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Non-Coercive Elliptic Problems with Measure Data in Musielak–Orlicz Spaces

ABDESLAM TALHA

abstract: In this research, we investigate a class of nonlinear elliptic equations with measure data in
Musielak–Orlicz spaces, under non-coercive growth conditions. Using the framework of renormalized solutions,
we establish existence results by combining modular estimates and truncation techniques. No ∆2-condition is
assumed on the Musielak function, and the datum is assumed to belong to L1(Ω) + W−1Eφ(Ω). This work
extends previous results to operators with nonstandard growth without coercivity.
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1. Introduction

Nonlinear elliptic equations in Musielak–Orlicz spaces arise naturally in various applied contexts.
These spaces are particularly suited to model physical phenomena with nonstandard behavior, such
as non-Newtonian fluids whose viscosity depends on external factors like electric or magnetic fields.
They are also used in image processing, for example in noise reduction and edge detection, and play
an important role in the study of variational problems and partial differential equations involving low
regularity data [11,17].

In the present paper, we deal with an existence result for a nonlinear elliptic problems associated to
the following equation:

(P)

{
A(u)− div(Φ(u)) + g(x, u,∇u) = f − divF in Ω,
u = 0 on ∂Ω,

where Ω is a bounded open subset of RN (N ≥ 2) and A(u) = −div a(x, u,∇u) is a Leray-Lions operator
defined on A : D(A) ⊂ W 1

0Lφ(Ω) −→ W−1Lφ(Ω) where φ and φ are two complementary Musielak-Orlicz
functions. The lower order term Φ is a continuous function on R. The function g(x, u,∇u) is a non linear
lower order term with natural growth with respect to ∇u, satisfying the sign condition and the source
term f ∈ L1(Ω) and F ∈ (Eφ(Ω))

N .
The notion of renormalized solutions, originally formulated by DiPerna and Lions in [13] for the

Boltzmann equation, has been successfully adapted to nonlinear elliptic problems. In [10], Boccardo
et al. applied this concept to equations with right-hand sides in the dual space W−1,p′

(Ω), where the
nonlinearity depends only on x and u. This approach was later extended by Rakotoson in [21] to cases
where the data belong to L1(Ω), and subsequently by Dal Maso et al. in [12] to encompass general
measure data.
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2 A. TALHA

In the context of Sobolev spaces with variable exponent, Bendahmane and Wittbold [6] addressed
the existence and uniqueness of renormalized solutions for the nonlinear problem{

− div
(
|∇u|p(x)−2∇u

)
= f in Ω,

u = 0 on ∂Ω,

where f ∈ L1(Ω) and the function p(·) is continuous on Ω with values in (1,+∞).
In a different approach, Sanchón and Urbano [22] considered quasilinear equations involving general

nonlinearities of the form {
− div(a(x,∇u)) = f in Ω,

u = 0 on ∂Ω,

also with f ∈ L1(Ω). They proved the existence and uniqueness of renormalized solutions and provided
additional regularity properties.

On Orlicz-Sobolev spaces and variational problems, Benkirane and Bennouna studied in [9] the prob-
lem (P) assuming that the nonlinearity g depends solely on x and u, under the additional assumption that
the associated N -function satisfies the ∆2-condition. This result was later generalized in [1] by Aharouch
et al. by removing the ∆2-assumption. When the function g also depends on ∇u, the problem (P) was
addressed in [2] by Benkirane et al. without imposing the ∆2-condition on the N -function.

In the framework of Musielak–Orlicz spaces, the existence of solutions in the case Φ ≡ 0 was first
investigated by Oubeid, Benkirane, and Sidi El Vally in [20]. Later, Ait Khellou and Benkirane [3]
studied problem (P) in the case where the right-hand side belongs to L1(Ω). A large number of papers
was devoted to the study of the existence solutions of elliptic and parabolic problems under various
assumptions and in different contexts for a review on classical results see [10,14,17,23].

The aim of this paper is to establish the existence of renormalized solutions to problem (P) in
Musielak–Orlicz spaces with nonstandard growth and non-coercive operators. Since classical weak formu-
lations fail in the presence of measure data and lack of coercivity, we employ the framework of renormalized
solutions combined with modular convergence and truncation techniques. Our results, obtained without
assuming the ∆2-condition, extend and generalize existing theories for elliptic problems with irregular
data.

Specific examples of equations to which our result can be applied

− div

(
φ(x, |∇u|)∇u

|∇u|2
+ |u|su

)
+ φ(x, |∇u|) = µ in Ω,

− div
(
|∇u|p−2∇u logβ(1 + |∇u|) + |u|su

)
= µ inΩ,

where p > 1, s > 0, β > 0 and µ is a given Radon measure on Ω.
The paper is organized as follows. In Section 2, we recall some preliminaries and background material.

Section 3 is devoted to several technical lemmas that will be instrumental in proving our main result. In
Section 4, we state the basic assumptions, introduce the notion of renormalized solution, and present the
main result. Finally, Section 5 is dedicated to the proof of the main theorem.

2. Preliminaries

2.1. Musielak-Orlicz function:

Let Ω be an open set in RN and let φ be a real-valued function defined in Ω×R+ and satisfying the
following conditions:
(a) φ(x, ·) is an N-function for all x ∈ Ω (i.e. convex, strictly increasing, continuous, φ(x, 0) = 0, φ(x, t) >

0, for all t > 0, lim
t→0

sup
x∈Ω

φ(x, t)

t
= 0 and lim

t→∞
inf
x∈Ω

φ(x, t)

t
= ∞),

(b) φ(·, t) is a measurable function.
The function φ is called a Musielak–Orlicz function.
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For a Musielak-orlicz function φ we put φx(t) = φ(x, t) and we associate its non-negative reciprocal
function φ−1

x , with respect to t, that is

φ−1
x (φ(x, t)) = φ(x, φ−1

x (t)) = t.

The Musielak-orlicz function φ is said to satisfy the ∆2-condition if for some k > 0, and a non negative
function h, integrable in Ω, we have

φ(x, 2t) ≤ k φ(x, t) + h(x) for all x ∈ Ω and t ≥ 0. (2.1)

When (2.1) holds only for t ≥ t0 > 0, then φ is said to satisfy the ∆2-condition near infinity.
Let φ and γ be two Musielak-orlicz functions, we say that φ dominate γ and we write γ ≺ φ, near

infinity (resp. globally) if there exist two positive constants c and t0 such that for almost all x ∈ Ω

γ(x, t) ≤ φ(x, ct) for all t ≥ t0, ( resp. for all t ≥ 0 i.e. t0 = 0).

We say that γ grows essentially less rapidly than φ at 0 (resp. near infinity) and we write γ ≺≺ φ if
for every positive constant c we have

lim
t−→0

(
sup
x∈Ω

γ(x, ct)

φ(x, t)

)
= 0, (resp. lim

t−→∞

(
sup
x∈Ω

γ(x, ct)

φ(x, t)

)
= 0).

Definition 2.1 A Musielak function φ is called locally integrable on Ω if∫
E

φ(x, t)dx =

∫
Ω

φ (x, tχE(x)) dx < +∞,

for all t ≥ 0 and all measurable set E ⊂ Ω with mes(E) < +∞.

Remark 2.1 If γ ≺≺ φ and γ is locally integrable on Ω, then ∀c > 0 there exists a nonnegative
integrable function h such that

γ(x, t) ≤ φ(x, ct) + h(x), for all t ≥ 0 and for a.e. x ∈ Ω. (2.2)

Definition 2.2 A Musielak function φ satisfies the log-Hölder continuity condition on Ω if there exists
a constant A > 0 such that

φ(x, t)

φ(y, t)
≤ t

(
A

log( 1
|x−y| )

)
for all t ≥ 1 and for all x, y ∈ Ω with |x− y| ≤ 1

2 .

Lemma 2.1 [5]. Let Ω be a bounded open of RN (N ≥ 2) and let φ be a Musielak function satisfying the
log-Hölder Continuity, then there exists an N -function M such that

φ(x, t) ≤ M(t), for all t ≥ 1 and for all x ∈ Ω.

Remark 2.2 The latter Lemma proves that the log-Hölder Continuity condition implies the local
integrability.

