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abstract: This work proves pointwise convergence of the truncated Fourier double integral of non-Lebesgue
integrable bounded variation functions. This leads to the Dirichlet-Jordan theorem proof for non-Lebesgue
integrable functions, which has not been sufficiently studied. Note that recent contributions regarding this
subject consider Lebesgue integrable functions, [F. Móricz, 2015], [B. Ghodadra-V. Fülop, 2016].
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1. Introduction

One of the most relevant and significant subjects in the Fourier analysis theory is the inversion
problem. This means, given the Fourier transform f̂ of a function f on Rn, provides conditions such that
the function

C

∫
Rn

f̂(ω)ei<ω,x>dω, x ∈ Rn,

approximates to f(x), where C is a normalization constant and <,> is the Euclidean inner product.
The Dirichlet-Jordan Theorem solves the pointwise inversion problem. For n = 1, this states that if

f ∈ L1(R) ∩BV (R) then, for each x ∈ R,

lim
M→∞

1

2π

∫ M

−M

f̂(ω)eixωdω =
f(x+) + f(x−)

2
. (1.1)

The integral at left side of (1.1) is called the truncated Fourier integral, also known as the Dirichlet
integral of f . In [4, Corollary 3], F. Móricz proved that if f ∈ L1(R) ∩ BV (R), then the convergence
(1.1) is locally uniform at every point of continuity of f .

For the case n = 2, considering the classical Lebesgue integral theory, in [5], F. Móricz proved locally
uniform convergence of the truncated double Fourier integral

1

4π2

∫
|ξ|≤u

∫
|η|≤v

f̂(ξ, η)ei(ξx+ηy)d(ξ, η),

to f (x, y) , as u, v → ∞, under the conditions: f ∈ L1(R2) ∩BVH(R2),

f̂ ∈ L1((R)× [−δ, δ]) ∪ ([−δ, δ]× R), δ > 0, (C1)
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and (x, y) ∈ R2 a point of continuity of f . The set of bounded variation functions in the sense of Hardy

over R2 is denoted as BVH(R2). In [2], it is proved that the integrability condition (C1) about f̂ can be
omitted to get locally uniform convergence of the truncated double Fourier integral.

We have that
L1(R2) ∩BVH(R2) ⊊ BV||0||(R2) ⊈ L1(R2), (1.2)

where BV||0||(R2) denotes the set of bounded variation functions in the sense of Vitali that vanish when
the norm of their arguments tends to infinity. Thus, previous results and expression (1.2) motivate us to
consider the set BV||0||(R2) to study the inversion problem.

The relations in (1.2) presupposes the use of integrals other than the Lebesgue one. Here, we consider
locally Kurzweil-Henstock integrable functions over R2. Thus, we will show that if f ∈ BV||0||(R2) and
(ξ, η) ∈ R2, where ξ ̸= 0 and η ̸= 0, then the map

(ξ, η) −→ lim
a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

f(t1, t2)e
−i(ξt1+ηt2)d(t1, t2)

is well defined. We call this limit the KP-Fourier transform of f at (ξ, η) and denote by F(f)(ξ, η). Of
course, the KP-Fourier transform is defined in a more general sense than the classical Fourier transform,
see Definition 3.2.

One important result in this article is the Dirichlet-Jordan theorem for the KP-Fourier transform.
That is, if f ∈ BV||0||(R2), then, for x ̸= 0 and y ̸= 0,

1

4π2

∫
α1≤|ξ|≤β1

∫
α2≤|η|≤β2

F(f)(ξ, η)ei(ξx+ηy)d(ξ, η) (1.3)

converges pointwise to

f(x+, y+) + f(x+, y−) + f(x−, y+) + f(x−, y−)

4
,

as α1, α2 → 0 and β1, β2 → ∞. Apparently, in mathematical literature there is no a similar space on
which the proof of this theorem has been analyzed.

This article is organized as follows. In Section 2, we present the improper Riemann-Stieltjes integral
definition over R2 and some of its properties, the concepts of bounded variation in the sense of Vitali and
Hardy. In Section 3, we recall the Kurzweil-Henstock integral over rectangles. Also, we introduce the
definition of the KP-Fourier transform which was defined in [3], and we provide an alternative proof of its
continuity property which was demonstrated in [3] and some auxiliary results. In section 4, we present
our main contributions; we prove a version of the Dirichlet-Jordan Theorem of non-Lebesgue integrable
bounded variation functions, see Theorem 4.1. Moreover, we extend Theorem 1 from [4] and Theorem
2.1 in [2]. This leads us to consider the validity of the locally uniform convergence for the truncated
double Fourier integral of functions in BV||0||(R2).

