounded in L()N. (5.11)
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Step 4: Renormalization identity for the approximate solutions

By testing the approximate problem (P,) with the function 6,,(r) = Tp11(r) — T (r) for m > 1, we
obtain

/a(a:,un,Vun)Vﬁm (un)da:+/ D, (up) VO, (uy,) dx
Q Q (512)

+ / n (T, Un, Vug) O (uy) doe = / fnbm (uy) dx + / FN0,, (uy,)dz.
Q Q Q
Let us consider the functions
¢(t) = (I)’ﬂ(t) X{SGR:m§|s|§m+1}(t)7
t
o0 = [ otr)ar
0
By Lemma 3.3, it follows that &(un) € (Wong, (Q))N Then, applying Lemma 3.6, we obtain

/ (I)n(un) v0171(“/71) dr = / (I)n (un) X{sER:m§|s\§m+1}(un) vun dx
Q Q
= / d(up) Vuy, de = / div(¢(uy)) dz = 0.
Q Q

Using the sign condition (4.5) we have gy, (2, Un, Vy) Om (un) > 0 ae. in 2, and knowing that
VO (un) = VUunX{m<|u,|<m+1} a-€. in €2, we get

/ a(x, U, Vg )Vunde < (fn, 0 (uy)) +/ FVu,dzx.
{m<|un|<m+1} {m<|un|<m+1}

By Holder’s inequality and (5.5) we have

/ a(z, Up, Vi ) Vunde < (frn, 0 (uy)) + C4/ o(x, |F|)dz.
{m<|un|<m+1} {m<|un|<m+1}

It is straightforward to verify that
VO (un)ll 0 < IVunll,q-
Then, by applying (5.5) and (5.10), we deduce that
O (n) — O (u)  weakly in W3 L, (Q) with respect to o (IIL,(Q), TIE,(2Q)).

As a consequence, we obtain the estimate

lim a(x, Un, Vi) - Vuy, de < (f, 0 (u)) .

70 J{m< |un | <m41}

Moreover, since 6, (u) — 0 weakly in W L, () with respect to o (IIL,(2),ILE,(£2)), it follows that

lim lim a(x, Un, Vi) - Vup dr < lim (f, 0, (u)) = 0.
m—r oo

Finally, by invoking (4.3), we conclude that

lim lim a(x, Up, V) - Vu, dr = 0. (5.13)

MTFOON O S m< |up |[<m+1}
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Step 5: Almost everywhere convergence of the gradients

2
In this subsubsection we pose ¢(s) = se*s” with A = (ﬂ) One can easily verify that for all s € R
b(k) 1
2

¢'(s) =

For m > k, we define the function p,,(s) by

(5.14)

1 if |s|<m
pm(s) =< m4+1—1s] if m<|s|<m+1
0 it |s|>m+1.

Let {v;}; C D(Q) such that v; — u in W L,(Q) for the modular convergence and a.e. in . And let
us define the following functions
9% = Ty (un) — Tr(vj), 07 = Ty (u) — Ty (vy) and Zg:,,m = QS(H%)pnl(un).
Testing the problem (P,,) with the function zJ

n,m’

we get
/ a(x, Up, Vu,)Vz nmder/ Py, (1) VO (T (un) — Ti(v5)) pim () dz
Q Q
Jr/ (I)n(un)vunplm(un)‘b(Tk(Un) - Tk(vj))dx (5.15)
{m<|uy|<m+1}

+/ gn(x,un,Vun)thmdx = / fnsz,md'r + szn md
Q Q Q

Denote by €;(n,j), i = 0,1,2,..., various sequences of real numbers which tend to 0 when n and
— 00, i.e.

lim lim ¢(n,j)=0.
j—+4oon—+oo

Thanks to (5.5) and (5.10), we have 2, — ¢ (67) pp(u) weakly in WiL,() as n — oo for
o (IIL,,I1E), then

/ fnzZLmdx — / [ (67) pm(u)dz as n — oo,
Q Q

using the modular convergence of v, we get #7 — 0 as j — oo, so that

/ fnthmdx = eo(n,J).
Q

lim FNz) dv = / FNG @ (67) pr(u)da + / FNu¢ (67) pl,, (u)dz,
Q Q

n—-+4oo Q

Also, we have

so that, by Lebesgue’s theorem one has

lim ENu¢ (67) pl,, (u)dz = 0.
Jj—=+ Jo

Assume that there exists A > 0 such that ¢ (m, w> converges strongly to zero in L'(Q) as