2.2. Musielak-Orlicz space:

For a Musielak-Orlicz function φ and a measurable function u : Ω −→ R, we define the functional

ρφ,Ω(u) =

∫
Ω

φ(x, |u(x)|) dx.

The set Kφ(Ω) =
{
u : Ω −→ R measurable / ρφ,Ω(u) < ∞

}
is called the Musielak-Orlicz class

(or generalized Orlicz class). The Musielak-Orlicz space (the generalized Orlicz spaces) Lφ(Ω) is the
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vector space generated by Kφ(Ω), that is, Lφ(Ω) is the smallest linear space containing the set Kφ(Ω).
Equivalently

Lφ(Ω) =
{
u : Ω −→ R measurable

/
ρφ,Ω

(u
λ

)
< ∞, for some λ > 0

}
.

For a Musielak-Orlicz function φ we put: φ(x, s) = supt≥0 {st− φ(x, t)},
φ is the Musielak-Orlicz function complementary to φ (or conjugate of φ) in the sense of Young with
respect to the variable s.

In the space Lφ(Ω) we define the following two norms:

∥u∥φ,Ω = inf

{
λ > 0/

∫
Ω

φ
(
x,

|u(x)|
λ

)
dx ≤ 1

}
,

which is called the Luxemburg norm and the so–called Orlicz norm by:

∥|u|∥φ,Ω = sup
∥v∥φ≤1

∫
Ω

|u(x)v(x)| dx,

where φ is the Musielak Orlicz function complementary to φ. These two norms are equivalent [19].
We will also use the space Eφ(Ω) defined by

Eφ(Ω) =
{
u : Ω −→ R measurable

/
ρφ,Ω

(u
λ

)
< ∞, for all λ > 0

}
.

Remark 2.3 [5] The set Eφ is a closed subset of Lφ.

Theorem 2.1 [5] Let Ω be a bounded open of RN (N ≥ 2) and let φ be a Musielak function satisfying
the log-Hölder Continuity condition. Then (Eφ(Ω))

′
is isomorphic to Lφ(Ω).

We say that sequence of functions un ∈ Lφ(Ω) is modular convergent to u ∈ Lφ(Ω) if there exists a
constant λ > 0 such that

lim
n→∞

ρφ,Ω

(un − u

λ

)
= 0.

For any fixed non-negative integer m we define

WmLφ(Ω) =

{
u ∈ Lφ(Ω) : ∀|α| ≤ m, Dαu ∈ Lφ(Ω)

}
.

and

WmEφ(Ω) =

{
u ∈ Eφ(Ω) : ∀|α| ≤ m, Dαu ∈ Eφ(Ω)

}
.

where α = (α1, ..., αn) with non-negative integers αi, |α| = |α1|+ ...+ |αn| and Dαu denote the distribu-
tional derivatives. The space WmLφ(Ω) is called the Musielak Orlicz Sobolev space.

Let
ρφ,Ω(u) =

∑
|α|≤m

ρφ,Ω

(
Dαu

)
and ∥u∥mφ,Ω = inf

{
λ > 0 : ρφ,Ω

(u
λ

)
≤ 1
}

for u ∈ WmLφ(Ω), these functionals are a convex modular and a norm on WmLφ(Ω), respectively, and

the pair
(
WmLφ(Ω), ∥∥mφ,Ω

)
is a Banach space if φ satisfies the following condition [19]:

there exist a constant c0 > 0 such that inf
x∈Ω

φ(x, 1) ≥ c0. (2.3)

The space WmLφ(Ω) will always be identified to a subspace of the product
∏

|α|≤m Lφ(Ω) = ΠLφ,

this subspace is σ(ΠLφ,ΠEφ) closed.
The space Wm

0 Lφ(Ω) is defined as the σ(ΠLφ,ΠEφ) closure of D(Ω) in WmLφ(Ω). and the space
Wm

0 Eφ(Ω) as the (norm) closure of the Schwartz space D(Ω) in WmLφ(Ω).
Let Wm

0 Lφ(Ω) be the σ(ΠLφ,ΠEφ) closure of D(Ω) in WmLφ(Ω).
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The following spaces of distributions will also be used:

W−mLφ(Ω) =

{
f ∈ D′(Ω); f =

∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Lφ(Ω)

}
.

and

W−mEφ(Ω) =

{
f ∈ D′(Ω); f =

∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Eφ(Ω)

}
.

We say that a sequence of functions un ∈ WmLφ(Ω) is modular convergent to u ∈ WmLφ(Ω) if there
exists a constant k > 0 such that

lim
n→∞

ρφ,Ω

(un − u

k

)
= 0.

For φ and its complementary function φ, the following inequality is called the Young’s inequality [19]:

ts ≤ φ(x, t) + φ(x, s), ∀t, s ≥ 0, x ∈ Ω. (2.4)

This inequality implies that
∥|u|∥φ,Ω ≤ ρφ,Ω(u) + 1. (2.5)

In Lφ(Ω) we have the relation between the norm and the modular

∥u∥φ,Ω ≤ ρφ,Ω(u) if ∥u∥φ,Ω > 1. (2.6)

∥u∥φ,Ω ≥ ρφ,Ω(u) if ∥u∥φ,Ω ≤ 1. (2.7)

For two complementary Musielak Orlicz functions φ and φ, let u ∈ Lφ(Ω) and v ∈ Lφ(Ω), then we
have the Hölder inequality [19] ∣∣∣∣∫

Ω

u(x)v(x) dx

∣∣∣∣ ≤ ∥u∥φ,Ω∥|v|∥φ,Ω. (2.8)

3. Auxiliary Results

This subsection is devoted to some auxiliary lemmas and key inequalities used later in the prove of
our results.

Lemma 3.1 [5] Let Ω be a bounded Lipschitz domain of RN (N ≥ 2) and let φ be a Musielak function
satisfying the log-Hölder continuity such that

φ(x, 1) ≤ c1 a.e in Ω for some c1 > 0. (3.1)

Then D(Ω) is dense in Lφ(Ω) and in W 1
0Lφ(Ω) for the modular convergence.

Remark 3.1 Note that if lim
t→∞

inf
x∈Ω

φ(x, t)

t
= ∞, then (3.1) holds.

Example 3.1 Let p ∈ P(Ω) a bounded variable exponent on Ω, such that there exist a constant A > 0
such that for all points x, y ∈ Ω with |x− y| < 1

2 , we have the inequality

|p(x)− p(y)| ≤ A

log
(

1
|x−y|

)
We can verify that the Musielak function defined by φ(x, t) = tp(x) log(1 + t), satisfies the conditions

of Lemma 3.1.

Consequently, the action of a distribution S in W−1Lφ(Ω) on an element u of W 1
0Lφ(Ω) is well defined.

It will be denoted by < S, u >.
The following lemma gives the modular Poincaré’s inequality in Musielak-Orlicz spaces.
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Lemma 3.2 [5] Let Ω be a bounded Lipschitz domain of RN (N ≥ 2) and let φ be a Musielak function
satisfying the conditions of lemma 3.1. Then there exist positive constants β, η and λ depending only on
Ω and φ such that ∫

Ω

φ(x, |u(x)|)dx ≤ β + η

∫
Ω

φ(x, λ|∇u(x)|)dx ∀u ∈ W 1
0Lφ(Ω). (3.2)

Corollary 3.1 [5] (Poincaré Inequality) Let Ω be a bounded Lipschitz domain of RN (N ≥ 2) and let φ
be a Musielak function satisfying the same conditions of Lemma 3.2 Then there exists a constant C > 0
such that

∥v∥φ ≤ C∥∇v∥φ ∀v ∈ W 1
0Lφ(Ω).

Lemma 3.3 [8] Let F : R −→ R be uniformly Lipschitzian, with F (0) = 0. Let φ be a Musielak–Orlicz
function and let u ∈ W 1

0Lφ(Ω). Then F (u) ∈ W 1
0Lφ(Ω). Moreover, if the set D of discontinuity points

of F ′ is finite, we have

∂

∂xi
F (u) =

{
F ′(u) ∂u

∂xi
a.e in {x ∈ Ω : u(x) ∈ D}

0 a.e in {x ∈ Ω : u(x) ̸∈ D}.

Lemma 3.4 Let un, u ∈ Lφ(Ω). If un → u with respect to the modular convergence, then un → u for
σ(Lφ(Ω), Lφ(Ω)).

