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ABSTRACT: This work proves pointwise convergence of the truncated Fourier double integral of non-Lebesgue
integrable bounded variation functions. This leads to the Dirichlet-Jordan theorem proof for non-Lebesgue
integrable functions, which has not been sufficiently studied. Note that recent contributions regarding this
subject consider Lebesgue integrable functions, [F. Mdricz, 2015], [B. Ghodadra-V. Fiilop, 2016].
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1. Introduction

One of the most relevant and significant subjects in the Fourier analysis theory is the inversion
problem. This means, given the Fourier transform f of a function f on R", provides conditions such that
the function

C f(w)ei<“”f>dw, T eR",
Rn
approximates to f(Z), where C' is a normalization constant and <, > is the Euclidean inner product.

The Dirichlet-Jordan Theorem solves the pointwise inversion problem. For n = 1, this states that if

f € L*(R) N BV (R) then, for each z € R,

M _
/ F(w)ei ™ dw = w (1.1)
-M

. 1

lim —

M—oco 27

The integral at left side of (1.1) is called the truncated Fourier integral, also known as the Dirichlet

integral of f. In [4, Corollary 3], F. Méricz proved that if f € L'(R) N BV(R), then the convergence

(1.1) is locally uniform at every point of continuity of f.

For the case n = 2, considering the classical Lebesgue integral theory, in [5], F. Méricz proved locally

uniform convergence of the truncated double Fourier integral

1 F i(Ex+ny) g
T N R CUE R C)

to f (z,y), as u,v — oo, under the conditions: f € L'(R?) N BVy(R?),

feL*((R) x [=6,0)) U ([-6,6] xR), §>0, (C1)
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and (z,y) € R? a point of continuity of f. The set of bounded variation functions in the sense of Hardy
over R? is denoted as BV (R2). In [2], it is proved that the integrability condition (C1) about f can be
omitted to get locally uniform convergence of the truncated double Fourier integral.
We have that
L'(R?) 1 BVt (R2) € BVjoy (R2) € L'(R?), (1.2)

where BVjjo||(R?) denotes the set of bounded variation functions in the sense of Vitali that vanish when
the norm of their arguments tends to infinity. Thus, previous results and expression (1.2) motivate us to
consider the set BV/o|| (R?) to study the inversion problem.

The relations in (1.2) presupposes the use of integrals other than the Lebesgue one. Here, we consider
locally Kurzweil-Henstock integrable functions over R%. Thus, we will show that if f € BV||0||(R2) and
(€,m) € R%, where ¢ # 0 and 7 # 0, then the map

ac—) oo
bd*}

(&mn) lim / / Fty, ta)e " EOEmt2 (1) 1))
la,b] X [c,d]

is well defined. We call this limit the KP-Fourier transform of f at (£,7) and denote by F(f)(§,n). Of
course, the KP-Fourier transform is defined in a more general sense than the classical Fourier transform,
see Definition 3.2.

One important result in this article is the Dirichlet-Jordan theorem for the KP-Fourier transform.
That is, if f € BV} jo|(R?), then, for z # 0 and y # 0,

i i(§x+ny) g
= N I Sl w3

converges pointwise to

f(l‘-f—, y+) + f(x+,y—) + f(x—,y+) + f(x—,y—)
4 )

as ag, g — 0 and (1,82 — oo. Apparently, in mathematical literature there is no a similar space on
which the proof of this theorem has been analyzed.

This article is organized as follows. In Section 2, we present the improper Riemann-Stieltjes integral
definition over R? and some of its properties, the concepts of bounded variation in the sense of Vitali and
Hardy. In Section 3, we recall the Kurzweil-Henstock integral over rectangles. Also, we introduce the
definition of the KP-Fourier transform which was defined in [3], and we provide an alternative proof of its
continuity property which was demonstrated in [3] and some auxiliary results. In section 4, we present
our main contributions; we prove a version of the Dirichlet-Jordan Theorem of non-Lebesgue integrable
bounded variation functions, see Theorem 4.1. Moreover, we extend Theorem 1 from [4] and Theorem
2.1 in [2]. This leads us to consider the validity of the locally uniform convergence for the truncated
double Fourier integral of functions in BV} ,o|(R?).

2. Preliminary Topics

Let us recall that a partition of the bounded interval [a,b] is a finite collection of subintervals
{[ziz1,2;] : i =1,...,n}, where a = ¢ < ... < 2, = b. Now, we consider R = [a,b] X [¢,d] a bounded
rectangle of R2. A partition of R is a finite collection of the form

{Ri;} ={lzi-1,z] X [yj—1,y5] |t =1,.,nand j =1,...,m},

where a = 29 < ... <x, =band c =yp < ... <y = d, and the set of such partitions is defined by P(R).
Furthermore, we define the norm of P = {R; ;} € P(R) as

|P[| = max{D; ;}, (2.1)

where D, ; is the diagonal length of R; ;.
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Definition 2.1 Let f,g: R — R be functions. It is said that g is Riemann-Stieltjes integrable with
respect to f over R, if there exists A € R such that for e > 0 there exists 6. > 0 such that if P = {R; ;}
with ||P|| < 0. and (n; ;,7i;) € Ri ;, then

D 90T )Af (i, y;) — A <,

,J

where
Af(l”myj) = f(xi,yj) - f(xiflvyj) - f(miayjfl) + f(xifl,yjfl).

