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Semi-Analytical Approach to Study the Nonlinear Oxygen Absorption Kinetics and
Oxygen Diffusion in a Spherical Cell

Yogeshwari F. Patel and Mohammad Izadi and Mahdi Kamandar

ABSTRACT: The phenomenon of oxygen diffusion in spherical cells, governed by Michaelis-Menten uptake
kinetics, gives rise to a class of challenging singular boundary value problems. A semi-analytical method
namely differential transform method is proposed to acquire analytical solution of aforesaid with nonlinear
uptake kinetics. The proposed method is found to produce more trustworthy findings when the obtained
results are compared with those available in the literature. We discuss the impact of the maximal reaction rate,
Michaelis constant, and cell membrane permeability on the dimensionless oxygen concentration, supported by
numerical and graphical results. The proposed method ability to handle the strongly nonlinear term make it
a promising tool.
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1. Introduction

Over the past decades, nonlinear singular boundary value problems (NSBVP) have attracted a lot
of attention because they have a diverse variety of applications in science and technology. Only a few
of the numerous physical phenomena that are simulated by NSBVPs include the diffusion of oxygen
in a cell, electrohydrodynamic movement of a fluid in an isothermal gas sphere, thermal behaviour of
a spherical cloud of gas, and thermal explosion. This aim of the manuscript is to proposed a reliable
semi-analytical method for studying NSBVPs with Neumann and Robin boundary condition describing
oxygen absorption kinetics and the oxygen diffusion in a spherical cell of the subsequent form:

d d
(W00 £00) = P T (el 0<x =1 (1)
subjected to boundary conditions
d d
{dxc(x)} o =0, [a c(x)+ 8 ac(x) - =a, (1.2)

with U(x) = x" P(x), £ > 0 and P(x) is a nonnegative function and a > 0, 8 > 0, and «a is a finite
constant with the following assumptions:

e Al: ¥(0) =0, ¥(x) >0 for x € (0,1], and ¥(x) € C* ((0,1)).
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o A2: U(x) = x"P(x) in [0,1] and for some p > 1, the function ﬁ is analytic in the {x : |x| < u}.

e A3: The function f (x,c(x)) is continuous and % > 0 exists and is continuous.

The reader can discover references [1,2] that discuss the uniqueness and existence of solutions to (1.1)
and (1.2). Solving SBVPs is difficult and time-consuming because singular points occur. One of the real
world phenomena described by SBVP is oxygen absorption kinetics and the oxygen diffusion in a spherical
cell which has gain attention of many researchers. Lin originally proposed and solved a model of oxygen
diffusion and nonlinear uptake in a sphere [3]. After that, McElwain re-examined and re-solved the
same model [4]. The original draughts by Lin and McElwain [3,4] contain the full dimensional governing
equation.

The governing equation for nonlinear oxygen diffusion and absorption kinetics in spherical cells, repre-
sented as a singular boundary value problem (SBVP), has been a subject of extensive research using both
numerical and analytical approaches. Numerical methods, such as finite difference schemes [5], cubic and
B-spline collocation approaches [6,7], and shooting techniques [8], have been widely employed to tackle
these problems due to the general absence of exact analytical solutions. However, these methods suffer
from significant limitations: they provide solutions only at discrete points, require substantial computa-
tional resources for acceptable accuracy, and often produce unsatisfactory approximations in the presence
of strong nonlinearities and singularities. In response to these limitations, the past two decades have wit-
nessed the development of numerous analytical and semi-analytical techniques designed specifically for
singular boundary value problems. Methods such as the Adomian Decomposition Method (ADM) [9], the
Modified ADM (MADM) [10], the Optimal Homotopy Analysis method (OHAM) [11], the Variational
Iteration Method (VIM) [12], Maclaurin series [13], the Homotopy Perturbation Method (HPM) [14],
the optimal HPM [15], the iterative based normal S-method [16], the DTM-padé approach [17] have
been successfully applied to obtain continuous and differentiable solutions without the need for extensive
discretization.