J — +o00, and that ¢ (:,C [ul ) belongs to L!(€). Under these conditions, the convexity of the Musielak

function ¢ allows us to conclude that

(m VT (v3) ¢' (607) pin(w) = VT (1) o <u>|>
7\ AN/ (2K)

<1 JU|V11]-—Vu| +1 - 1 x|Vu|
=37\" T 4 o2k ) P\ TN
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then, using modular convergence of {Vv;} in L,(0)" and Vitali’s theorem, yields
VT (v;) ' (07) pm(u) = VTi(u)pm(u) in (Ly(Q))Y, as j — +oo,

for the modular convergence, and then

lim FENT(w)¢ (67) pm(u)dz = / FNT(uw)pm(u)de,
Jj—=+o0 Jo Q

we have proved that

/ FNZ) dx = ei(n, j).
Q

It is straightforward to observe that, due to the modular convergence of the sequence {v;};, one
obtains

lim lim D, () Vtn oy, () (T (un) — Tie(v5) ) daw = 0.

I+ N0 Jim< u, |[<m+1}

As for the third term on the left-hand side of (5.15), we can express it as
/Q D, (un) VA (Ti(un) — Ti(v;)) pim () da

— [ B VL) O ()i — [ (1) VT (05)6 (6] )
Q Q

Firstly, we have
lim lim D, (U ) VTk (1) (62) pro (ur )d = 0.

Jj—+o0o0 n—+oo Q

According to (5.10), it holds that
Dy, (un) ¢ (07) pm (un) — @(u) ¢ (67) pim(u),
almost every where in £ as n — +oo. In addition, it can be shown that
1@ (1 )¢ (8) i (1) 5 < B, e (28))192] + 1,

where ¢, = max|s<pm41 ®(t). Applying [[18], Theorem 14.6] we get

im0 VT 00 @)om () = [ $TT ()00 pn (w)d
Q Q

Using the modular convergence of the sequence {v;};, it follows that

lim  lim <I>n(u,L)VTk(vj)qﬁ’(ﬂfl)pm(un)dx:/@(u)VTk(u)pm(u)dx.

j—=toon—+oo Jo Q

Then, thanks to Lemma 3.6 we obtain

/Q O (u)VT(uw)pm(u)dx = 0.

Therefore, we write

/Q(Pn(un)qu(Tk(un) — Tx(v5)) pm (un)dz = €3(n, j).

Since gn (@, tn, Vun) 25, > 0 on the set {|u,| > k}, and pp(un) = 1 on {|u,| < k}, identity (5.15)
yields

/ a(x, up, Vun)szl’m dr + / Gn (T, Up, V) $(02) dx < e3(n, ). (5.16)
Q {lun|<k}
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We now proceed to estimate the first term on the left-hand side of (5.15) by rewriting it as

/a(x,un,Vun)szL)mdx:/ a(, U, V) (VT (un) — VT (0))8 (02) pn () da
Q Q
+/Qa(a:,un,Vun)Vuncﬁ(H%)pm(un)dx
= [ 00 Tufua). VT (00)) (V) = V(1)) (0)da
—/ a(®, Up, Vun) VT (v;)8 (02) po (un ) d
{lun|>k}
+/Qa(m,un,Vun)Vuncﬁ(GﬂL)pm(un)dx,
and then
/a(w,un,Vun)Vz%’mdx
Q
= [ (0o Tlua). 9Ti0)) = i, i), VT o)) (Vi) = V(o)) ' 0R)d
+/Qa(:mTk(un),VTk(vj)xj)(VTk(un)—VTk(vj)X;f)qS’(Q%)d:v

. (5.17)
— / a(x, T (un), VI (un))VTk(vj)¢' (8])dx
a\Qs

f/ a(x, up, Vun)VTk(vj)gb'(ﬁﬁ;)pm(un)dx
|[un]>k)
[ 0t Vi) Vs 6(63) ()

Q

where by xj, s > 0, we denote the characteristic function of the subset
Q3 = {7z € Q:|VTi(vj)| < s}