Proof. Let λ > 0 be such that

∫
Ω

φ(x,
un − u

λ
)dx → 0. Thus, for a subsequence, un → u a.e. in Ω. Take

v ∈ Lφ(Ω). Multiplying v by a suitable constant, we can assume λv ∈ Lφ(Ω). By young’s inequality,

|(un − u)v| ≤ φ(x,
un − u

λ
) + φ(x, λv),

which implies, by Vitali’s theorem, that

∫
Ω

|(un − u)v|dx → 0.

Definition 3.1 Let Ω be an open subset of RN . We say that Ω has the segment property if there exist
a locally finite open covering {Oi} of the boundary ∂Ω of Ω and corresponding vectors {yi} such that if
x ∈ Ω ∩Oi for some i, then x+ tyi ∈ Ω for 0 < t < 1.

Lemma 3.5 [7] Suppose that Ω satisfies the segment property and let u ∈ W 1
0Lφ(Ω). Then, there exists

a sequence (un) ⊂ D(Ω) such that

un → u for modular convergence in W 1
0Lφ(Ω).

Furthermore, if u ∈ W 1
0Lφ(Ω) ∩ L∞(Ω) then ||un||∞ ≤ (N + 1)||u||∞.

Lemma 3.6 [9] Let Ω be an open bounded subset of RN satisfying the segment property. If u ∈
(W 1

0Lφ(Ω))
N then ∫

Ω

div u dx = 0.

Lemma 3.7 Let (fn) , f ∈ L1(Ω) such that
i) fn ≥ 0 a.e in Ω,
ii) fn −→ f a.e in Ω,
iii)

∫
Ω
fn(x)dx −→

∫
Ω
f(x)dx,

then fn −→ f strongly in L1(Ω).
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Lemma 3.8 (The Nemytskii Operator) Let Ω be an open subset of RN with finite measure and let φ and
φ be two Musielak-Orlicz functions. Let f : Ω×Rp −→ Rq be a Carathéodory function such that for a.e.
x ∈ Ω and all s ∈ Rp :

|f(x, s)| ≤ c(x) + k1φ
−1
x φ(x, k2|s|). (3.3)

where k1 and k2 are real positives constants and c(.) ∈ Eφ(Ω).
Then the Nemytskii Operator Nf defined by Nf (u)(x) = f(x, u(x)) is continuous from(

P(Eφ(Ω),
1

k2
)

)p

=
∏{

u ∈ Lφ(Ω) : d(u,Eφ(Ω)) <
1

k2

}
.

into (Lφ(Ω))
q for the modular convergence.

Furthermore if c(·) ∈ Eγ(Ω) and γ ≺≺ φ then Nf is strongly continuous from

(
P(Eφ(Ω),

1
k2
)

)p

to

(Eγ(Ω))
q.

4. Assumptions and Main Result

Throughout the paper, Ω will be a bounded Lipschitz subset of RN N ≥ 2, and let φ and γ two
Musielak–Orlicz functions such that φ satisfies the conditions of Lemma 3.2 and γ ≺≺ φ.

Let A : D(A) ⊂ W 1
0Lφ(Ω) −→ W−1Lφ(Ω) be a mapping given by

A(u) = − div a(x, u,∇u),

where φ is the Musielak–Orlicz function complementary to φ and a : Ω×R×RN −→ RN is a Carathéodory
function satisfying, for a.e. x ∈ Ω and for all s ∈ R and all ξ, ξ′ ∈ RN , ξ ̸= ξ′:

|a(x, s, ξ)| ≤ k1

(
c(x) + φ−1

x γ(x, k2|s|) + φ−1
x φ(x, k3|ξ|)

)
, (4.1)

(
a(x, s, ξ)− a(x, s, ξ′)

)
(ξ − ξ′) > 0, (4.2)

a(x, s, ξ).ξ ≥ αφ(x, |ξ|), (4.3)

where c(.) belongs to Eφ(Ω), c(.) ≥ 0 and α, ki ∈ R∗
+. for i = 1, 2, 3.

Furthermore, let g(x, s, ξ) : Ω × R × RN −→ R be a Caratheodory function such that for a.e. x ∈ Ω
and for all s ∈ R, ξ ∈ RN , satisfying the following conditions

|g(x, s, ξ)| ≤ b(|s|)(d(x) + φ(x, |ξ|)) (4.4)

g(x, s, ξ)s ≥ 0, (4.5)

where b : R → R+is a continuous and increasing function while d is a given nonnegative function in
L1(Ω).

The right–hand side of (P) and Φ : R → RN , are assumed to satisfy

Φ ∈ C0
(
R,RN

)
, (4.6)

f ∈ L1(Ω) and F ∈ (Eφ(Ω))
N . (4.7)

Note that no growth hypothesis is assumed on the function Φ, which implies that the term −div(Φ(u))
may be meaningless, even as a distribution.

Let us define the truncation Tk : R → R at height k > 0 by

Tk(s) =

{
s if |s| ≤ k,

k s
|s| if |s| > k.



8 A. TALHA

Definition 4.1 A measurable function u : Ω → R is called renormalized solution of (P) if Tk(u) ∈
W 1

0Lφ(Ω), a (x, Tk(u),∇Tk(u)) ∈ (Lφ(Ω))
N
,

lim
m→+∞

∫
{x∈Ω:m≤|u(x)|≤m+1}

a(x, u,∇u)∇u dx = 0,

and  − div a(x, u,∇u)h(u)− div(Φ(u)h(u)) + h′(u)Φ(u)∇u
+g(x, u,∇u)h(u) = fh(u)− div(Fh(u)) + h′(u)F∇u in D′(Ω),
for every h ∈ C1

c (R).
(4.8)

The aim of this paper is to prove the following existence result:

Theorem 4.1 Suppose that assumptions (4.1)–(4.7) are fulfilled. Then, problem (P) has at least one
renormalized solution.

5. Proof of the Main Result

Step 1: Approximate problem.

For n ∈ N∗, let fn be regular functions which strongly converge to f in L1(Ω) such that ||fn||1 ≤ c
for some constant c and Φn is a Lipschitz continuous bounded function from R into RN and set Φn(s) =

Φ(Tn(s)) and gn(x, s, ξ) =
g(x,s,ξ)

1+ 1
n |g(x,s,ξ)| .

Consider the approximate problem:

(Pn)

{
un ∈ W 1

0Lφ(Ω),

− div a (x, un,∇un)− div Φn (un) + gn (x, un,∇un) = fn − divF in D′(Ω).

For fixed n > 0, it’s obvious to observe that gn(x, s, ξ)ξ ≥ 0, |gn(x, s, ξ)| ≤ |g(x, s, ξ)| and |gn(x, s, ξ)| ≤
n, Since gn is bounded for any fixed n, as a consequence, proving of a weak solution un ∈ W 1

0Lφ(Ω) of
(Pn) is an easy task (see e.g. [7, Theorem 8], [15, Proposition 1]).

Step 2 : A priori estimates

Taking un as test function in (Pn), we get∫
Ω

a (x, un,∇un) · ∇undx+

∫
Ω

Φn (un) · ∇undx

+

∫
Ω

gn (x, un,∇un)undx =

∫
Ω

fnundx+

∫
Ω

F.∇undx.