2. Preliminary Topics

Let us recall that a partition of the bounded interval [a, b] is a finite collection of subintervals
{[xi−1, xi] : i = 1, ..., n}, where a = x0 < ... < xn = b. Now, we consider R = [a, b] × [c, d] a bounded
rectangle of R2. A partition of R is a finite collection of the form

{Ri,j} = {[xi−1, xi]× [yj−1, yj ] | i = 1, .., n and j = 1, ...,m},

where a = x0 < ... < xn = b and c = y0 < ... < ym = d, and the set of such partitions is defined by P(R).
Furthermore, we define the norm of P = {Ri,j} ∈ P(R) as

||P || = max{Di,j}, (2.1)

where Di,j is the diagonal length of Ri,j .
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Definition 2.1 Let f, g : R → R be functions. It is said that g is Riemann-Stieltjes integrable with
respect to f over R, if there exists A ∈ R such that for ε > 0 there exists δε > 0 such that if P = {Ri,j}
with ||P || < δε and (ηi,j , τi,j) ∈ Ri,j, then∣∣∣∣∣∣

∑
i,j

g(ηi,j , τi,j)∆f(xi, yj)−A

∣∣∣∣∣∣ < ε,

where
∆f(xi, yj) := f(xi, yj)− f(xi−1, yj)− f(xi, yj−1) + f(xi−1, yj−1).

Further, A is the value of the Riemann-Stieltjes integral and is denoted as

A =

∫∫
R

gdf =

∫∫
R

g(t1, t1) df(t1, t2).

Remark 2.1

i) The norm in (2.1) is equivalent to the norm used in [7] and [2], hence the integrals defined by each
norm are equal.

ii) The Riemann-Stieltjes integral of a complex function g with respect to a real valued function f is
the sum of the integrals of the real and imaginary part of g with respect to f .

From [6, Theorem 5.4.3] for functions of one variable, we obtain the following result for functions of
two variables.

Lemma 2.1 Let f be a Riemann integrable function over R and suppose that g is bounded and Riemann-
Stieltjes integrable with respect to h over R, where

h(t1, t2) =

∫∫
[a,t1]×[c,t2]

f(s1, s2)d(s1, s2),

for each (t1, t2) ∈ R. Then∫∫
R

g(t1, t2)dh(t1, t2) =

∫∫
R

g(t1, t2)f(t1, t2)d(t1, t2).

In the following definition, we will consider rectangles Q where their sides I1 and I2 can be of the
form (−∞,∞), [a,∞), (−∞, a] or bounded intervals. In addition, we will use the concept of bounded
variation on intervals, [4].

Definition 2.2

i) A function f : Q → R is said to be of bounded variation in the Vitali sense over Q and is
denoted as f ∈ BVV (Q), if

V ar(f,Q) := sup
R⊂Q

sup
{Ri,j}∈P(R)

∑
i,j

|∆f(xi, yj)|

 < ∞,

where the rectangles R are compacts contained in Q.

ii) A function f : Q → R is said to be of bounded variation in the Hardy sense over Q and is
denoted as f ∈ BVH(Q), if f ∈ BVV (Q) and, for each x, y, f(·, y) y f(x, ·) are of bounded variation
over I1 and I2, respectively.

It is evident that BVH(R2) is properly contained in BVV (R2) since f(x, y) = x + y ∈ BVV (R2) \
BVH(R2), [5].
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Remark 2.2 We can observe that if f ∈ BVV (R2), then

lim
m→∞

(V ar(f, [m,∞)× R) + V ar(f, (−∞,−m]× R) + V ar(f,R× [m,∞)) + V ar(f,R× (−∞,−m])) = 0.

We will show some properties that relate the previous concepts, but first we recall the following spaces
of continuous functions defined on R2.

i) Cb(R2) is the space of real valued functions which are bounded.

ii) C0(R2) is the space of functions which vanish at infinity.

iii) Cc(R2) is the space of functions whose support is compact.

It is well known that Cc(R2) ⊊ C0(R2) ⊊ Cb(R2) and Cc(R2) is dense in C0(R2) with respect to the
supremum norm, [11, Theorem 3.17].

Lemma 2.2 ( [2, Lema 3.9]) Let f ∈ BVV (R2) and (x, y) ∈ R2 be a continuity point of f . Then for
each ε > 0, there exists δ > 0 such that

V ar(f, [x− δ, x+ δ]× [y − δ, y + δ]) < ε.