By fixing m and s, we will pass to the limit in n» and in j in the second, third, fourth and fifth term
on the right hand side of (5.17). For the second term, we have

| i), T T o) (Vi) = Tl @2
— /Qa(:r,Tk(u), VTk(vj)Xj)(VTk(u) — VT;C(vj))(;?)qﬁ'(@j)alac7
as n — +00. According to Lemma 3.8, we have
a(z, T (un), VT (vi)x5) ¢ (03) = a(z, T (u), VTr(v;)x5) &' (67)
strongly in (E5(Q))" as n — co. Moreover, from (5.5),
VT (up) — VT (u)
weakly in (L, (€2))". Let us denote by x* the characteristic function of the set Q% = {z € Q : [VT}(u)| <

s}

Since VT, (vj)x; — VTi(u)x® strongly in (E ()N as j — +o0, it follows that

/Qa(ac,Tk(u), VT (v)x}) - (VTk(u) — VTk(vi)x;) ¢ (¢7) dz — 0,
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as j — oo. Consequently, we conclude that
/ a(z, Tp(un), VIr(0;)X5) - (VIk(un) — VTk(0;)X5) ¢ (62) dz = es(n, j). (5.18)
Q

We now turn to the estimation of the third term in (5.17). From (4.3), it is clear that a(z,s,0) =0
for almost every x € Q and all s € R. Consequently, by (5.11), the sequence (a(z, T (un), VTk(un))), is
bounded in (Lz(Q2))Y for every k > 0.

Thus, up to a subsequence (still indexed by n), there exists a function I, € (Lz(£2))" such that

a(z, Tj,(un), Vg (un)) = I weakly in (L5(Q))Y with respect to o(IlL5, IIE,). (5.19)

Moreover, since VT (v;)xa\0: € (E(2))N, we deduce that

/ a(x, Tr(un), VT (uy)) - VTk(v;) ¢’ (Hﬁb) dr — Uy - VTi(v;) ¢’(9j) dz,
o\Qs o\Qs

as n — +00. The modular convergence of the sequence {v;} then implies that

- / UV Ty(v;)¢ (67)dz — — I,V (u)dz,
Q\Q3 Q\Qs
as j — 4oo. This, proves
- / a(, To(tn), VT (1)) VT (0;)6 (69 ) = — / LV Ty () + es(n, 7). (5.20)
Q\Q: Q\Qs

For the fourth term, we remark that p,,(u,) = 0 on the subset {|u,| > m + 1}, then we obtain
= aetn, V) VT 0)6 (6] o) o
{lun|>k}
— [ T (), VT (0) VT (05)6 (81 (1)
{lun|>k}

Since
- / a(:c, Tt (un)a VT (Un))VTk (Uj)gb’(@%)pm(u")dz
{lun|>k}

__ / o1 VT () o (w)dez + e5(n, 5),
{lu|>k}

observing that VT (u) = 0 on the subset {|u| > k}, one has
— /{ - a(z, U, Vun ) VT (0;) ¢ (02) pom (un)dz = €6(n, §). (5.21)
Un|>
For the last term of (5.17) we obtain
[‘/Qa(xaumVun)vun¢(9%)p;n(un)dx
= ‘/ a(®, Up, Vun) Vu,¢(09) ol (u,)dx
{m<|up|<m+1}

< ¢(2k‘)/ a(z, Uy, V) Vupde.
{m<lun|<m+1}
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To estimate the last term of the previous inequality, we use (T7(un, — Ton(un)) € Wi Ly(£2)) as test
function in (P,), to get

/ a(x, Un, Vg )Vuyde + / D, (uy)Vupde
{m<|un|<m+1}

{m<lun|<m+1}

+/ G (X Up, V)T (U, — T (un))da = (fr, Tt (un, — Tin(un)))

+ / FVuy,dzx.
{mglunlgm"l‘l}

Then, applying Lemma 3.6, we obtain

/ b, (un)Vuydr = 0.
{m<|un|<m+1}

Observing that g, (z, un, Vu,) T1(un — Tin(uy)) > 0 on the set {|u,| > m}, and invoking Young’s
inequality, we derive the estimate