In addition, numerical approaches such as the local discontinuous Galerkin scheme [18], wavelet-based
methods [19], and spectral Galerkin-collocation schemes [20] based on modified Chebyshev polynomials
have been developed for these kinds of model problems. For a recent review, readers are referred to [21].
More recently, advanced spectral methods leveraging orthogonal polynomials—such as Legendre poly-
nomials [22], shifted Chebyshev polynomials [23,24], generalized airfoil polynomials [25,26], Chelyshkov
and Morgan-Voyce functions [27,28], and Genocchi-based approximation algorithms [29] have emerged
as powerful tools, offering exponential convergence and high accuracy even in the presence of singularities

While the aforementioned analytical techniques have contributed significantly to solving singular
boundary value problems (SBVPs), each possesses inherent limitations. The ADM struggles with the
computational complexity of calculating Adomian polynomials for intricate nonlinearities and often fails
to provide a convergent series solution over a wider domain for strongly nonlinear problems. Similarly, the
VIM requires the often non-trivial determination of Lagrange multipliers via variational theory and can
involve cumbersome, repetitive calculations of unnecessary terms, leading to computational inefficiency.

To circumvent these challenges, we propose the application of the Differential Transform Method
(DTM) for solving nonlinear SBVPs. The DTM is a powerful semi-analytical technique that has been
successfully employed across a wide range of linear and nonlinear problems, including reaction-convection-
diffusion systems [30], magnetohydrodynamic flows in porous channels [31,32], and boundary eigenvalue
problems [33]. More recently, DTM has been extended to fractional-order nonlinear models arising in
quantum mechanics and field theory [34,35]. Its principal advantages include bypassing the need for lin-
earization, perturbation techniques, or Adomian polynomial construction, instead converting differential
equations into algebraic recurrence relations that are easier to solve. The method has also shown effec-
tiveness in modeling nonlinear heat transfer phenomena in porous fins subjected to magnetic fields [36].
In this study, we harness the robustness and computational efficiency of DTM to construct a convergent
series solution for the considered class of highly nonlinear singular boundary value problems, aiming to
address the limitations of existing approaches.

Following this introduction, the paper is divided into six sections. Section 2 demonstrates the problem
statement of mathematical model of unsteady state oxygen diffusion in a spherical cell. Section 3 deals



SEMI-ANALYTICAL APPROACH TO STUDY THE NONLINEAR OXYGEN ABSORPTION KINETICS 3

with the definition and fundamental concepts of semi-analytical approach. The implementation of semi-
analytical approach is discussed in Section 4 followed by result and discussion in Section 5. Our findings
are summarized in the concluding Section 6.

2. Problem Statement

The following equation can be used to model the unsteady state oxygen diffusion in a spherical cell,
studied by Lin [3]:

0Qr 0*Qr  20Qr R, Qr
— =D - — 2.1
ot <8r2 * or Kn+Qr’ (21)
with initial condition
QT(rv 0) = 07 0 S r S RO» (22)
and the following prescribed boundary conditions
9Qr
—(0,2) = t 2.
g (0,t) =0, >0, (2.3)
aQT o 0
DW(R(),I?) = h[QT — QT(Ro,t)], t>0, (24)

where D is the diffusion coefficient of the oxygen in the protoplasm, Ry the radius of cell, h denotes the
permeability of membrane, r the radial coordinate and ¢ is the time, and the oxygen tension just outside
the cell membrane is denoted by Q%.

To facilitate computation, Eq. (2.1) and the corresponding initial and boundary conditions (Egs. (2.1)-
(2.3)) are cast in dimensionless form by employing the following variables and parameters:

tD R, R? K, hR
CZQ—OT, R:L, b= —, a:Tig, K=—%, H=—2.
Qr Ry Rg D Q7 p D
Using the dimensional variables, Egs. (2.1)-(2.3) are transformed to the following

de O 20 _ac
o¢p OR?  ROR K+

¢(R,0)=0, 0<R<I, (2.5)
5:(0,0) =0, ¢>0,

—2¢(1,¢) = Hle(1,7) — 1], ¢>0.

McElwain considered the steady state and reduced the partial differential equations (2.5) into nonlinear
SBVP in the Lane-Emden form [4] as

d?c 2 dc ac

- —— = —— < <1 2.
a2 T RIR  Kre CSfSD (2:6)
subject to the boundary conditions
dc
—(0) =0 2.7
T2 (0) =0, (27)
ﬁ(1)+Hc(1)—H (2.8)
iR = H. .

Equation (2.6) serves as the governing equation for a steady-state reaction-diffusion equation that
represents oxygen transport via linear diffusion in a sphere with spherical symmetry with Michaelis-
Menten constant (K), maximum response rate and the half-saturation concentration K describes the
absorption of oxygen. At the centre of the sphere (R = 0), the boundary condition ensures a symmetric
oxygen distribution, while at R = 1, it specifies the oxygen flux across the cell membrane. The change
in oxygen content across the cell membrane directly relates to this flow. The membrane permeability is
represented by the proportionality coefficient, H [3,4]. Due to the oxygen uptake term’s non-linearity,
Eq. (2.6) supplemented with both initial and boundary conditions (2.7) face difficulty in find the analytical
solution with less computational and time.
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3. A Semi-Analytic Approach Based on DTM

The fundamental principle of the one-dimensional differential transform method (DTM) is introduced
below.