(5.1)

The Liptschitz character of Φn, Stokes formula together with the boundary condition un = 0 on ∂Ω,
make it possible to obtain ∫

Ω

Φn(u) · ∇undx = 0. (5.2)

On the other hand, we have∫
Ω

F · ∇undx =

∫
Ω

2

α
F · α

2
∇undx

≤
∫
Ω

φ

(
x,

2

α
|F |
)
dx+

α

2

∫
Ω

φ (x, |∇un|) dx.
(5.3)

Since gn (x, un,∇un)un ≥ 0, we obtain from (5.1)∣∣∣∣∫
Ω

a (x, un,∇un) · ∇undx

∣∣∣∣ ≤ C1 +
α

2

∫
Ω

φ (x, |∇Tk (un)|) dx. (5.4)
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Thanks to (4.3), we have ∫
Ω

φ (x, |∇Tk (un)|) dx ≤ c1 + c2k. (5.5)

On the other hand we have ∫
Ω

gn (x, un,∇un)undx ≤ C3. (5.6)

Now, choosing v = (1/λ) |Tk (un)| in (3.2) we obtain∫
Ω

φ

(
x,

1

λ
|Tk (un)|

)
dx ≤ β + η

∫
Ω

φ (x, |∇Tk (un)|) dx ≤ c3 + c4k, (5.7)

then

meas {|un| > k} ≤ 1

inf
x∈Ω

φ
(
x, k

λ

) ∫
{|un|>k}

φ

(
x,

k

λ

)
dx

≤ 1

inf
x∈Ω

φ
(
x, k

λ

) ∫
Ω

φ

(
x,

1

λ
|Tk (un)|

)
dx

≤ c3 + c4k

inf
x∈Ω

φ
(
x, k

λ

) ∀n, ∀k > 0,

(5.8)

which implies, for any ν > 0,

meas {|un − um| > ν} ≤ meas {|un| > k}+meas {|um| > k}+meas {|Tk (un)− Tk (um)| > ν}

and so that

meas {|un − um| > ν} ≤ 2 (c3 + c4k)

inf
x∈Ω

φ
(
x, k

λ

) +meas {|Tk (un)− Tk (um)| > ν} . (5.9)

From (5.5), we deduce that Tk (un) is bounded in W 1
0Lφ(Ω) and we can assume that Tk (un) is a

Cauchy sequence in measure in Ω.

Let ε > 0, by using (5.9) and the fact that 2(c3+c4k)

inf
x∈Ω

φ(x, kλ )
→ 0 as k → +∞ there exists k(ε) > 0 such that

meas {|un − um| > ν} ≤ ε, for all n,m ≥ n0(k(ε), ν).

This proves that (un) is a Cauchy sequence in measure in Ω, thus, un converges almost everywhere
to some measurable function u. Finally, for all k > 0, we have for a subsequence{

Tk (un) ⇀ Tk(u) weakly in W 1
0Lφ(Ω) for σ (ΠLφ,ΠEφ)

Tk (un) → Tk(u) strongly in Eφ(Ω) and a.e. in Ω.
(5.10)

Step 3: Boundedness of
(
a(x, Tk(un),∇Tk(un))

)
n

Let ϑ ∈ (Eφ(Ω))
N

such that ∥ϑ∥φ,Ω = 1. Thanks to (4.2), we can write,∫
Ω

[
a (x, Tk (un) ,∇Tk (un))− a

(
x, Tk (un) ,

ϑ

k3

)][
∇Tk (un)−

ϑ

k3

]
dx ≥ 0,
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hence ∫
Ω

1

k3
a (x, Tk (un) ,∇Tk (un))ϑdx

≤
∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx

−
∫
Ω

a

(
x, Tk (un) ,

ϑ

k3

)(
∇Tk (un)−

ϑ

k3

)
dx

≤ kC1 + C2 −
∫
Ω

a

(
x, Tk (un) ,

ϑ

k3

)
∇Tk (un) dx

+
1

k3

∫
Ω

a

(
x, Tk (un) ,

ϑ

k3

)
ϑdx.

By using Young’s inequality in the last two terms of the last side and (5.5) we get∫
Ω

a (x, Tk (un) ,∇Tk (un))ϑdx

≤ (kC1 + C2) k3 + 3k1 (1 + k3)

∫
Ω

φ

x,

∣∣∣a(x, Tk (un) ,
ϑ
k3

)∣∣∣
3k1

 dx

+ 3k1k3

∫
Ω

φ (x, |∇Tk (un)|) dx+ 3k1

∫
Ω

φ(x, |ϑ|)dx

≤ (kC1 + C2) k3 + 3k1k3 (kC1 + C2) + 3k1

+ 3k1 (1 + k3)

∫
Ω

φ

x,

∣∣∣a(x, Tk (un) ,
ϑ
k3

)∣∣∣
3k1

dx.

From (4.1) and the convexity of φ, it follows that

φ

x,

∣∣∣a(x, Tk (un) ,
ϑ
k3

)∣∣∣
3k1

 ≤ 1

3
(φ(x, d(x)) + γ (x, k2 |Tk (un)|) + φ(x, |ϑ|)) .

By Remark 2.1, there exists a function h ∈ L1(Ω) satisfying γ (x, k2 |Tk (un)|) ≤ γ (x, k2k) ≤ φ(x, 1)+
h(x). Integrating over Ω then yields

∫
Ω

φ

x,

∣∣∣a(x, Tk (un) ,
v
k3

)∣∣∣
3k1

 dx

≤ 1

3

(∫
Ω

φ(x, c(x))dx+

∫
Ω

h(x)dx

+

∫
Ω

φ(x, 1)dx+

∫
Ω

φ(x, |ϑ|)dx
)

≤ c′k,

where c′k is a constant depending on k. Thus,∫
Ω

a (x, Tk (un) ,∇Tk (un))ϑdx ≤ c′k, ∀ϑ ∈ (Eφ(Ω))
N

with ∥ϑ∥φ,Ω = 1,

and thus ∥a (x, Tk (un) ,∇Tk (un))∥φ,Ω ≤ c′k, which implies that,

(a (x, Tk (un) ,∇Tk (un)))n is bounded in Lφ(Ω)
N . (5.11)
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Step 4: Renormalization identity for the approximate solutions

By testing the approximate problem (Pn) with the function θm(r) = Tm+1(r)− Tm(r) for m ≥ 1, we
obtain ∫

Ω

a (x, un,∇un)∇θm (un) dx+

∫
Ω

Φn (un)∇θm (un) dx

+

∫
Ω

gn (x, un,∇un) θm (un) dx =

∫
Ω

fnθm (un) dx+

∫
Ω

F.∇θm (un) dx.

(5.12)

Let us consider the functions

ϕ(t) = Φn(t)χ{s∈R:m≤|s|≤m+1}(t),

ϕ̃(t) =

∫ t

0

ϕ(τ) dτ.

By Lemma 3.3, it follows that ϕ̃(un) ∈
(
W 1

0Lφ(Ω)
)N

. Then, applying Lemma 3.6, we obtain∫
Ω

Φn(un)∇θm(un) dx =

∫
Ω

Φn(un)χ{s∈R:m≤|s|≤m+1}(un)∇un dx

=

∫
Ω

ϕ(un)∇un dx =

∫
Ω

div(ϕ̃(un)) dx = 0.

Using the sign condition (4.5) we have gn (x, un,∇un) θm (un) ≥ 0 a.e. in Ω, and knowing that
∇θm (un) = ∇unχ{m≤|un|≤m+1} a.e. in Ω, we get∫

{m≤|un|≤m+1}
a(x, un,∇un)∇undx ≤ ⟨fn, θm(un)⟩+

∫
{m≤|un|≤m+1}

F∇undx.

By Holder’s inequality and (5.5) we have∫
{m≤|un|≤m+1}

a(x, un,∇un)∇undx ≤ ⟨fn, θm(un)⟩+ C4

∫
{m≤|un|≤m+1}

φ(x, |F |)dx.

It is straightforward to verify that

∥∇θm(un)∥φ,Ω ≤ ∥∇un∥φ,Ω .

Then, by applying (5.5) and (5.10), we deduce that

θm(un) ⇀ θm(u) weakly in W 1
0Lφ(Ω) with respect to σ (ΠLφ(Ω),ΠEφ(Ω)) .

As a consequence, we obtain the estimate

lim
n→∞

∫
{m≤|un|≤m+1}

a(x, un,∇un) · ∇un dx ≤ ⟨f, θm(u)⟩ .

Moreover, since θm(u) ⇀ 0 weakly in W 1
0Lφ(Ω) with respect to σ (ΠLφ(Ω),ΠEφ(Ω)), it follows that

lim
m→∞

lim
n→∞

∫
{m≤|un|≤m+1}

a(x, un,∇un) · ∇un dx ≤ lim
m→∞

⟨f, θm(u)⟩ = 0.