Further, A is the value of the Riemann-Stieltjes integral and is denoted as

A=//Rgdf=//Rg(tl,tl)df(tl,ta)-

i) The norm in (2.1) is equivalent to the norm used in [7] and [2], hence the integrals defined by each
norm are equal.

Remark 2.1

i1) The Riemann-Stieltjes integral of a complex function g with respect to a real valued function f is
the sum of the integrals of the real and imaginary part of g with respect to f.

From [6, Theorem 5.4.3] for functions of one variable, we obtain the following result for functions of
two variables.

Lemma 2.1 Let f be a Riemann integrable function over R and suppose that g is bounded and Riemann-
Stieltjes integrable with respect to h over R, where

h(ti,ts) = // f(s1,52)d(s1, 52),
[a,tl]X[C,tz]

for each (t1,t2) € R. Then

//Rg(tl,tg)dh(tl,tg) ://Rg(tl,tg)f(tl,tg)d(tl,tg).

In the following definition, we will consider rectangles ) where their sides I; and Is can be of the
form (—o0,00), [a,00), (—o0,a] or bounded intervals. In addition, we will use the concept of bounded
variation on intervals, [4].

Definition 2.2

i) A function f: Q — R is said to be of bounded variation in the Vitali sense over Q and is
denoted as f € BVy(Q), if

Var(f,Q):=sup  sup <> |Af(xiy;)| p < o0,
RCQ {R;;}eP(R) i

where the rectangles R are compacts contained in Q.

i1) A function f: Q — R is said to be of bounded variation in the Hardy sense over Q) and is
denoted as f € BV (Q), if f € BV (Q) and, for each z,y, f(-,y) y f(x,-) are of bounded variation
over Iy and I, respectively.

It is evident that BVy(R?) is properly contained in BVy (R?) since f(z,y) = x +y € BV (R?) \
BVi(R?), [5].
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Remark 2.2 We can observe that if f € BVy (R?), then

lim (Var(f,[m,00) x R) + Var(f,(—oco,—m] x R) + Var(f,R x [m,o0)) + Var(f,R x (—o0,—m])) = 0.

m— 00

We will show some properties that relate the previous concepts, but first we recall the following spaces
of continuous functions defined on R2.

i) Cp(R?) is the space of real valued functions which are bounded.
ii) Co(R?) is the space of functions which vanish at infinity.
iii) C.(R?) is the space of functions whose support is compact.

It is well known that C.(R?) € Co(R?) € Cp(R?) and C.(R?) is dense in Cy(R?) with respect to the
supremum norm, [11, Theorem 3.17].

Lemma 2.2 ([2, Lema 3.9]) Let f € BVy/(R?) and (z,y) € R? be a continuity point of f. Then for
each € > 0, there exists § > 0 such that

Var(f?[x_57m+6] X [y_(s,y—’_(s]) <e¢
Now we define the improper Riemann-Stieltjes integral.

Definition 2.3 Let f,g: R?2 = R be functions. The multiple limit
lim // g(tl, tg)df(th tg)
e Y Y lablxe.d]

1s called the improper Riemann-Stieltjes integral of g with respect to f, when it exists in the
Pringsheim sense [1], and is denoted by

//R g(t1,t2)df (t1,12).

From [5], if g € Cy(R?) and f € BVy(R?), then the improper Riemann-Stieltjes integral of g with
respect to f exists.

Lemma 2.3 ([2, Lema 3.6]) If g € C,(R?) and f € BVy/(R?), then

i) The function V(f;t1,t2) = Var(f, (—oo,t1] X (=00, t3)) defined for each
(t1,t2) € R?, belongs to BVV(RQ)

ii) ‘// (t1,t2)df (t1,t2) S/ lg(t1,t2)|dV (f;t1,t2).
RZ

Theorem 2.1 Suppose that g € Co(R?) and f € BVi/(R?). Then, there exists a o-algebra M of R?
containing the Borelians and there exists a unique positive finite measure p on M such that

i) u((a,b) x (¢,d)) < Var(f,la,b] x [c,d]), for (a,b) x (¢,d) C R%.

i) // (t1,t2)dV (fit1,t2) = // (t1,t2)dp(ty, ta).

Proof: From Lemma 2.3, over Cj(R?) we define the bounded positive linear functional

://Rzg(tl,tg)dV(f;tl,tg).
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By [11, Theorem 2.14] (Riesz Representation Theorem), there exists a o-algebra M of R? containing
the Borelians and there exists a unique positive measure p on M such that

= // g(thtg)dﬂ(tl,tg), for all g € C(-(RZ) (22)
R2

Let R = [a,b] x [¢,d] C R2. From [11, Theorem 2.14], it follows that p(int(R)) < Var(f, R). Thus,
@ is a finite measure. This proves 1).