Now we define the improper Riemann-Stieltjes integral.

Definition 2.3 Let f, g : R2 → R be functions. The multiple limit

lim
a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

g(t1, t2)df(t1, t2)

is called the improper Riemann-Stieltjes integral of g with respect to f , when it exists in the
Pringsheim sense [1], and is denoted by ∫∫

R2

g(t1, t2)df(t1, t2).

From [5], if g ∈ Cb(R2) and f ∈ BVV (R2), then the improper Riemann-Stieltjes integral of g with
respect to f exists.

Lemma 2.3 ( [2, Lema 3.6]) If g ∈ Cb(R2) and f ∈ BVV (R2), then

i) The function V (f ; t1, t2) = V ar(f, (−∞, t1]× (−∞, t2)) defined for each

(t1, t2) ∈ R2, belongs to BVV (R2)

ii)

∣∣∣∣∫∫
R2

g(t1, t2)df(t1, t2)

∣∣∣∣ ≤ ∫∫
R2

|g(t1, t2)|dV (f ; t1, t2).

Theorem 2.1 Suppose that g ∈ C0(R2) and f ∈ BVV (R2). Then, there exists a σ-algebra M of R2

containing the Borelians and there exists a unique positive finite measure µ on M such that

i) µ((a, b)× (c, d)) ≤ V ar(f, [a, b]× [c, d]), for (a, b)× (c, d) ⊂ R2.

ii)

∫∫
R2

g(t1, t2)dV (f ; t1, t2) =

∫∫
R2

g(t1, t2)dµ(t1, t2).

Proof: From Lemma 2.3, over Cb(R2) we define the bounded positive linear functional

Λ(g) =

∫∫
R2

g(t1, t2)dV (f ; t1, t2).
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By [11, Theorem 2.14] (Riesz Representation Theorem), there exists a σ-algebra M of R2 containing
the Borelians and there exists a unique positive measure µ on M such that

Λ(g) =

∫∫
R2

g(t1, t2)dµ(t1, t2), for all g ∈ Cc(R2). (2.2)

Let R = [a, b] × [c, d] ⊂ R2. From [11, Theorem 2.14], it follows that µ(int(R)) ≤ V ar(f,R). Thus,
µ is a finite measure. This proves i).

Now, let g ∈ C0(R2) be. Then, there exists a sequence of functions (gn) that belongs to Cc(R2) which
converges uniformly to g. Moreover,

lim
n→∞

∫∫
R2

gn(t1, t2)dV (f ; t1, t2) =

∫∫
R2

g(t1, t2)dV (f ; t1, t2). (2.3)

and

lim
n→∞

∫∫
R2

gn(t1, t2)dµ(t1, t2) =

∫∫
R2

g(t1, t2)dµ(t1, t2). (2.4)

By (2.2), (2.3) and (2.4) we conclude that, for g ∈ C0(R2),∫∫
R2

g(t1, t2)dV (f ; t1, t2) =

∫∫
R2

g(t1, t2)dµ(t1, t2).

2

2.1. The space BV||0||(R2)

The space of functions f inBVV (R2) which satisfy that lim
||(x,y)||→∞

f(x, y) = 0 is denoted byBV||0||(R2).

The following lemma can be proved from the definition of bounded variation, see Definition 2.2 and
[4].

Lemma 2.4 Let f ∈ BV||0||(R2) be. Then, for each (x, y) ∈ R2,

i) |f(x, y)| ≤ V ar(f(x, ·),R) ≤ V ar(f, [x,∞)× R),
ii) |f(x, y)| ≤ V ar(f(x, ·),R) ≤ V ar(f, (−∞, x]× R),
iii) |f(x, y)| ≤ V ar(f(·, y),R) ≤ V ar(f,R× [y,∞)),

iv) |f(x, y)| ≤ V ar(f(·, y),R) ≤ V ar(f,R× (−∞, y]).

The space BVH0
(R2) is defined in [3] as

BVH0
(R2) = {f ∈ BVH(R2) : lim

a→±∞
f(a, y) = 0 = lim

b→±∞
f(x, b), ∀x, y ∈ R}.

From Lemma 2.4 and Remark 2.2, we obtain the following characterization theorem that confirms the
equality (2.3) in [3].

Theorem 2.2 The function f ∈ BV||0||(R2) if and only if f ∈ BVH0
(R2).