Finally, by invoking (4.3), we conclude that

lim
m→∞

lim
n→∞

∫
{m≤|un|≤m+1}

a(x, un,∇un) · ∇un dx = 0. (5.13)
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Step 5: Almost everywhere convergence of the gradients

In this subsubsection we pose ϕ(s) = seλs
2

with λ =
(

b(k)
2α

)2
. One can easily verify that for all s ∈ R

ϕ′(s)− b(k)

α
|ϕ(s)| ≥ 1

2
. (5.14)

For m ≥ k, we define the function ρm(s) by

ρm(s) =

 1 if |s| ≤ m
m+ 1− |s| if m ≤ |s| ≤ m+ 1
0 if |s| ≥ m+ 1.

Let {vj}j ⊂ D(Ω) such that vj → u in W 1
0Lφ(Ω) for the modular convergence and a.e. in Ω. And let

us define the following functions

θjn = Tk(un)− Tk(vj), θ
j = Tk(u)− Tk(vj) and zjn,m = ϕ(θjn)ρm(un).

Testing the problem (Pn) with the function zjn,m, we get∫
Ω

a(x, un,∇un)∇zjn,mdx+

∫
Ω

Φn(un)∇ϕ
(
Tk(un)− Tk(vj)

)
ρm(un)dx

+

∫
{m≤|un|≤m+1}

Φn(un)∇unρ
′
m(un)ϕ

(
Tk(un)− Tk(vj)

)
dx

+

∫
Ω

gn(x, un,∇un)z
j
n,mdx =

∫
Ω

fnz
j
n,mdx+

∫
Ω

F∇zjn,mdx.

(5.15)

Denote by ϵi(n, j), i = 0, 1, 2, ..., various sequences of real numbers which tend to 0 when n and
−→ ∞, i.e.

lim
j→+∞

lim
n→+∞

ϵi(n, j) = 0.

Thanks to (5.5) and (5.10), we have zjn,m → ϕ
(
θj
)
ρm(u) weakly in W 1

0Lφ(Ω) as n → ∞ for
σ (ΠLφ,ΠEφ), then ∫

Ω

fnz
j
n,mdx →

∫
Ω

fϕ
(
θj
)
ρm(u)dx as n → ∞,

using the modular convergence of vj , we get θj → 0 as j → ∞, so that∫
Ω

fnz
j
n,mdx = ε0(n, j).

Also, we have

lim
n→+∞

∫
Ω

F.∇zjn,mdx =

∫
Ω

F.∇θjϕ′ (θj) ρm(u)dx+

∫
Ω

F.∇uϕ
(
θj
)
ρ′m(u)dx,

so that, by Lebesgue’s theorem one has

lim
j→+∞

∫
Ω

F.∇uϕ
(
θj
)
ρ′m(u)dx = 0.

Assume that there exists λ > 0 such that φ
(
x,

|∇vj−∇u|
λ

)
converges strongly to zero in L1(Ω) as

j → +∞, and that φ
(
x, |∇u|

λ

)
belongs to L1(Ω). Under these conditions, the convexity of the Musielak

function φ allows us to conclude that

φ

(
x,

∣∣∇Tk (vj)ϕ
′ (θj) ρm(u)−∇Tk(u)ρm(u)

∣∣
4λϕ′(2k)

)

≤ 1

4
φ

(
x,

|∇vj −∇u|
λ

)
+

1

4

(
1 +

1

ϕ′(2k)

)
φ

(
x,

|∇u|
λ

)
,
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then, using modular convergence of {∇vj} in Lφ(Ω)
N and Vitali’s theorem, yields

∇Tk (vj)ϕ
′ (θj) ρm(u) → ∇Tk(u)ρm(u) in (Lφ(Ω))

N , as j → +∞,

for the modular convergence, and then

lim
j→+∞

∫
Ω

F.∇Tk(u)ϕ
′ (θj) ρm(u)dx =

∫
Ω

F.∇Tk(u)ρm(u)dx,

we have proved that ∫
Ω

F.∇zjn,mdx = ϵ1(n, j).

It is straightforward to observe that, due to the modular convergence of the sequence {vj}j , one
obtains

lim
j→+∞

lim
n→+∞

∫
{m≤|un|≤m+1}

Φn(un)∇unρ
′
m(un)ϕ

(
Tk(un)− Tk(vj)

)
dx = 0.

As for the third term on the left-hand side of (5.15), we can express it as∫
Ω

Φn(un)∇ϕ
(
Tk(un)− Tk(vj)

)
ρm(un)dx

=

∫
Ω

Φn(un)∇Tk(un)ϕ
′(θjn)ρm(un)dx−

∫
Ω

Φn(un)∇Tk(vj)ϕ
′(θjn)ρm(un)dx.

Firstly, we have

lim
j→+∞

lim
n→+∞

∫
Ω

Φn(un)∇Tk(un)ϕ
′(θjn)ρm(un)dx = 0.

According to (5.10), it holds that

Φn(un)ϕ
′(θjn) ρm(un) → Φ(u)ϕ′(θj) ρm(u),

almost every where in Ω as n → +∞. In addition, it can be shown that

∥Φn(un)ϕ
′(θjn)ρm(un)∥φ ≤ φ(x, cmϕ′(2k))|Ω|+ 1,

where cm = max|t|≤m+1 Φ(t). Applying [ [18], Theorem 14.6] we get

lim
n→+∞

∫
Ω

Φn(un)∇Tk(vj)ϕ
′(θjn)ρm(un)dx =

∫
Ω

Φ(u)∇Tk(vj)ϕ
′(θj)ρm(u)dx.

Using the modular convergence of the sequence {vj}j , it follows that

lim
j→+∞

lim
n→+∞

∫
Ω

Φn(un)∇Tk(vj)ϕ
′(θjn)ρm(un)dx =

∫
Ω

Φ(u)∇Tk(u)ρm(u)dx.

Then, thanks to Lemma 3.6 we obtain∫
Ω

Φ(u)∇Tk(u)ρm(u)dx = 0.

Therefore, we write ∫
Ω

Φn(un)∇ϕ
(
Tk(un)− Tk(vj)

)
ρm(un)dx = ϵ2(n, j).

Since gn(x, un,∇un) z
j
n,m ≥ 0 on the set {|un| > k}, and ρm(un) = 1 on {|un| ≤ k}, identity (5.15)

yields ∫
Ω

a(x, un,∇un)∇zjn,m dx+

∫
{|un|≤k}

gn(x, un,∇un)ϕ(θ
j
n) dx ≤ ϵ3(n, j). (5.16)
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We now proceed to estimate the first term on the left-hand side of (5.15) by rewriting it as∫
Ω

a(x, un,∇un)∇zjn,mdx =

∫
Ω

a(x, un,∇un)(∇Tk(un)−∇Tk(vj))ϕ
′(θjn)ρm(un)dx

+

∫
Ω

a(x, un,∇un)∇unϕ(θ
j
n)ρ

′
m(un)dx

=

∫
Ω

a(x, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(vj))ϕ
′(θjn)dx

−
∫
{|un|>k}

a(x, un,∇un)∇Tk(vj)ϕ
′(θjn)ρm(un)dx

+

∫
Ω

a(x, un,∇un)∇unϕ(θ
j
n)ρ

′
m(un)dx,

and then∫
Ω

a(x, un,∇un)∇zjn,mdx

=

∫
Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)(

∇Tk(un)−∇Tk(vj)χ
s
j

)
ϕ′(θjn)dx

+

∫
Ω

a
(
x, Tk(un),∇Tk(vj)χ

s
j

)(
∇Tk(un)−∇Tk(vj)χ

s
j

)
ϕ′(θjn)dx

−
∫
Ω\Ωs

j

a(x, Tk(un),∇Tk(un))∇Tk(vj)ϕ
′(θjn)dx

−
∫
|[un]>k)

a(x, un,∇un)∇Tk(vj)ϕ
′(θjn)ρm(un)dx

+

∫
Ω

a(x, un,∇un)∇unϕ(θ
j
n)ρ

′
m(un)dx,

(5.17)

where by χs
j , s > 0, we denote the characteristic function of the subset

Ωs
j = {x ∈ Ω : |∇Tk(vj)| ≤ s}.
By fixing m and s, we will pass to the limit in n and in j in the second, third, fourth and fifth term

on the right hand side of (5.17). For the second term, we have∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
ϕ′(θjn)dx