Now, let g € Co(R?) be. Then, there exists a sequence of functions (gy,,) that belongs to C.(R?) which
converges uniformly to g. Moreover,

nlgréo //R2 gn(tl,tg)dV(f;tl,tg) = \//]R2 g(tl,tg)dV(f;tl,tQ). (23)
and
Jm ] gutdutnt) = [[ atta)dute.b), (2.4)

By (2.2), (2.3) and (2.4) we conclude that, for g € Co(R?),

// (t1,t2)dV(f;t1,t2) = // (t1,t2)dp(ty, ta).

2.1. The space BV|,o|(R?)
The space of functions f in BVy (R?) which satisfy that ~ lim  f(z,y) = 0is denoted by BV};o|(R?).

[|(@,y) || =00
The following lemma can be proved from the definition of bounded variation, see Definition 2.2 and

[4].
Lemma 2.4 Let f € BV||0H(R2) be. Then, for each (z,y) € R?,

i) |f(z,y)] < Var(f(z,-),R) < Var(f, [z, 00) x R),
i) |f(z,y)] < Var(f(z,-),R) < Var(f, (o0, 2] x R),
iir) | f(z,y)] < Var(f(-,y),R) < Var(f,R x [y, 00)),
w) |f(z,y)] < Var(f(-,y),R) < Var(f,R x (=00, y]).

The space BV, (R?) is defined in [3] as

BV, (R?) = {f € BVy(R?) : im f(a,y) =0= bginoof(x, b), Yo,y € R}.

From Lemma 2.4 and Remark 2.2, we obtain the following characterization theorem that confirms the
equality (2.3) in [3].

Theorem 2.2 The function f € BV|jo|(R?) if and only if f € BVy,(R?).
It is important to note that
L'(R?) N BV (R?) € BVjo) (R?) ¢ L'(R?). (2.5)
Example 2.1 The function

Fag) = {(1/a:><1/y> siz,y>1

0 six<loy<l,

belongs to BV)o)|(R?) \ L*(R?). This function illustrates the contention relationships in (2.5).
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Proposition 2.1 If g € Cy(R?) and f € BVHOH(RQ), then

/Azg(tl,tz)df(tl,tg) _ //R F(tr. t2)dg(tr ).

Proof: Let R = [a,b] x [¢,d] C R? be. By Theorem 2.2 and the Integration by Parts Theorem in [5], we
have that

/ /R g(tr, ta)df (11, 12) = (b, d)g(b,d) — f(b,c)g(b,c) — F(ard)gla,d) + f(a,cgla,c)
b b d
- / ot d)df (11, d) + / o(tr, ¢)df (11, ) — / obt)df (b 1) (2.6)

d
+/C g(avtz)df(a,b)+/Rf(t17t2)d9(t17t2)'

It is immediate

lm _f(b.d)g(b.d)= lim_f(bcg(b.c)= lim _flad)gla.d) = lim _f(ac)gla.c) = 0.
a,c——00 a,c——00 a,c——00 a,c——00
b,d— o0 b,d— o0 b,d— o0 b,d—o0

In addition, according to Lemma 2.4, it is satisfied that

b
/ o(tr, d)df (11, d)| < Var(f,R x [d,00))|g]loe.

By Remark 2.2, it follows that
b

i [ gltr. i (t1,) = 0
b,d—oo ¢
Similarly, it shows that
b d d
i [ gt oo, =  ln [ gt = n [ glata)die) = o
a,c——00 a,c——00 a,c——00
bd—oo ¢ bd—oo € bd—oo ° ¢

By [2, Lemma 3.5], the improper Riemann-Stieltjes integral of g with respect to f exists. Therefore,
applying the limit in (2.6) as a,¢ — —oo and b,d — —oco we conclude that

// g(ty,ta)df (t1,12) =/ f(t1,t2)dg(t1,t2).
R? R?

Proposition 2.2 Let f € BV||O||(R2) be. Then, for u1 < us and vy < v,

Mgmoo//[a v F(t1,t2) (/ulzcos(tn)dT) (/ cos(th)dT) d(t1, ts)
([ 2820 2820)

Proof: Let R = [a,b] X [¢,d] C R? be. By [4, Lemma 4] we define, for each (t1,t2) € R?, the functions

g(t1,t2) == (/:2 COS(tﬂ')dT) (/: COS(tzT)dT) € C(R?)
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h(ti,t2) = (/uu Wdf) (/v Wm) € Co(R?),

which satisfy the relation

and

/ 1 / : g(z,y)dxdy =h(t1,tz) — h(t1,c) — h(a,t2) + h(a,c). (2.7)

Since h € C(R) and f € BVy(R), applying the Integration by Parts Theorem [5], we have that
[[ fdh exists. Similary, we prove that the following integrals

/ [ st tanes o) / /R F(tr, t2)dh(a, 5) and / [ s tane.o (2.8)

exist and are equal to zero.
From (2.7) and Lemma 2.1, we have that

//ftl,tg dh tl,tQ //ftl,tg dh tl, //ftl,tg dhatg)

+// f(tl,tQ)dh(CLC) :// f(tl,tQ)g(tl,tQ)d(tl,tQ) (29)
According to (2.8) and (2.9),

/ f(ti,t2)g(ts, t2)d(t1,t2) / f(t1,t2)dh(t1,t2).