/ a(x, Un, V) - Vg de <{(fn, T1(un — Tm(un)))
{m<|un|<m+1}

4 / (e, |F|) dz.
{m§|un|§m+l}

Consequently, we conclude that
| / (., V1)) (63 (1) |
Q

<2o0)( [ ipades [ B, [Fl)dz).
{m<lunl} {m<Jun|<m+1}

Combining the results from (5.18), (5.20), (5.21), and (5.22), we arrive at

(5.22)

/a(a:, Un, Vun) V2, dx
Q

> / (ale, To(tn), VT (n)) — a2, Te(uun), VTi(0,)x))
Q

X (VT (un) — VT (v5)x5) ¢’ (67,)da (5.23)
— k nld o(z, d
s (20) /{ o Ml /{ oy P@ 1D )

—/ I - VT (u)dz + e7(n, ).
Q\0s
We now focus on the second term on the left-hand side of (5.16). It holds that

‘ / In (T, U, Vun)qb(@ﬁ;)dx‘
{lup| <k}

[ o Tulua). V()67
{lun|<k}

b(k)

< b(k) /Q MV T (1) )] 663z + b(k) /Q ()| 6(62)|dx
< —/Qan(x,Tk(un),VTk(un))VTk(un)\gﬁ(ﬁflﬂdx+68(n,j).

(%
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Then

{lun|<k}

< b(j)/Q (a(z, Tr(un), VTk(un)) — a(z, T (un), Vi (v5)X5))

X (VTk(un) - VTk(vj)X;) 16(69)|dx (5.24)
+ 2 [ 0, Tiun). 9T (Vi) — VTG 00

M o ), VT ) VT (0 O + e, ).

We proceed as above to get

ok) /Q a(z, T (un), VIi(v;)x;) (VI (un) — VT (v5)x5)[6(65)|dz = eg(n, )

(e

and

- /Q (2, T (1), VT (1)) VT (0)X3 1063l = €xo(n, ).

Hence, we have

/ (x, Un, Vun)qb(ﬂfl)dx‘
{\u \<k}
< bE) / (0@, Ti(tn), VT () — ala, Te(un), VT4 (0,)x3)) (5.25)
(VT(un) = VTa(0)x; ) 1000 lda + ex1 (. ).
From (5.16), (5.23) and (5.25), we get
/Q(a(fﬂa Ty (un), VT (un)) — a(@, Ti(un), VIk(0;)x5)) (Vi (un) — VTk(v5)X5)
(#/(02) — "L lo(0)1 ) da

< / LV Ty (u)de + ad(2h) / fulde + / B [F)dz)
o\0: {m<unl} {m<|un|<m+1}
+ 612(n7j)'

By (5.14), we have

/Q(a(m, Tr(un), VT (un)) — alx, Tr(un), VTk(”j)X?)) (VTk(Un) - VTk(”j)Xj)dx

<2 / VT (u)dx +4a¢(2k)( / | fnlda + / ?(z, |F|)dm) (5.26)
Q\Q= {m<|un|} {m<|un|<m+1}

+ 612(n7j)'
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On the other hand, we can write
/Q (a(@, Ti(un), VT (un)) — a(z, Tr(un), VIe(w)x*)) (VT (un) — VI (u)x®) dx
— /Q (a(@, Ty (un), VT (un)) — ala, T (un), VI (0;)X5)) (VTk(un) — VT (0;)x5) da
—l—/ a(x, Ty (un), VI (uy)) (VTk(vj)X‘;f — VTi(u)x®) d
Q
- /Q ala, T (wn), VT (w)x®) (VT (un) — VTi(u)x’) da

+/ a(z, T (un), VTk(v5)x5) (VTk(un) — VTk(v;)x]) dz.
Q

We will first let n — oo, followed by j — oo, in the last three terms on the right-hand side of the
above identity. Proceeding analogously to the arguments in (5.17) and (5.24), we deduce that

/Q a2, To(un), VTk(un)) (VTe(w))x: — VTe(u)X®) dz = exa(n, ),
/Q alz, Ti(wn), YTk (w)x®) (VT (un) — VTe(u)x®) de = era(n, ), (5.27)
/Q a2, Ti(tun), VTu(07)x2) (Vi (tn) — VTk(07)x3) d = exs(n, ).
So that
/Q (a(, Th (1), VT () — alar, T (), VT (w)x®)) (VT (1) — VT (w)x") da