→
∫
Ω

a(x, Tk(u),∇Tk(vj)χ
s
j)
(
∇Tk(u)−∇Tk(vj)χ

s
j

)
ϕ′(θj)dx,

as n → +∞. According to Lemma 3.8, we have

a
(
x, Tk(un),∇Tk(vj)χ

s
j

)
ϕ′(θjn)→ a

(
x, Tk(u),∇Tk(vj)χ

s
j

)
ϕ′(θj)

strongly in (Eφ(Ω))
N as n → ∞. Moreover, from (5.5),

∇Tk(un) ⇀ ∇Tk(u)

weakly in (Lφ(Ω))
N . Let us denote by χs the characteristic function of the set Ωs = {x ∈ Ω : |∇Tk(u)| ≤

s}.
Since ∇Tk(vj)χ

s
j → ∇Tk(u)χ

s strongly in (Eφ(Ω))
N as j → +∞, it follows that∫

Ω

a
(
x, Tk(u),∇Tk(vj)χ

s
j

)
·
(
∇Tk(u)−∇Tk(vj)χ

s
j

)
ϕ′(θj) dx → 0,
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as j → ∞. Consequently, we conclude that∫
Ω

a
(
x, Tk(un),∇Tk(vj)χ

s
j

)
·
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
ϕ′(θjn) dx = ϵ4(n, j). (5.18)

We now turn to the estimation of the third term in (5.17). From (4.3), it is clear that a(x, s, 0) = 0
for almost every x ∈ Ω and all s ∈ R. Consequently, by (5.11), the sequence

(
a(x, Tk(un),∇Tk(un))

)
n
is

bounded in (Lφ(Ω))
N for every k ≥ 0.

Thus, up to a subsequence (still indexed by n), there exists a function lk ∈ (Lφ(Ω))
N such that

a(x, Tk(un),∇Tk(un)) ⇀ lk weakly in (Lφ(Ω))
N with respect to σ(ΠLφ,ΠEφ). (5.19)

Moreover, since ∇Tk(vj)χΩ\Ωs
j
∈ (Eφ(Ω))

N , we deduce that∫
Ω\Ωs

j

a(x, Tk(un),∇Tk(un)) · ∇Tk(vj)ϕ
′(θjn) dx →

∫
Ω\Ωs

j

lk · ∇Tk(vj)ϕ
′(θj) dx,

as n → +∞. The modular convergence of the sequence {vj} then implies that

−
∫
Ω\Ωs

j

lk∇Tk(vj)ϕ
′(θj)dx → −

∫
Ω\Ωs

lk∇Tk(u)dx,

as j → +∞. This, proves

−
∫
Ω\Ωs

j

a(x, Tk(un),∇Tk(un))∇Tk(vj)ϕ
′(θjn)dx = −

∫
Ω\Ωs

lk∇Tk(u)dx+ ϵ5(n, j). (5.20)

For the fourth term, we remark that ρm(un) = 0 on the subset {|un| ≥ m+ 1}, then we obtain

−
∫
{|un|>k}

a(x, un,∇un)∇Tk(vj))ϕ
′(θjn)ρm(un)dx

= −
∫
{|un|>k}

a(x, Tm+1(un),∇Tm+1(un))∇Tk(vj)ϕ
′(θjn)ρm(un)dx.

Since

−
∫
{|un|>k}

a(x, Tm+1(un),∇Tm+1(un))∇Tk(vj)ϕ
′(θjn)ρm(un)dx

= −
∫
{|u|>k}

lm+1∇Tk(u)ρm(u)dx+ ϵ5(n, j),

observing that ∇Tk(u) = 0 on the subset {|u| > k}, one has

−
∫
{|un|>k}

a(x, un,∇un)∇Tk(vj)ϕ
′(θjn)ρm(un)dx = ϵ6(n, j). (5.21)

For the last term of (5.17) we obtain

[
∣∣∣ ∫

Ω

a(x, un,∇un)∇unϕ(θ
j
n)ρ

′
m(un)dx

∣∣∣
=
∣∣∣ ∫

{m≤|up|≤m+1}
a(x, un,∇un)∇unϕ(θ

j
n)ρ

′
m(un)dx

∣∣∣
≤ ϕ(2k)

∫
{m≤|un|≤m+1}

a(x, un,∇un)∇undx.
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To estimate the last term of the previous inequality, we use (T1(un − Tm(un)) ∈ W 1
0Lφ(Ω)) as test

function in (Pn), to get∫
{m≤|un|≤m+1}

a(x, un,∇un)∇undx+

∫
{m≤|un|≤m+1}

Φn(un)∇undx

+

∫
{|un|≥m}

gn(x, un,∇un)T1(un − Tm(un))dx = ⟨fn, T1(un − Tm(un))⟩

+

∫
{m≤|un|≤m+1}

F∇undx.

Then, applying Lemma 3.6, we obtain∫
{m≤|un|≤m+1}

Φn(un)∇undx = 0.

Observing that gn(x, un,∇un)T1(un − Tm(un)) ≥ 0 on the set {|un| ≥ m}, and invoking Young’s
inequality, we derive the estimate∫

{m≤|un|≤m+1}
a(x, un,∇un) · ∇un dx ≤⟨fn, T1(un − Tm(un))⟩

+

∫
{m≤|un|≤m+1}

φ(x, |F |) dx.

Consequently, we conclude that∣∣∣ ∫
Ω

a(x, un,∇un)∇unϕ(θ
j
n)ρ

′
m(un)dx

∣∣∣
≤ 2ϕ(2k)

(∫
{m≤|un|}

|fn|dx+

∫
{m≤|un|≤m+1}

φ(x, |F |)dx
)
.

(5.22)

Combining the results from (5.18), (5.20), (5.21), and (5.22), we arrive at∫
Ω

a(x, un,∇un)∇zjn,mdx

≥
∫
Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)

× (∇Tk(un)−∇Tk(vj)χ
s
j

)
ϕ′(θjn)dx

− αϕ(2k)
(∫

{m≤|un|}
|fn|dx+

∫
{m≤|un|≤m+1}

φ(x, |F |)dx
)

−
∫
Ω\Ωs

lk · ∇Tk(u)dx+ ϵ7(n, j).

(5.23)

We now focus on the second term on the left-hand side of (5.16). It holds that∣∣∣ ∫
{|up|≤k}

gn(x, un,∇un)ϕ(θ
j
n)dx

∣∣∣
=
∣∣∣ ∫

{|un|≤k}
gn(x, Tk(un),∇Tk(un))ϕ(θ

j
n)dx

∣∣∣
≤ b(k)

∫
Ω

M(|∇Tk(un)|)|ϕ(θjn)|dx+ b(k)

∫
Ω

d(x)|ϕ(θjn)|dx

≤ b(k)

α

∫
Ω

an(x, Tk(un),∇Tk(un))∇Tk(un)|ϕ(θjn)|dx+ ϵ8(n, j).



Non-Coercive Elliptic Problems ... 17

Then ∣∣∣ ∫
{|un|≤k}

gn(x, un,∇un)ϕ(θ
j
n)dx

∣∣∣
≤ b(k)

α

∫
Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)

×
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
|ϕ(θjn)|dx

+
b(k)

α

∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
|ϕ(θjn)|dx

+
b(k)

α

∫
Ω

an(x, Tk(un),∇Tk(un))∇Tk(vj)χ
s
j |ϕ(θjn)|dx+ ϵ9(n, j).

(5.24)

We proceed as above to get

b(k)

α

∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
|ϕ(θjn)|dx = ϵ9(n, j)

and

b(k)

α

∫
Ω

an(x, Tk(un),∇Tk(un))∇Tk(vj)χ
s
j |ϕ(θjn)|dx = ϵ10(n, j).

Hence, we have

∣∣∣ ∫
{|un|≤k}

gn(x, un,∇un)ϕ(θ
j
n)dx

∣∣∣
≤ b(k)

α

∫
Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)

(
∇Tk(un)−∇Tk(vj)χ

s
j

)
|ϕ(θjn)|dx+ ϵ11(n, j).

(5.25)

From (5.16), (5.23) and (5.25), we get

∫
Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)(
∇Tk(un)−∇Tk(vj)χ

s
j

)
(
ϕ′(θjn)−

b(k)
α |ϕ(θjn)|

)
dx

≤
∫
Ω\Ωs

lk∇Tk(u)dx+ αϕ(2k)
(∫

{m≤|un|}
|fn|dx+

∫
{m≤|un|≤m+1}

φ(x, |F |)dx
)

+ ϵ12(n, j).