By Proposition 2.1, ffn@ fdh exists, then applying the limit to the above equality as a,c — —oo and
b,d — oo we conclude that

lim // f(t1,t2)g(t1, ta)d(t1,t2) / f(t1,t2)dh(t1,t2).
‘”—* > J J[a,b]x[c,d] R2

2.2. Sequences in (L)
The following definition can be found in [8] and [4].

Definition 2.4 An increasing sequence {uj}jeN C RT is said to satisfy Lacunary’s condition (L)
and is denoted as {u;},cy € (L), if there exists A >1 such that

iuig m=1,23,...

Example 2.2 The sequence {27} jen satisfies condition (L) with A = 2.
Some results of our interest associated with sequences in (L) are the following.

Lemma 2.5 ([4, Lemma 2]) If {u;}, .y € (L), then

/” sin(tu)
u]'71 u

where ug := 0 and A is derived from Definition 2./.

Lemma 2.6 ([4, Lema 3]) If {u;}, . € (L), then

/ sinlt) ) < 34 et 20,
Uj—1 U

= [t um

o0

dul <3A+4, t+#0,

max
- Uj—1 SUSUJ'

oo

E max
uj-,lgvguj

j=m+1
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3. KP-Fourier Transform

In this section we define a transform that generalizes the Fourier transform operator since it can be
applied to non-absolutely integrable functions. For this, we begin defining the Kurzweil-Henstock integral
over a bounded rectangle R = [a,b] X [c,d], [10], [9].

i) Let § : R — R be a function. It is said that § is a gauge on R, if §(¢t1,t2) > 0 for all (¢1,12) € R.
ii) Let P = {R; ;} € P(R) (defined in Section 2) and (& ;,7:,;) € R; ;. It is said that P is é—fine, if
(i1, 2] C (S5 —0(8i5Mii)s S +0(&i5mig)) and [yi—1, 5] © (0ij —6(&igs i g)s 1,5 +0(&i 5 i)

iii) Let P = {R; ;} € P(R) and (& ;,m;) € R; ;. Given a function f: R — R, the Riemann sum

of f over P is defined as

P) = Zf(éi,jvm,j)(% —zi—1)(Yj — Yj-1)-

Definition 3.1 A function f : R — R is said to be Kurzweil-Henstock (KH) integrable over R
and we denote it by f € KH(R), if there exists A € R such that for e > 0, there exists a gauge 0. on R
such that for P = {R; ;} € P(R) which is 6.—fine, then

IS(f; P)— Al <e.
Moreover, A is the Kurzweil-Henstock integral of f and is denoted by

A://Rf(tl,tg)d(tl,tg).

The space of KH integrable functions over compact rectangles is denoted by K Hj,.(R?). In [10],
it is proved that the space of locally Lebesgue integrable functions L} (R?) is properly contained in
K Hj,o(R?).

Definition 3.2 /3, Definition 4.1] Let f : R> — R be a function such that f(-)e "<"V> € K Hj,.(R?).
The KP-Fourier Transform of f at (£,1) € R? is defined as

F(H)Em) = lim //[ oy ST ) (3.1)

a,c——0o0
b,d—o0

when the limit in (3.1) exists in the Pringsheim sense.

Remark 3.1 Let us observe that if f € L*(R?), then the KP-Fourier transform F(f) is well-defined for
each (€,m) € R? and is equal to the Fourier transform f.

The following result shows that the KP-Fourier transform operator is well defined on BV|q|, (R?) which
is not contained in L*(R?) according to (2.5).

Theorem 3.1 Suppose that f € BV||0||(R2). Then, for £ #0 and n # 0,

F(f)(Em) = —% / /R e (1 1),

Proof:
Let R = [a,b] x [c,d] € R? and € # 0, n # 0. Let g(t1,tz) = e E1tm2) and G(t1,ty) =
e UEhtnt2) /&y for each (ty,t2) € R%. By [10, Theorem 6.5.9], we have that fg € KH(R) and

/ R f(t17 t2)g(t17 tZ)d(tla t2) :f(ba d)G(bv d) - f(b7 C)G(b7 C) - f(av d)G(a7 d) + f((l, C)G(av C)

b b d
- / Gty d)df (t1,d) + / Gt )i (11, ) — / Glb,t2)df (b 1) (3.2)
d
+/C G(a,tg)df(a,tg)+/RG(t1,t2)df(t1,t2).
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It is easy to prove that
lim f(b,d)G(b,d) = lim f(b,c)G(b,c)= lim f(a,d)G(a,d)= lim f(a,c)G(a,c)=0.

a,c——00 a,c——00 a,c——00 a,c——00
b,d— o0 b,d—o0 b,d— o0 b,d—o0

From Lemma 2.4,

/bG(tl,d)df(tl,d) gﬁVar(f,R « [d,50)).

By Remark 2.2, it follows that
b

lim /G(tl,d)df(tl,d):o.