It is important to note that

L1(R2) ∩BVH(R2) ⊊ BV||0||(R2) ̸⊂ L1(R2). (2.5)

Example 2.1 The function

f(x, y) =

{
(1/x)(1/y) si x, y ≥ 1

0 si x < 1 o y < 1,

belongs to BV||0||(R2) \ L1(R2). This function illustrates the contention relationships in (2.5).
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Proposition 2.1 If g ∈ Cb(R2) and f ∈ BV||0||(R2), then∫∫
R2

g(t1, t2)df(t1, t2) =

∫∫
R2

f(t1, t2)dg(t1, t2).

Proof: Let R = [a, b]× [c, d] ⊂ R2 be. By Theorem 2.2 and the Integration by Parts Theorem in [5], we
have that∫∫

R

g(t1, t2)df(t1, t2) = f(b, d)g(b, d)− f(b, c)g(b, c)− f(a, d)g(a, d) + f(a, c)g(a, c)

−
∫ b

a

g(t1, d)df(t1, d) +

∫ b

a

g(t1, c)df(t1, c)−
∫ d

c

g(b, t2)df(b, t2)

+

∫ d

c

g(a, t2)df(a, t2) +

∫∫
R

f(t1, t2)dg(t1, t2).

(2.6)

It is immediate

lim
a,c→−∞
b,d→∞

f(b, d)g(b, d) = lim
a,c→−∞
b,d→∞

f(b, c)g(b, c) = lim
a,c→−∞
b,d→∞

f(a, d)g(a, d) = lim
a,c→−∞
b,d→∞

f(a, c)g(a, c) = 0.

In addition, according to Lemma 2.4, it is satisfied that∣∣∣∣∣
∫ b

a

g(t1, d)df(t1, d)

∣∣∣∣∣ ≤ V ar(f,R× [d,∞))||g||∞.

By Remark 2.2, it follows that

lim
a,c→−∞
b,d→∞

∫ b

a

g(t1, d)df(t1, d) = 0.

Similarly, it shows that

lim
a,c→−∞
b,d→∞

∫ b

a

g(t1, c)df(t1, c) = lim
a,c→−∞
b,d→∞

∫ d

c

g(b, t2)df(b, t2) = lim
a,c→−∞
b,d→∞

∫ d

c

g(a, t2)df(a, t2) = 0.

By [2, Lemma 3.5], the improper Riemann-Stieltjes integral of g with respect to f exists. Therefore,
applying the limit in (2.6) as a, c → −∞ and b, d → −∞ we conclude that∫∫

R2

g(t1, t2)df(t1, t2) =

∫∫
R2

f(t1, t2)dg(t1, t2).

2

Proposition 2.2 Let f ∈ BV||0||(R2) be. Then, for u1 < u2 and v1 < v2,

lim
a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

f(t1, t2)

(∫ u2

u1

cos(t1τ)dτ

)(∫ v2

v1

cos(t2τ)dτ

)
d(t1, t2)

=

∫∫
R2

f(t1, t2)d

(∫ u2

u1

sin(t1τ)

τ
dτ

)(∫ v2

v1

sin(t2τ)

τ
dτ

)
.

Proof: Let R = [a, b]× [c, d] ⊂ R2 be. By [4, Lemma 4] we define, for each (t1, t2) ∈ R2, the functions

g(t1, t2) :=

(∫ u2

u1

cos(t1τ)dτ

)(∫ v2

v1

cos(t2τ)dτ

)
∈ C(R2)
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and

h(t1, t2) :=

(∫ u2

u1

sin(t1τ)

τ
dτ

)(∫ v2

v1

sin(t2τ)

τ
dτ

)
∈ C0(R2),

which satisfy the relation∫ t1

a

∫ t2

c

g(x, y)dxdy =h(t1, t2)− h(t1, c)− h(a, t2) + h(a, c). (2.7)

Since h ∈ C(R) and f ∈ BVH(R), applying the Integration by Parts Theorem [5], we have that∫∫
R
fdh exists. Similary, we prove that the following integrals∫∫

R

f(t1, t2)dh(t1, c),

∫∫
R

f(t1, t2)dh(a, t2) and

∫∫
R

f(t1, t2)dh(a, c) (2.8)

exist and are equal to zero.
From (2.7) and Lemma 2.1, we have that∫∫

R

f(t1, t2)dh(t1, t2)−
∫∫

R

f(t1, t2)dh(t1, c)−
∫∫

R

f(t1, t2)dh(a, t2)

+

∫∫
R

f(t1, t2)dh(a, c) =

∫∫
R

f(t1, t2)g(t1, t2)d(t1, t2). (2.9)

According to (2.8) and (2.9),∫∫
R

f(t1, t2)g(t1, t2)d(t1, t2) =

∫∫
R

f(t1, t2)dh(t1, t2).