Definition 3.1 If a function u(t) is analytic in the time domain D, then its differential transform at a
point ty is defined as:

k
v =g | G (3.1

evaluated at t = to, where k € Z>q (i.e., k is a non-negative integer). This set of k values is referred to
as the K-domain. Consequently, Eq. (3.1) becomes:

U(k)(t — to)*. (3.2)

NE

u(t) =

ES
Il

0

Here, U(k) is referred to as the spectrum of the function u(t) at t =ty in the K-domain.

Definition 3.2 If u(t) is analytic, then

U(k)(t — to)*. (3.3)

M8

u(t) =

=~
I

0

Equation (3.3) is called the inverse transformation of U(k).

If U(k) is defined as

dtk

k u
ity = gy [-00] ”

then the original function u(¢) can be described by the infinite series:
1 oo
o>

where, M (k) # 0 and q(t) serves as the kernel for the transformation of u(t). If M (k) = Hy/k! and
q(t) = 1 then Eqgs. (3.2) and (3.4) are equivalent. Applying the differential transform maps the differential
equation onto the K-domain, reducing it to an algebraic equation. The solution in the original domain,
u(t), is subsequently reconstructed from the transformed solution via a finite-term Taylor series expansion,
accounting for a remainder term:

U(k)
k:

—

t — to R (3‘5)

E

n Ky,
u(t) =) % {d(t)} t=t (t = t0)" + Rnpa (1),

where

Rn-‘rl (t) =

1 [d"“u(t)

_ n+1
(n + 1)! din+1 :|t_§ <t to) 5 tO < f < t. (36)

Using the definition of DTM, fundamental operation are derived and mention in Table 1.

4. Implementation of DTM

The general solution of Eq. (2.6), satisfying the prescribed initial and boundary conditions, is derived in
this section. Let C(k) shows the differential transform of the solution ¢(R) of the model (2.6). Rearranging
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Table 1: Fundamental Properties of DTM

Original Function Transformed Function

v(t) = crui(t) L eaua(t) V(k)=ci Up(k) & caUs(k), (c1,co are constants)
u(t):dleff) V)= n+1)(n+2)...(n+m)Un+m)

v(t) = (Hua(t) V(k) =Y o Ui(m)Us(k —n)

(t) = emt V(k) = %

v(t) =t™ V(k) = 7:—'!5(k: —m)

() = tu(t) V) = f!m)! Uk —m)

v(t) = u(t — a) V(k) = e *U(k)

the terms and applying fundamental properties DTM to Eq. (2.6), it reduces to

k L
DN (=Dt — )k — 1+ 1)(k— 1+ 2)C(k — 1 +2)

=0 ¢=0

k
+KY 6 —1)(k— 1+ 1)(k—1+2)C(k -1 +2)
=0

k k
+2) CWk—t+1)Ck—1+1) +2K(k+ 1)C(k+1) —a Y _6(—1)C(k—1) =0,
=0

=0

with transformed initial condition

C0)=a, C(1)=0,

(4.1)

(4.2)

where a represent the initial concentration. The coefficients C'(k) of the series solution are computed by
successively evaluating the recurrence relation for £ = 0,1,2,.... The initial coefficient, corresponding to

k =0, is obtained from Eq. (4.1):

1

YD -1)CU-1)2-)B-)CE-1)+K> 5t—1)2-1)B-)CB 1)
=0 ¢=0 =0
1

+2) C()2-1)C2—1) +4KC(2) —a Y 5(t—1)C(1—1) =0.

=0

Substituting the transformed initial condition Eq. (4.2) into former Eq. (4.3), one has

@)= &K+6a
For k = 2, Eq. (4.1) simplifies to
2 2 k=2
Z 26(5 —1)CUl—-0)B—-1)d—0)C4—1) + KZ(S(A -1)@B =04 —-0)CHA4—-1)
=0 £=0 =0

+2) C(1)B-1)CB—1)+6KCB) —a d—1)C(2—1)=0.
=0

=0

Inserting the expression from Eqs. (4.2) and (4.4) into Eq. (4.5), we get
C(3)=0.