Similarly, we have that

b d d

[ G odee = tn [ o0 = n_ [ e - o
Z;A,d~>oo @ l;,d%oo ¢ l;,dﬂoo ¢

Since the real and imaginary part of G' belong to Cy(R?), according to Proposition 2.1, we can claim
that ffR2 Gdf exists. Therefore, applying the limit to (3.2) as a,¢ — and b,d — we concluded that

hm // f t17t2 —Z(ftl-‘f-ntz)d(tl t2 — _7// _l(€t1+7]t2)df(t1 t2)
a,c——o0o R2

d

Example 3.1 Considering the function defined in the Example 2.1 and by Theorem 3.1 we prove that,
for (€,m) € R? with € # 0 and n # 0, its KP-Fourier transform is

F(f)(&n) =T(0,i)T(0,4n),

where T'(+, ) is the incomplete Gamma function. Let us note that when € =0 orn =0, F(f)(&,n) does
not exist.

In [3, Corollary 4.1] the following result is proved, however we provide an alternative proof.

Proposition 3.1 Let f € BV (R?) be. Then F(f) is continuous at (£,1) with £ # 0 and n # 0.

Proof: By Theorem 3.1, for f € BVjjo(R?) and (£o,70) € R? with & # 0 and 79 # 0, it is satisfied that

F(f)(€o,m0) = — % //Rz cos(&ot1 + mot2)df (t1,t2) + & //R2 sin(&ot1 + not2)df (t1,t2).  (3.3)

Let (¢,m) € {(x,y) € R?: 2 # 0 and y # 0}. By Lemma 2.3 and the Mean Value Theorem, we obtain
the following inequality

|// cos(&t1 4+ nto)df (t1,t2) — // cos(&ot1 + not2)df (t1,t2)
la,b] X [c,d] la,b] x[c,d]

< le—&f // 1AV (51 t2) + [0 — 0l / (baldV (1, £2).
la,b] X [c,d] la,b] X [c,d]

Then, for each [a,b] x [c,d] C R?,

lim // COS(€t1 + T]tz)df(thtg) = // cos(&ot1 + ?’]otg)df(tl,tg). (3.4)
(&m)—(&0.m0) J J{a,b]x[c,d] [a,b]x [c,d]
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By Remark 2.2, given € > 0 there exists M > 0 such that
Var(f,[M,00) x R) < e/4,
Var(f,R x [M,)) < /4,
Var(f,(—oco,—M] xR) < e/4
and Var(f,R x (—oo,—M]) < /4.
Suppose that [a,b] x [¢,d], [a1,b1] % [c1,d1] D [-M, M]?. Applying ii) of Theorem 2.3 on compact

rectangles and the previous inequalities we have that, for each (£,7) € R?,

‘ / / cos(Ety + nta)df (b, t2) — / / cos(Ety + nta)df (1, £2)] < e. (3.5)
[a1,b1]X[e1,d1] la,b] x [¢,d]

Thus, the limit
lim // cos(&t1 + nto)df (t1,t2) (3.6)
[a,b] X [c,d]

a,c——00
b,d— o0

is uniform with respect to (£,7) € R2.
Applying [12, Theorem 1], (3.4) and (3.6),

// cos(&ty + nt2)df (t1,t2) = T // cos(&ot1 + not2)df (t1,t2). (3.7)
RQ

(&, 77)%(50,770)

Similarly, it is proved that

1 i
lim — stn(&ty + nto)df (t1,t :—// sin(&ot1 + note)df (t1,12). 3.8
i [ sinen ) = o [ [ sinteon +mid ). 63)

According to (3.3), (3.7) and (3.8), we conclude that F(f) is continuous at (&g, 7). O

For 0 < a; < B; < oo with i = 1,2, we denote

RO = {(z,y) €R? 1oy <[] < B, az < Jy| < B2}

Qq,02
and

ha; g; () = (sin(B;t) — sin(ayt))/nt.

Proposition 3.2 Suppose that f € BVHOH(R2) and (x,y) € R%2. Then

1 i(x

RBI B2

1,02

. (sin(ﬁlh) — sin(a1t1)> <5m(52t2) - Sm(am)) d(t1, o).

tl t2

Proof: Theorem 3.1 and Proposition 3.1 give us conditions to apply Lebesgue’s Dominated Convergence
Theorem and Fubini’s Theorem in the following equalities
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s [ FOEmee i)

REVE2
o —i(tre+tam) i(ze+ymn)
legnoo // //H[ f(tr, ta)e d(t1, )"+ d(e, )
d— o0 R§11 /(12
= lim // / f(ty,to)e iD=t g (e pyd(ty,t5) (3.9
47T2 a C—) o0 [(1 b]X[C d ( )
0‘1 o¢2
= lim // f(th tQ)hOélﬁl (‘T - tl)ha27/32 (y - tQ)d(th t2)
a,c— 00 a,b] X [c,d]
b,d— 00
= [k oy s ()R () 7).
l;,d%oo a,b]x[c,d]
The last equality is obtained by making the change of variable p =t — x and 7 =t3 — y. O

Proposition 3.3 Let f € BV||0||(R2) and (x,y) € R%2. Then the function

Gz (t1,te) = f(x —t1,y —t2) + f(x —t1,y +t2) + f(o +t1,y —to) + f(z + 11,y +2)

belongs to BV)jo)|(R?) and the limit

a—»00
[0,a] x[0,a]

i [ g (01820, (1) 1) 01,12 (3.10)

exists and is uniform with respect to 0 < a; < B3 < 00 fori=1,2.