By (5.14), we have

∫
Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
)(
∇Tk(un)−∇Tk(vj)χ

s
j

)
dx

≤ 2

∫
Ω\Ωs

lk∇Tk(u)dx+ 4αϕ(2k)
(∫

{m≤|un|}
|fn|dx+

∫
{m≤|un|≤m+1}

φ(x, |F |)dx
)

+ ϵ12(n, j).

(5.26)
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On the other hand, we can write∫
Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χ
s)) (∇Tk(un)−∇Tk(u)χ

s) dx

=

∫
Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
) (

∇Tk(un)−∇Tk(vj)χ
s
j

)
dx

+

∫
Ω

a(x, Tk(un),∇Tk(un))
(
∇Tk(vj)χ

s
j −∇Tk(u)χ

s
)
dx

−
∫
Ω

a(x, Tk(un),∇Tk(u)χ
s) (∇Tk(un)−∇Tk(u)χ

s) dx

+

∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
dx.

We will first let n → ∞, followed by j → ∞, in the last three terms on the right-hand side of the
above identity. Proceeding analogously to the arguments in (5.17) and (5.24), we deduce that∫

Ω

a(x, Tk(un),∇Tk(un))
(
∇Tk(vj)χ

s
j −∇Tk(u)χ

s
)
dx = ϵ13(n, j),∫

Ω

a(x, Tk(un),∇Tk(u)χ
s) (∇Tk(un)−∇Tk(u)χ

s) dx = ϵ14(n, j),∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j)
(
∇Tk(un)−∇Tk(vj)χ

s
j

)
dx = ϵ15(n, j).

(5.27)

So that∫
Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χ
s)) (∇Tk(un)−∇Tk(u)χ

s) dx

=

∫
Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
) (

∇Tk(un)−∇Tk(vj)χ
s
j

)
dx

+ ϵ16(n, j).

(5.28)

Let r ≤ s. Making use of (4.2), (5.26), and (5.28), we can express

0 ≤
∫
Ωr

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))) (∇Tk(un)−∇Tk(u)) dx

≤
∫
Ωs

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))) (∇Tk(un)−∇Tk(u)) dx

=

∫
Ωs

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χ
s)) (∇Tk(un)−∇Tk(u)χ

s) dx

≤
∫
Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χ
s)) (∇Tk(un)−∇Tk(u)χ

s) dx

=

∫
Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ

s
j)
) (

∇Tk(un)−∇Tk(vj)χ
s
j

)
dx

+ ϵ15(n, j)

≤ 2

∫
Ω\Ωs

lk∇Tk(u) dx+ 2αϕ(2k)

(∫
{m≤|un|}

|fn| dx+

∫
{m≤|un|≤m+1}

φ(x, |F |) dx

)
+ ϵ17(n, j).

By passing to the limit in n and then in j one has,

0 ≤ lim sup
n→+∞

∫
Ωr

(a (x, Tk (un) ,∇Tk (un))− a (x, Tk (un) ,∇Tk(u))) (∇Tk (un)−∇Tk(u)) dx

≤ 2

∫
Ω\Ωs

lk∇Tk(u)dx+ 4αϕ(2k)

(∫
{m≤|un|}

|f |dx+

∫
{m≤|un|≤m+1}

φ(x, |F |)dx

)
.
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Letting s → +∞ and then m → +∞, taking into account that lk∇Tk(u) ∈ L1(Ω), f ∈ L1(Ω), |F | ∈
(Eφ(Ω))

N
, |Ω\Ωs| → 0, and |{m ≤ |u| ≤ m+ 1}| → 0, one has∫

Ωr

(a (x, Tk (un) ,∇Tk (un))− a (x, Tk (un) ,∇Tk(u))) (∇Tk (un)−∇Tk(u)) dx

tends to 0 as n → +∞. As in [16], we deduce that there exists a subsequence of {un} still indexed by n
such that

∇un → ∇u a. e. in Ω. (5.29)

Thus, by taking account that (5.11) and (5.10) we can apply [ [18], Theorem 14.6] to obtain

a(x, u,∇u) ∈ (Lφ(Ω))
N

and

a (x, un,∇un)) ⇀ a(x, u,∇u) weakly in (Lφ(Ω))
N

for σ (ΠLφ,ΠEφ) . (5.30)

Step 6: Modular convergence of the truncations.

From inequality (5.26), we obtain∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx

≤
∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (vj)χ
s
jdx

+

∫
Ω

a
(
x, Tk (un) ,∇Tk (vj)χ

s
j

) (
∇Tk (un)−∇Tk (vj)χ

s
j

)
dx

+ 2αϕ(2k)

(∫
{m≤|un|}

|fn| dx+

∫
{m≤|un|≤m+1}

φ(x, |F |)dx

)

+ 2

∫
Ω\Ωs

a (x, Tk(u),∇Tk(u))∇Tk(u)dx+ ϵ12(n, j),

which implies, by using (5.27), that∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx

≤
∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (vj)χ
s
jdx

+ 2αϕ(2k)

(∫
{m≤|un|}

|fn| dx+

∫
{m≤|un|≤m+1}

φ(x, |F |)dx

)

+ 2

∫
Ω\Ωs

a (x, Tk(u),∇Tk(u))∇Tk(u)dx+ ϵ18(n, j).

The passage to the limitto the limit in n on both sides of this inequality and using (5.30) implies that

lim sup
n→+∞

∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx

≤
∫
Ω

a (x, Tk(u),∇Tk(u))∇Tk (vj)χ
s
jdx

+ 2αϕ(2k)

(∫
{m≤|u|}

|f |dx+

∫
{m≤|u|≤m+1}

φ(x, |F |)dx

)

+ 2

∫
Ω\Ωs

a (x, Tk(u),∇Tk(u))∇Tk(u)dx,
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and by passing to the limit in j we obtain

lim sup
n→+∞

∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx

≤
∫
Ω

a (x, Tk(u),∇Tk(u))∇Tk(u)χ
sdx

+ 2αϕ(2k)

(∫
{m≤|u|}

|f |dx+

∫
{m≤|u|≤m+1}

φ(x, |F |)dx

)

+ 2

∫
Ω\Ωs

a (x, Tk(u),∇Tk(u))∇Tk(u)dx.

Letting s and then m → +∞, one has

lim sup
n→+∞

∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx ≤
∫
Ω

a (x, Tk(u),∇Tk(u))∇Tk(u)dx.

Now, thinks to (4.3), (5.5), (5.29) and applying Fatou’s lemma, we have∫
Ω

a (x, Tk(u),∇Tk(u))∇Tk(u)dx ≤ lim inf
n→∞

∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx.

It follows that

lim
n→+∞

∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx =

∫
Ω

a (x, Tk(u),∇Tk(u))∇Tk(u)dx.

By Lemma 3.7 we conclude that for every k > 0

a (x, Tk (un) ,∇Tk (un))∇Tk (un) → a (x, Tk(u),∇Tk(u))∇Tk(u) strongly in L1(Ω). (5.31)

The convexity of the Musielak function φ and (4.3) allow us to have

φ

(
x,

|∇Tk (un)−∇Tk(u)|
2

)
≤ 1

2α
a (x, Tk (un) ,∇Tk (un))∇Tk (un) +

1

2α
a (x, Tk(u),∇Tk(u))∇Tk(u),

so, by Vitali’s theorem one has

lim
|E|→0

sup
n

∫
E

φ

(
x,

|∇Tk (un)−∇Tk(u)|
2

)
dx = 0.

Consequently, for every k > 0

Tk (un) → Tk(u) in W 1
0Lφ(Ω) for the modular convergence. (5.32)

Step 7: Equi-integrability of the non-linearities.

We shall prove that gn (x, un,∇un) → g(x, u,∇u) strongly in L1(Ω) by using Vitali’s theorem. Since
gn (x, un,∇un) → g(x, u,∇u) a.e in Ω, by (5.29), it suffices to prove that gn (x, un,∇un) are uniformly
equi-integrable in Ω.