(4.4)
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For k = 3, Eq. (4.1) reduces to

3 L 3
YD -1)CU—)A=)B-)CE =) +KD 6(e—1)(4-1)(5-)C(5 - 1)
=0 ¢=0 =0
3 3
+2) C)(A—-1)C(A—1) +8KC(4) —a Y 5(t—1)C(3—1) =0, (4.7)

Substituting Eq. (4.2), (4.4), and (4.6) into Eq. (4.7), we get

a’Ka
C() = T30R? 1 360K2a + 360Ka? + 1200° (4.8)
For k = 4, Eq. (4.1) reduces to
4 L 4
ZZ(S(Z —1)CUl—=0)(5—0)(6—0)C(6—1)+ KZ&(L —1)(B=1)(6—-1)C(6—1)
=0 ¢=0 =0
4 4
+2) CW)(B-)CE=1)+10KCE) —ad §(t—1)C(4—1) =0, (4.9)
=0 t=0
Substituting Eqs. (4.2), (4.4), (4.6), and (4.8) in Eq. (4.9), we get
C(5) = 0. (4.10)
For k =4, Eq. (4.1) reduces to
5 L 5
DD 6 —-1)C( =) (6 =) (7= )C(T—1) + KD 6(e—1)(6 = 1)(7 = )C(7T 1)
=0 £=0 =0
5 5
+2) C)(6—1)C(6— 1) +12KC(6) —a P _6(t—1)C(5—1) =0. (4.11)
=0 1t=0
Substituting Eqgs. (4.2), (4.4), (4.6), (4.8), and (4.10) in Eq. (4.11), we get
C(6) 10Ka2a — 3a?K?a (4.12)

~ 15120K5 + 75600K*a + 151200K3aZ + 75600K2a* + 15120Ka’”

We computed the remaining coefficients of the series solution using the MATLAB software package.
The approximation series solution of oxygen diffusion for nonlinear kinetics is given by

¢(R) =Y C(k)R".

k=0
By using the obtained coefficients C'(k) we have:
aa Ko?a 10Ka?a? — 3K2a2%a
R) = — | R? —— — _|R'— RS+ ... 4.13
o(R)=a+t <6(K+a)> * (120(K+a)3> ( 15120K(K + a)* ) * (4.13)

5. Result and Discussion

This study employs the Differential Transform Method (DTM) to conduct parametric simulations,
investigating the influence of key biological parameters on the dimensionless oxygen concentration. Ta-
ble 2 shows the comparison of DTM with Adomian decomposition method with Green’s function (AD-
MGF) and optimal homotopy analysis method (OHAM) both reported in [11] for ¢19(R) parameter value
o =0.76129, K = 0.03119, and H = 4.



R

ADMGF

OHAM

DTM

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.828483290
0.829706092
0.833374734
0.839489914
0.848052785
0.859064927
0.872528320
0.888445306
0.906818548
0.927650988
0.950945798

0.828483290
0.829706092
0.833374734
0.839489914
0.848052785
0.859064927
0.872528320
0.888445306
0.906818548
0.927650988
0.950945798

0.828483105
0.829705907
0.833374548
0.839489728
0.848052599
0.859064741
0.872528134
0.888445119
0.906818361
0.927650799
0.950945603
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Table 2: Comparison of solution obtained using DTM with ADMGF and OHAM.

Table 3: Comparison of residual error of ADMGF, OHAM and DTM
0.76129, K = 0.03119, and H = 4.

for parameter value a =

R ADMGEF (5 terms) OHAM DTM ADMGEF (5 terms) OHAM DTM
0.0 2.91 x 1076 8.32x 1077 0 2.13 x 10710 1.14 x 10710 0
0.1 2.80 x 1076 7.95 x 1077 0 1.95 x 10710 1.04 x 1010 0
0.2 2.49 x 106 6.94 x 10~7 0 1.50 x 1010 7.76 x 1011 0
0.3 2.03 x 1076 5.54 x 10~7 0 9.42 x 10~11 4.61 x 10712 0
0.4 1.50 x 106 4.07 x 1077 0 4.56 x 10711 2.00 x 10~ 0
0.5 9.93 x 1077 2.83 x 1077 0 1.45 x 10711 4.59 x 10712 0
0.6 5.66 x 10~7 2.01 x 1077 0 6.60 x 10~13 1.23 x 1012 0
0.7 2.63 x 1077 1.59 x 107 0 2.52 x 10~ 12 1.82 x 10712 0
0.8 8.70 x 1078 1.49 x 107 0 1.77 x 10712 9.98 x 10~13 0
0.9 1.13 x 10~8 1.52 x 1077 0 7.45 x 10713 4.01 x 10~13 0
1.0 5.97 x 1079 1.54 x 1077 3.25 x 10~* 2.54 x 10713 1.69 x 10713 8.76 x 10~ 7

Table 4: Variation of the dimensionless oxygen concentration with the maximal reaction rate parameter
«. The Michaelis constant and membrane permeability are fixed at K = 0.03119 and H = 4, respectively.