Proof: Making the change of variable u = x — ¢; and 7 = y — ¢5 in (3.9) from Proposition 3.2 we have
that, for 0 < a; < 5; < 00, © = 1,2, the limit

lim // SC — tl, Yy — tQ)th,ﬂl (tl)ha27ﬁ2 (tg)d(th tg)

a—»00
—a,a] X [—a,a]

exists.
Considering the appropriate change of variables and for 0 < a; < §; < 00,1 =1,2,

lim // (x = t1,y — t2)ha, 8, (t1)hag 6, (f2)d(t1, 2)

a—r 00
[—a,a]x[—a,a]

= lim // 9(o,y) (t15t2)hay 8, (£1) Ry g, (t2)d(t1, t2). (3.11)

a— 00
[0,a]x[0,a]

Now, let us prove that the limit in (3.10) is uniform. Since g(, ) belongs to BVjj(R?), given & > 0
there exists dgp > 0 such that

’L) If (thtg) S (0,00)2 with H(t1»t2)|| > (50, then ‘g(r,y)(t17t2)| <eg,
i) Var(g,y), [00,00) x [0,00)) < e,

ii1) Var(g(%y), [0,00) X [0p,00)) < €.
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For each (z1,22) € R? and 0 < o; < 3; < 00, i = 1,2, we define the function

zZ1 z2
HZDR (21, 2) = / / e B1 (t1)hasy g, (t2)dtrdts.
0 0

Let az > a1 > do. Applying the Integration by Parts Theorem [10, Theorem 6.5.9] and the above
statements, we obtain that

// (=) tl?t?)hcnﬁl (tl)hoézw@z (tQ)d(tth)

[O CL1]>< 0 a1

/ [ st t2)ha, s () (211 12)

0 ,a2 X[O a2]

< // I(ay) (t1512)hay g, (F1)has 6, (t2)d(t1, T2)
[0,a2] X [a1,a2]
+ // 9(ay) (t1:t2)hay g, (T1)has 6, (t2)d(t1, T2)
[a1 a2]><[0 al]
= |HENE (a2, 02)g(0,y) (a2, a2) — HLE2(0,02) (0, (0, a2)
+ HEVE2(0,01) (0, (0,a1) — HEVE2 (a3, a1) (s 4 (a2, a1)
- [ g (an) ¢ [ HERE G o) ()
- [ Bt )+ [ HEEO. 0.0
+ff HE g | + | HEL S (02,00)000 (02,00
[0 a2]><[a1,l12]
Hgll’gg ((117 al)g(m y) (ala al) + Hgll gz ((12, O)Q(I,y) (a27 0)
Hgll’gi (alao)g(x y) ala / Hgll’gi al)dg(oc,y)(',al)
/ HZLE (-, 0)dg e (- / HEVB2 (a3, )dg(s,y)(az, )
/ HZ PR (a1, )dg ey (ar, ) // H b2 dg (e y)
la1,a2]%[0,a1]
< Si(m)? (Var(g ,a2),[0,a2]) + Var(g.y) (-, a1), [0, az))
+ VCLT(g ,y)( ) [ala G’QD + VaT(g(w,y)a [Oa a2} X [a17 G’Q])
+ Var(g ( 7a1) [alv GQD + Va’r(g(z,y) (a2a ')a [Oa al])
+VaT(g (alv )a [O 0’1]) + Var(g(w7y)a [a17 a2] X [Oa alD + 45)
< 128i(m)%e

where Si is the Sine Integral function.
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Therefore, given € > 0, there exists g > 0 such that

I st he s (s (01,12

[0 111]>< O a1

// g(m,y)(tl,tg)hahgl(tl)hQQﬁQ(tg)d(tl,tg) < 12Si(7r)26

[0,&2])([0,(12]

for ag,a; > dp and 0 < ; < B; < oo with i =1, 2. O

4. An Extension of the Dirichlet-Jordan Theorem on BV (R?).

The first of our mains results is a two-dimensional extension of the Dirichlet-Jordan Theorem for
functions in BVy(R).

Theorem 4.1 Suppose that f € BV||0||(R2) and (x,y) € R2. Then,

4r2 all{lxrznﬁo RB182 f(f)(fvn)ei(x€+yn)d(5,n)
B1,B2—00 al,0p
_ S + Sy £ [yt )
4 . .