= /Q (a(x,Tk(un),VTk(un)) — a(x,Tk(un),VTk(vj)X;?)) (VTk(un) — VTk(vj)X;) dx (5.28)

+ Elﬁ(nvj)'
Let r < s. Making use of (4.2), (5.26), and (5.28), we can express

0< /T (a(z, Tk (un), VI (un)) — a(z, Tp(un), VI (w))) (Vi (un) — VTk(w)) dz
< /Q (a(z, Tk (un), VT (un)) — a(z, T (un), VIk(w))) (VTk(un) — VTk(v)) dzx
= /Q (a(z, Tk (un), VT (un)) — a(z, T (un), VTe(uw)x*)) (VT (un) — VT (uw)x®) dz
< / (0@, Ty (1n) VTk(un)) = al, Te(un), VT ()X)) (VTk(n) = VTi(w)x") da
- /Q (aa, Ti(un), VT (un)) = ale, Telun), VIk(0;)X3)) (VIk(n) = VTi(v5)x5) do

+ 615(7’L, .7)

< 2/ LV T (w) dx + 206(2k) (/ | da +/ 2z, | F)) dx)
Q\Qe {m<|unl} {m<|uy, | <m+1}
+ €17(Tl,j).

By passing to the limit in n and then in j one has,

0 < Tim sup / (@@ T (), Vi () = (2, Tic () , (@) (VT () = VTa(w))

n—-+oo

< 2/ VT (u)dr + 4a¢(2k) (/ | fldx +/ @(z, |Fl)dx | .
Q\flg {m§|un|} {mglunlgm"’_l}
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Letting s — 400 and then m — +o0, taking into account that [, VT (u) € LY (Q), f € LY(Q),|F| €
(Ex ()N, |0\ =0, and [{m < |u| < m + 1}| = 0, one has

/T (a(z, Tk (un), VTg (un)) — a(x, Ti (un) , VIR (w)) (VT (uyn) — VI (u)) dz

tends to 0 as n — +o00. As in [16], we deduce that there exists a subsequence of {u, } still indexed by n
such that
Vu, = Vu a. e. in Q. (5.29)

Thus, by taking account that (5.11) and (5.10) we can apply [[18], Theorem 14.6] to obtain
a(w,u, Vu) € (Lg()™

and
a(x,upn, Vuy,)) = a(z,u, Vu) weakly in (Lg(Q))N for o (I1L, IIE,,) . (5.30)

Step 6: Modular convergence of the truncations.

From inequality (5.26), we obtain

(z, Tk (un) , VT (un)) VT (uy) dz

\

< / (@, T (un) , VIi (un)) VT (v5) X;dzx

Q

+ 20(2k) (/ |fnl d +/ oz, F)d33>
{m<|unl} {m<|un|<m+1}

+2 / a (&, T (w), VT (w) VT (w)dz + 15(n, 5),
o\Q¢
which implies, by using (5.27), that
/ a(z, Ty (un),, VT (un)) VI (uy) dz
Q

< [ (oD (0) VB (00)) 9T 1) i
Q

+ 2a6(2k) ( / ful do + / (. |F|>dx>
{m<unl} {m<lun|<m+1}

+2/ a(z, Ty (u), VIi(u)) VI (w)dz + e1s(n, j).
o\Q¢

The passage to the limitto the limit in 7 on both sides of this inequality and using (5.30) implies that

n—-+o0o

lim sup/ﬂa (x, Tk (un) , VTk (un)) VT (un) do
< / a(z, Ti(uw), VTi(uv)) VT (v;) x;d
Q

k d %] Fd
+200(2 >( /{ oy M /{ oy PE1ED m>

+ 2/ a(z, Ty (u), VI, (u)) VI (u)dz
o\Q¢
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and by passing to the limit in 7 we obtain

tinsup [ 0o, Ti () VT (1) VT () da
Q

n—-+o0o

< / a(z, Ty (u), VI (u)) VT (u)x®dx
Q

4 206(2k) / \flde +/ oz, |F|)de
{m<|ul} {m<|u|<m+1}
+ 2/ a(z, Ti(u), VIi(uw)) VI (u)dx.
Q\0°
Letting s and then m — +o00, one has

lim sup /Q a(z, Ty (un) , VT (un)) VI (uy) dx < / a(z, Ti(u), VI (uw)) VI (u)dx.