R a=0.1

0.0 0.991701
0.1 0.991756
0.2 0.991922
0.3 0.992198
0.4 0.992585
0.5 0.993082
0.6 0.993690
0.7 0.994409
0.8 0.995239
0.9 0.996180
1.0 0.997232

a=1.0

0.747278
0.748865
0.753636
0.761618
0.772853
0.787405
0.805353
0.826793
0.851841
0.880628
0.913306

a=0.3

0.959175
0.959445
0.960255
0.961607
0.963500
0.965937
0.968919
0.972447
0.976525
0.981155
0.986340

a=0.6

0.882433
0.883199
0.885497
0.889333
0.894715
0.901654
0.910165
0.920268
0.931982
0.945334
0.960351

a=0.8

0.811927
0.813131
0.816746
0.822786
0.831274
0.842243
0.855732
0.871793
0.890484
0.911874
0.936041

Using the DTM approach from Section 2, Table 4 presents an analysis of the maximal reaction
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Table 5: Variation of the dimensionless oxygen concentration with the Michaelis constant K. The maxi-
mum reaction rate and membrane permeability are fixed at o« = 0.76129 and H = 4, respectively.

R K=01 K=05 K=15 K=25 K=35

0.0 0.562570 0.695543 0.817111 0.867418 0.895659
0.1 0.565401 0.697483 0.818286 0.868277 0.896338
0.2 0.573901 0.703311 0.821818 0.870855 0.898378
0.3 0.588095 0.713051 0.827716 0.875161 0.901782
0.4 0.608019 0.726745 0.836002 0.881205 0.906558
0.5 0.633729 0.744449 0.846703 0.889002 0.912716
0.6 0.665294 0.766236 0.859853 0.898574 0.920270
0.7 0.702800 0.792196 0.875497 0.909946 0.929235
0.8 0.746346 0.822435 0.893686 0.923146 0.939632
0.9 0.796050 0.857074 0.914479 0.938210 0.951481
1.0 0.852041 0.896253 0.937942 0.955175 0.964809

rate parameter «’s influence on the dimensionless oxygen concentration, with fixed parameters K =
0.03119 and H = 4. It is clear from Table 4, as the reaction rate increases the dimensionless oxygen
concentration decreases. Using the DTM method, Table 5 analyzes the influence of the Michaelis constant
K on the dimensionless oxygen concentration. The maximum reaction rate (o = Y) and cell membrane
permeability (H = 4) are held constant.

—a=3.5

Figure 1: Variation of the dimensionless oxygen concentration with the maximal reaction rate parameter
a. The Michaelis constant and membrane permeability are fixed at K = 0.03119 and H = 4, respectively.



SEMI-ANALYTICAL APPROACH TO STUDY THE NONLINEAR OXYGEN ABSORPTION KINETICS 9

0.95

09

0.85

0.8

¢(R)

0.75

0.7 =

o 0.1 0.2 03 04 0.5 0.6 0.7 08 0.9 1

Figure 2: Variation of the dimensionless oxygen concentration with the Michaelis constant K. The
maximum reaction rate and membrane permeability are fixed at @ = 0.76129 and H = 4, respectively.

055 = H=0.2 |

"o 0.1 0.2 03 0.4 0.5 0.6 07 0.8 09 1
R

Figure 3: Influence of the cell membrane permeability parameter H on the dimensionless oxygen con-
centration. The maximum rate and Michaelis constant are fixed at a = 0.76129 and K = 0.03119,
respectively.

6. Conclusion

This work examines the Michaelis-Menten kinetics-based nonlinear oxygen uptake effect on the Lane-
Emden equation, which models oxygen diffusion in an idealised spherical cell. By transforming the
highly nonlinear equation into algebraic equations, the proposed method simultaneously addresses the
singularity at x = 0 and significantly enhances computational efficiency. By varying reaction parameter
values, comparisons between the DTM, OHAM and ADMGF have been made. Also, based on the results,
the proposed method displays high reliability and accuracy in solving and analysis the how the system
behaves. The DTM’s correctness, efficiency, and convergence make it clear that it is a practical analytical
technique. This method is well-suited for solving differential equations with strongly nonlinear dynamics.
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