Proof: By Proposition 3.2 and (3.11), for 0 < a; < 8; < oo with i = 1,2,

a— 00
[0,a] x[0,a]

1 - .
o3 / /R L FDEme e ) = tim / / 9o (1 12)ha 5y (1) g (t2)d(t1,12). (4 o)

We know that for a > 0, the following statements are satisfied.

i) hm fO (,y) tl,tg)ha2752 (tg)dtg = G(x,y) (tl,O—l-)/Q for t; € [0 a]

ﬂg —>()O

i) ’fo G(ay) (t1,t2)hay g, (T2 dt2’ < 2Si(m) [Hg(z,y)Hoo +Var(g(zyy),R2)] for t; € [0,a] and 0 < ap <
B2 < 00,

ii1) {foa g(w,?’,)(-,tg)hw%ﬁ2 (t2)dta : 0 < ap < B2 < OO} c L]0, a)).
From Fubini’s Theorem and Dominated Convergence Theorem we have, for a > 0, that

. @ Gz (t1,04
i ] st (b sttt = [ LU g

as—0
B2—200,a]x[0,a]

From Proposition 3.3, [12, Theorem 1] and (4.3), it follows that

lim lim // g(%?/ tl,tg h()qﬁl (tl)haz Bo (tg)d(tl,tg)

az—0 a—o0
Bz—roo [0,a] x[0,a]

= hm hm // g(m y)(tl,tg)hal B (tl)h(),2 Ba (tz)d(tl,tg) (4 4)

a—00 ag—0
B2—00[0,a]x[0,a]
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By (4. 2) and (4.4), we obtain that

Z(IEJrun)
i P / [ Foeme e - i oy 5 / [ sewtenta

B1,B2—00 phy.6a Br—r00 fr—r00 [0,a]x[0,a]

ay,ap
X hoél,ﬁ1 (tl)hfm B2 t2 tl; tQ)

= lim lim lim // I(a,y) (t1,t2)
a1—0 a—o00 as—0
B1—o0 B2—20 [0, a] % [0,a]

X hOélﬁl (tl)ha2,ﬁ2 (tQ)d(tlatQ)
¢ giga (1,0
— lim lim 9(aw)(t1,0+)

a1—0 a—oo 2
ﬂlﬁoo

halﬁl (tl)dtl

Gz (11,0
= lim Iay) L) ’y)(l +)

hahBl (tl)dtl

§150 o 2
79(9;,1/) (0+7O+)
774 ,
where 9(z,y) (O+a 0+) = f($+,y+) + f($+,y_) + f(x_ay+) + f(.’II—, y_) O

Theorems 1 and 3 in [5] and Theorem 2.1 in [2] claim that Fourier series of functions f in L!(R?) N
BV (R?) are bounded and converge locally uniform at points of continuity of f. Thus, the extensions of
such results for functions in BV)jo)(R?) are stated as follows.

Theorem 4.2 Let f € BVjjo(R?) and (uy), (vm) € (L) with constants Ay and Ay, respectively. Then,
for each (z,y) € R?,

oo

sup
ij= QUE[uz 1auL]UE['UJ 1UJ

e / / . P& e EHDd(E, )| < k,

where k = (3A1 + 4)(345 + 4)Var(f,R?)/x?

Proof: Let (z,y) € R? be. For u € [ui_l,ui] v € [vj_1,v;] with 4,7 > 2, let

Ay — = //M e 1(w£+yn)d(§ n).

Uj—1:Y5—1

By Proposition 3.2, we have that

A; j(u,v) = lim flx+t1,y+to) cos(t17)dr cos(tor)dr | d(t1,1t2).
’ w2 @,C—=—00 [a,b] X [c,d] Us—1 Vi1

b d— oo 7

Since f(z 4+, y+-) € BVH0||(R2) and from Propositions 2.1 and 2.2, we obtain that

Ai,j(uw):%/sz(m+t1,y+t2)d </u Sm(:lT)dT> (/v Sin(:?T)dT>

J

//R2 </uu_1 sin tlT)dT) (/:_1 Smg_tQT)dT> df (x +t1,y + ta).

Now, ii) of Lemma 2.3 assures that
u t v . t
| ”uv|<f// / sin 17')dT / sm(gT)dT
]R2 i 'Uj—l T

=:B(u,v),

AVey(fit1,t2)
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where Vi, (fit1,t2) = Var(f, (=00, + t1] X (—00,z + t2]).
Applying Theorem 2.1, there exists a c—algebra M of R? and a measure 4, , on M such that

Blu,v) = sin t17') sin(ta7) sin(taT) r
7r2 &2 | S wi, T

d/féz,y (th t2)
J
1 v i (t v n(t
— // max / sin{tir) dr max / sinltar) dr
m R2 \ u€lui—1,ui] | Sy, _, T vEvj—1.05] | o, 4 T

From (4.5) and (4.6), for each u € [u;—1,w;] and v € [v;_1,v;], the following is satisfied

1 “ . » .
A i(u,v)| < = max MdT max MdT
| Ai 3

m R2 \ w€lui—1,ui] | Sy, _, T vEw;—1,05] | Sy, _ T

j—1
We define, for each 7,5 > 2,
M;;(fi2,y) == sup sup | A;;(u, v)].

u€fu;—1,ui] vE[v; 10 ]
One can prove, for each i,j > 2,

osin(t
M ;(f;z,y) < = // max / Mdr max
s R2 \u€[wi—1,ui] |y, T vE[v;_1,v5]
Considering the above inequalities and by Lemma 2.5, for ¢, j > 2, we obtain that
Y sin(t
/ sin(tyT) ir
. T
v - t
X max / Mdr A,y (t1,t2)
v€[v;-1,v] Vi1 T )
= // max / Ln( 17) dr
R2 = wWE[ui—1,u4) Wit T (47)
dpig y(t1,t2)

v n(t
/ sin( 2T)d7_
Uj—l T

1
ﬁ //]R2 (3A1 + 4)(3142 + 4)dﬂz7y(t1,t2)

(4.6)

IN

> d:u’w,y(tla t2)

) dpigy (t1,t2).