n—4oo 9]

Now, thinks to (4.3), (5.5), (5.29) and applying Fatou’s lemma, we have

n—oo

/ 0 (2, T (), VT(u)) Ve (w)dz < liminf / 0 (@, T (un) , YTk () VT (1) da.
Q Q
It follows that

lirf a(z, T (un) , VI (un)) VIi (uy,) dz = / a(z, Ty (u), VI (u)) VI (u)d.

By Lemma 3.7 we conclude that for every k > 0
a(z, Ty (n) , VT (un)) VT (un) — a (z, Ti(u), VTi(u)) VT (u) strongly in L'(Q). (5.31)
The convexity of the Musielak function ¢ and (4.3) allow us to have

o (0 [P0 lon) - VL))

< id (@, Tk (un) , VT (un)) VT (un) + ia (@, Th(u), VT (u)) Vi (u),

so, by Vitali’s theorem one has

lim sup/ © <x, VT (un) = VTk(u)') dx = 0.
E

|E|=0 n 2

Consequently, for every k£ > 0
T (un) — Tr(u) in W L, (Q) for the modular convergence. (5.32)
Step 7: Equi-integrability of the non-linearities.

We shall prove that g, (z,u,, Vu,) — g(x,u, Vu) strongly in L*(Q) by using Vitali’s theorem. Since
n (T, Uy, Vu,) = g(z,u, Vu) a.e in Q, by (5.29), it suffices to prove that g, (x,u,, Vu,) are uniformly
equi-integrable in ).

Let E be measurable subset of {2 and let m > 0. Using (4.3) and (4.4) we can write

/ |gn (x, un, Vuy,)| dz
E
En{|un|[<m} En{|un|>m}

< b(m) /E d(x)dz + b(m) /E a(z, T (un) , VT (un)) VI, (uy) dz

1
m Jo
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By (4.4) and (5.6) it follows that

0 < / 9n (.’E,’Lbn, Vun) undl' < c,
Q

SO

7

1
0< — [ gn(z,un, Vuy) upde < £
m Jo m
then
1

lim —
m—+oo m Jq

Thanks to (5.31), the sequence

9n ((II, Up,, Vun> Undl‘ =0.

{a(z, T (un) , VI, (un)) VI, (uy)},, is equi-integrable.

This fact allows us to get

lim sup/ a(x, T (un), VT (uy)) - VI (uy) dz = 0,
|E|=0 n JE

which shows that g, (x, u,, Vu,) is equi-integrable. Thus, Vitali’s theorem implies that g(x,u, Vu) €
LY(Q) and

Gn (2, U, Vuy) — g(x,u, Vu) strongly in L'(Q). (5.33)
Step 8: Renormalization identity for the solutions.

In this subsubsection, we aim to prove the following identity:

lim a(xz,u, Vu) - Vudx = 0. (5.34)

M0 J im< |ul<m+1}

For each fixed m > 0, we observe that

/ a(x, Uy, V) - Vu, dz
{m<|un|<m+1}
= / a(x, Un, Vig) - (Vi1 (un) — VT (uy)) dz
Q
— [ 0 o1 a). VT (02)) - Vs () da
Q
- / a(x, T (), Vi (ur)) - VI (uy) dx.
Q

Thanks to the convergence result established in (5.31), and taking the limit as n — oo for fixed m,
we obtain:

lim a(z, Up, V) - Vu, dz
n—oo
{m<|un|<m+1}

= [ 60 Toia (0. VT4 (0) - V1) d
—/Qa(:r,Tm(u),VTm(u))'VTm(u) dx

= /Qa(:r,u, Vu) - (Vg1 (u) — VI, (u)) dx

= / a(z,u, Vu) - Vudz.
{m<|u|<m+1}

Finally, by applying the result of (5.13) and letting m — oo, we conclude that identity (5.34) holds.
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Step 9: Passing to the limit.