Let E be measurable subset of Ω and let m > 0. Using (4.3) and (4.4) we can write∫
E

|gn (x, un,∇un)| dx

=

∫
E∩{|un|≤m}

|gn (x, un,∇un)| dx+

∫
E∩{|un|>m}

|gn (x, un,∇un)| dx

≤ b(m)

∫
E

d(x)dx+ b(m)

∫
E

a (x, Tm (un) ,∇Tm (un))∇Tm (un) dx

+
1

m

∫
Ω

gn (x, un,∇un)undx.
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By (4.4) and (5.6) it follows that

0 ≤
∫
Ω

gn (x, un,∇un)undx ≤ c,

so

0 ≤ 1

m

∫
Ω

gn (x, un,∇un)undx ≤ c

m
,

then

lim
m→+∞

1

m

∫
Ω

gn (x, un,∇un)undx = 0.

Thanks to (5.31), the sequence

{a (x, Tm (un) ,∇Tm (un))∇Tm (un)}n is equi-integrable.

This fact allows us to get

lim
|E|→0

sup
n

∫
E

a (x, Tm (un) ,∇Tm (un)) · ∇Tm (un) dx = 0,

which shows that gn (x, un,∇un) is equi-integrable. Thus, Vitali’s theorem implies that g(x, u,∇u) ∈
L1(Ω) and

gn (x, un,∇un) → g(x, u,∇u) strongly in L1(Ω). (5.33)

Step 8: Renormalization identity for the solutions.

In this subsubsection, we aim to prove the following identity:

lim
m→∞

∫
{m≤|u|≤m+1}

a(x, u,∇u) · ∇u dx = 0. (5.34)

For each fixed m ≥ 0, we observe that∫
{m≤|un|≤m+1}

a(x, un,∇un) · ∇un dx

=

∫
Ω

a(x, un,∇un) · (∇Tm+1(un)−∇Tm(un)) dx

=

∫
Ω

a(x, Tm+1(un),∇Tm+1(un)) · ∇Tm+1(un) dx

−
∫
Ω

a(x, Tm(un),∇Tm(un)) · ∇Tm(un) dx.

Thanks to the convergence result established in (5.31), and taking the limit as n → ∞ for fixed m,
we obtain:

lim
n→∞

∫
{m≤|un|≤m+1}

a(x, un,∇un) · ∇un dx

=

∫
Ω

a(x, Tm+1(u),∇Tm+1(u)) · ∇Tm+1(u) dx

−
∫
Ω

a(x, Tm(u),∇Tm(u)) · ∇Tm(u) dx

=

∫
Ω

a(x, u,∇u) · (∇Tm+1(u)−∇Tm(u)) dx

=

∫
{m≤|u|≤m+1}

a(x, u,∇u) · ∇u dx.

Finally, by applying the result of (5.13) and letting m → ∞, we conclude that identity (5.34) holds.
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Step 9: Passing to the limit.

Finally, in this step thanks to (5.31) and Lemma 3.7, one hasa

a (x, un,∇un) · ∇un −→ a(x, u,∇u) · ∇u strongly in L1(Ω). (5.35)

Let h ∈ C1
c (R) and θ ∈ D(Ω). Inserting h (un) θ as test function in (Pn), we get∫

Ω

a (x, un,∇un)∇unh
′ (un) θdx+

∫
Ω

a (x, un,∇un)∇θh (un) dx

+

∫
Ω

Φn (un)∇ (h (un) θ) dx+

∫
Ω

gn (x, un,∇un)h (un) θdx

= ⟨fn, h (un) θ⟩+
∫
Ω

F∇ (h (un) θ) dx.

(5.36)

We now pass to the limit as n → +∞ in each term of the equality (5.36).
Since both h and h′ have compact support in R, there exists a real number ν > 0 such that

supp(h) ⊂ [−ν, ν] and supp(h′) ⊂ [−ν, ν].

Therefore, for any n > ν, we have

Φn(t)h(t) = Φ(Tν(t))h(t), and Φn(t)h
′(t) = Φ(Tν(t))h

′(t).

Moreover, the functions Φh and Φh′ belong to
(
C0(R) ∩ L∞(R)

)N
.

Since un ∈ W 1
0Lφ(Ω), there exists two positive constants η1, η2 such that∫

Ω

φ

(
x,

|∇un|
η1

)
dx ≤ η2.

Let τ be a positive constant such that ∥h (un) |∇θ|∥∞ ≤ τ and ∥h′ (un) θ∥∞ ≤ τ . For η large enough,
we have ∫

Ω

φ

(
x,

|∇ (h (un) θ)|
η

)
dx ≤

∫
Ω

φ

(
x,

|h (un)∇θ|+ |h′ (un) θ| |∇un|
η

)
dx

≤
∫
Ω

φ

(
x,

τ + τη1|∇un|
η1

η

)
dx

≤
∫
Ω

φ

(
x,

τ

η

)
dx+

τη1
η

∫
Ω

φ

(
x,

|∇un|
η1

)
dx

≤
∫
Ω

φ(x, 1)dx+
τη1η2
η

≤ C,

which implies that h (un) θ is bounded in W 1
0Lφ(Ω) and then we deduce that

h (un) θ ⇀ h(u)θ weakly in W 1
0Lφ(Ω) for σ (ΠLφ,ΠEφ) . (5.37)

Which give
⟨f, h (un)φ⟩ → ⟨f, h(u)φ⟩.

Let E be a measurable subset of Ω. we pose cν = max|t|≤ν Φ(t). And denoting by ∥v∥φ,Ω the Orlicz
norm of a function v ∈ Lφ(Ω). We thinking to the strengthened Hölder inequality with both Orlicz and
Luxemburg norms, we have

∥Φ (Tν (un))χE∥φ,Ω = sup
∥v∥φ,Ω≤1

∣∣∣∣∫
E

Φ (Tν (un)) vdx

∣∣∣∣
≤ cν sup

∥v∥φ,Ω≤1

∥χE∥φ,Ω ∥v∥φ,Ω

≤ cν |E|φ−1

(
x,

1

|E|

)
.
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Consequently,
lim

|E|→0
sup
n

∥Φ (Tν (un))χE∥(φ,Ω) = 0.

Then, in light of (5.10) and by applying Lemma 11.2 from [18], we deduce that

Φ (Tν (un)) → Φ(Tν(u)) strongly in (Eφ(Ω))
N
.

This, together with (5.37), enables us to pass to the limit in the third term of (5.36), obtaining∫
Ω

Φ (Tν (un)) · ∇ (h (un) θ) dx →
∫
Ω

Φ (Tν(u)) · ∇(h(u)θ) dx.

Observe that
|a (x, un,∇un) · ∇un h

′ (un) θ| ≤ c′ a (x, un,∇un) · ∇un,

so that, by virtue of (5.35) and using Vitali’s convergence theorem, we conclude∫
Ω

a (x, un,∇un) · ∇un h
′ (un) θ dx →

∫
Ω

a(x, u,∇u) · ∇uh′(u)θ dx.

Concerning the second term in (5.36), a similar argument yields

h (un)∇θ → h(u)∇θ strongly in (Eφ(Ω))
N
,

and from (5.30) we deduce∫
Ω

a (x, un,∇un) · ∇θ h (un) dx →
∫
Ω

a(x, u,∇u) · ∇θ h(u) dx,

as well as ∫
Ω

F · ∇θ h (un) dx →
∫
Ω

F · ∇θ h(u) dx.

Since h(un)θ → h(u)θ weakly-* in L∞(Ω) (with respect to σ∗(L∞, L1)), we can use (5.33) to pass to
the limit in the fourth term of (5.36) and obtain∫

Ω

gn(x, un,∇un)h(un)θ dx →
∫
Ω

g(x, u,∇u)h(u)θ dx.

Combining all these limits, we finally pass to the limit in each term of (5.36), yielding∫
Ω

a(x, u,∇u) · [h′(u)θ∇u+ h(u)∇θ] dx+

∫
Ω

Φ(u)h′(u)θ · ∇u dx

+

∫
Ω

Φ(u)h(u) · ∇θ dx+

∫
Ω

g(x, u,∇u)h(u)θ dx

=

∫
Ω

fh(u)θ dx+

∫
Ω

F · [h′(u)θ∇u+ h(u)∇θ] dx,

for every h ∈ C1
c (R) and every θ ∈ D(Ω), which establishes Theorem 4.1.
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