/” sin(taT) ir
vy T

J

> d/“‘("’l:,y(t17 t2)

iiMi,j(f;x,y) < 222//}@ ( max

=2 j=2 u€lui—1,u;

IN

_ %(3/11 +4)(3As + 4)Var(f,R?).

Theorem 4.3 Let f € BV (R?) and (x,y) € R? a point of continuity of f. If (un), (vm) € (L) with
constants Ay y A, respectably, then the series

33 s 4WQ//M DE S d(e,m)

i—2 j— —o u€lu;— 1,u1]v6 vj_ 1vJ

converges locally uniform at (z,y).
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Proof: Let n,m € N be. From (4.7), for (z,y) € R?, the following holds
SN M) < // max | [ 20Ty
=n+1 Uj—1 T

i=n+1j=m+1 u€[ui—1,ui]
v .
sin(tor
/ ( )dT
Vj—1 T

o0

X E max

j=m+1 vE[v;—1,v4]

d,ux,y(tlat2)7 (48)

where i, is & measure satisfying

pa,y((a,0) X (¢, d)) < Var(f,[a,b] x [¢,d] + (z,y)) (4.9)
and g1, 4 (R?) < Var(f,R?). (4.10)

Suppose that (zg,79) € R? is a point of continuity of f and ¢ > 0. By Lemma 2.2, there exits
d > g =6/2 > 0, such that

Var(f,[zo — 200, + 200] X [yo — 260, Yo + 200]) < €
Now, if (z/,y") € (xg — o, o + d0) X (Yo — o, Yo + d0), we can claim that
[{,C/ — (50,1” + (50] X [yl — (50,y/ + (50] - [{L‘o — 26(),.”[]0 + 2(50] X [yo — 2(50,y0 + 2(50]

Then,
Var(f,[x" — o, 2" + 60] X [y — S0,y + o)) < e. (4.11)

Let 0 < §1 < &g and (2',y") € (xo — do,x0 + o) X (Yo — 00, Yo + o). From (4.8), it follows that

> > s | [+ [+ [[+]]

1 1
i=n+lj=m+ [61]<61 [t1]>61 [t1]<61 |t1]>6:
[t2| <81 [t2|<61 [t2]|>d1 [t2]>01

(3 e [ 7] (12

Pl u€lu;—1,ui
v .
sin(toT
/ 7( )dT
Vi1 T

J

oo

X E max

1 VE[i—1,v4]

:211 + IQ + 13 + 14.

d,ux/,y/ (tl ; t2)

By (4.9), (4.11) and Lemma 2.5,

(3A1 +4)(3A2 + 4)

Il S 7_[_2 / d/lm’7y’(tl7t2)
|t1|§51
[t2| <61
34, +4)(34, +4
BAFDOL L) e (b060]  [61,61])
. (4.13)
(34 7)T(2 24) (=80, 80) X (~50,0))
A; +4)(345 + 4
§(3 1+ ng 2+ )Var(f,[x/f§0,$/+5o]X[y/*(so’y/jLéOD
Ap +4)(345 + 4
§(3 1+ )23 2+ )5.

™
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From Lemmas 2.5, 2.6 and inequality in (4.10),

3A5 +4 3A
Iy S( ;2 )// ! Apigr o (t1,12)

tl\un
t1|>6
2125, (4.14)

34, (345 +4)
51un7r2

Var(f,R?).

Using similar arguments, we conclude that

34; +4 3A
.[3 S( 711_2 ) // 2 dﬂx’,y’(tlytZ)

s |t2|Um

t1]<

121261 (4.15)
< 34, (3A1 + 4)
2

Var(f,R?).

01U T

Applying Lemma 2.6 it follows that

1 34, 34,
I, <— L) ) dpg e (f1,
= ff <t1|un)<t2|vm> pary (f1, 2)

t1]>61

[t2|>61 (416)
9A1 A,

= 82Uy vy 2

Var(f, R?).

Adding the expressions in (4.13), (4.14), (4.15) and (4.16), we have that

oo oo

A A
S Y Mylraty) <G DEAREY (€+<5lzn+51im+ ; )Var(f’R2)>’

D)
T o u,v
i=n+1j=m+1 1Hn¥m

for each (2',y") € (xg — do, 2o + d0) X (yo — o, Yo + do) and n,m € N.
Considering (4.12) and u,,, v, — 00, as n, m — 0o, respectively, and given ¢ > 0, there exist N, M € N
such that n > N and m > M, then

Z Z M;;(f;2',y') < (341 +4)(342 +4) ke,

. . w2
1=n+1j=m+1

for each (2/,4y') € (xg — o, zo + d0) X (yo — o, Yo + do). This prove the theorem. O
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