Finally, in this step thanks to (5.31) and Lemma 3.7, one hasa
a(z,un, V) - Vu, — a(z,u, Vu) - Vu strongly in L' (Q). (5.35)
Let h € CL(R) and 6 € D(Q). Inserting h (u,) 0 as test function in (P,), we get

/a(x,un,Vun)Vunh' (un)edx—l—/a(m,un,Vun)Vﬁh(un)dx
Q Q

+ /Q By, (un) V (h () 0) dae + /Q G (2, Vi) b () Oz (5.36)

= (fash(un)0) +/QFV (h (un)0) da.

We now pass to the limit as n — +oo in each term of the equality (5.36).
Since both h and A’ have compact support in R, there exists a real number v > 0 such that

supp(h) C [-v,v] and supp(h’) C [-v,v].
Therefore, for any n > v, we have
®, (t)h(t) = ®(T,(t))h(t), and &, (t)h'(t) = (T, (t))h'(t).

Moreover, the functions ®h and ®h’ belong to (C°(R) N L‘X’(R))N.
Since u,, € Wy L, (f2), there exists two positive constants 71,72 such that

/ %) (m, |Vun|> dx < no.
Q m

Let 7 be a positive constant such that ||k (u,) V0|, < 7 and ||h/ (u,) 0|, < 7. For n large enough,

we have Aw@ﬁmﬁMQWWSA@Gﬁwmw+&%mmvwom

T+Tm\Vun|
< [olo )
Q n
S/w(quﬁﬂh ; (x,lwni>dx
Q n n Ja m

< / plz,)de + 2 <
Q n

which implies that h (u,) @ is bounded in W L,(£2) and then we deduce that
h (un) 0 — h(uw)f weakly in W L,(Q) for o (IIL,, 11E;). (5.37)
Which give
(£, 0 (un) 0) = (f, h(w)p).
Let £ be a measurable subset of Q. we pose ¢, = maxp <, ®(t). And denoting by ||v||,.o the Orlicz

norm of a function v € L,(2). We thinking to the strengthened Hélder inequality with both Orlicz and
Luxemburg norms, we have

1® (T, (un)) XBllp0 = sup /@@@wa
[vllg,0<1|JE
<e, swp [xslsglltleo

lvlle. <t

_ 1
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Consequently,
i & (T, (un, o =0.
Am sup 12 (1o (un)) XEl 5,0
Then, in light of (5.10) and by applying Lemma 11.2 from [18], we deduce that

® (T, (un)) — @ (T, (u)) strongly in (Ex(Q))"

This, together with (5.37), enables us to pass to the limit in the third term of (5.36), obtaining
/ O (T, (up)) -V (h(uyp) ) de — / O (T, (u)) - V(h(w)d) dz.
Q Q

Observe that
la (2, tn, Vug) - Vug B (uy,) 0] < ¢ a (@, un, Vug,) - Vg,

so that, by virtue of (5.35) and using Vitali’s convergence theorem, we conclude
/ a (x,Up, V) - Vup b (u,) 0 dz — / a(z,u, Vu) - Vuh'(u)f dz.
Q Q

Concerning the second term in (5.36), a similar argument yields
h(uy,) VO — h(u)VO  strongly in (ELP(Q))N ,

and from (5.30) we deduce
/ a (z,Un, Vuy) - VO (uy,) de — / a(x,u, Vu) - VO h(u) dz,
Q Q

as well as

/F~V6‘h(un) dm—>/F-V9h(u)dx.
Q Q

Since h(uy,)0 — h(u)f weakly-* in L>°(Q) (with respect to o*(L>°, L)), we can use (5.33) to pass to
the limit in the fourth term of (5.36) and obtain

/gn(x,un,Vun)h(un)é)d:r — / g(x,u, Vu) h(u)0 dx.
Q Q
Combining all these limits, we finally pass to the limit in each term of (5.36), yielding

/ a(z,u, Vu) - [0 (w)0Vu + h(u) VO] dx —|—/ O (u)h'(u)f - Vudz
Q Q

—|—/Q<I>(u)h(u)-Vde—F/gg(x,u,Vu)h(u)@dx
:/fh(u)ﬂdzz:Jr/ F - [h'(u)0Vu + h(u)V)] dz,
Q Q

for every h € C1(R) and every 6 € D(Q), which establishes Theorem 4.1.
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