By Proposition 2.1,
∫∫

R2 fdh exists, then applying the limit to the above equality as a, c → −∞ and
b, d → ∞ we conclude that

lim
a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

f(t1, t2)g(t1, t2)d(t1, t2) =

∫∫
R2

f(t1, t2)dh(t1, t2).

2

2.2. Sequences in (L)

The following definition can be found in [8] and [4].

Definition 2.4 An increasing sequence {uj}j∈N ⊂ R+ is said to satisfy Lacunary’s condition (L)

and is denoted as {uj}j∈N ∈ (L), if there exists A > 1 such that

um

∞∑
j=m

1

uj
≤ A, m = 1, 2, 3, ....

Example 2.2 The sequence {2j}j∈N satisfies condition (L) with A = 2.

Some results of our interest associated with sequences in (L) are the following.

Lemma 2.5 ( [4, Lemma 2]) If {uj}j∈N ∈ (L) , then

∞∑
j=1

max
uj−1≤v≤uj

∣∣∣∣∣
∫ v

uj−1

sin(tu)

u
du

∣∣∣∣∣ ≤ 3A+ 4, t ̸= 0,

where u0 := 0 and A is derived from Definition 2.4.

Lemma 2.6 ( [4, Lema 3]) If {uj}j∈N ∈ (L) , then

∞∑
j=m+1

max
uj−1≤v≤uj

∣∣∣∣∣
∫ v

uj−1

sin(tu)

u
du

∣∣∣∣∣ ≤ 3A

|t|um
, m ∈ N; t ̸= 0.
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3. KP-Fourier Transform

In this section we define a transform that generalizes the Fourier transform operator since it can be
applied to non-absolutely integrable functions. For this, we begin defining the Kurzweil-Henstock integral
over a bounded rectangle R = [a, b]× [c, d], [10], [9].

i) Let δ : R −→ R be a function. It is said that δ is a gauge on R, if δ(t1, t2) ≥ 0 for all (t1, t2) ∈ R.

ii) Let P = {Ri,j} ∈ P(R) (defined in Section 2) and (ξi,j , ηi,j) ∈ Ri,j . It is said that P is δ−fine, if
[xi−1, xi] ⊂ (ξi,j−δ(ξi,j , ηi,j), ξi,j+δ(ξi,j , ηi,j)) and [yj−1, yj ] ⊂ (ηi,j−δ(ξi,j , ηi,j), ηi,j+δ(ξi,j , ηi,j)).

iii) Let P = {Ri,j} ∈ P(R) and (ξi,j , ηi,j) ∈ Ri,j . Given a function f : R −→ R, the Riemann sum
of f over P is defined as

S(f ;P ) =
∑
i,j

f(ξi,j , ηi,j)(xi − xi−1)(yj − yj−1).

Definition 3.1 A function f : R → R is said to be Kurzweil-Henstock (KH) integrable over R
and we denote it by f ∈ KH(R), if there exists A ∈ R such that for ε > 0, there exists a gauge δε on R
such that for P = {Ri,j} ∈ P(R) which is δε−fine, then

|S(f ;P )−A| < ε.

Moreover, A is the Kurzweil-Henstock integral of f and is denoted by

A =

∫∫
R

f(t1, t2)d(t1, t2).

The space of KH integrable functions over compact rectangles is denoted by KHloc(R2). In [10],
it is proved that the space of locally Lebesgue integrable functions L1

loc(R2) is properly contained in
KHloc(R2).

Definition 3.2 [3, Definition 4.1] Let f : R2 → R be a function such that f(·)e−i<·,v> ∈ KHloc(R2).
The KP-Fourier Transform of f at (ξ, η) ∈ R2 is defined as

F(f)(ξ, η) := lim
a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

f(t1, t2)e
−i(ξt1+ηt2)d(t1, t2), (3.1)

when the limit in (3.1) exists in the Pringsheim sense.

Remark 3.1 Let us observe that if f ∈ L1(R2), then the KP-Fourier transform F(f) is well-defined for

each (ξ, η) ∈ R2 and is equal to the Fourier transform f̂ .

The following result shows that the KP-Fourier transform operator is well defined on BV||0||(R2) which
is not contained in L1(R2) according to (2.5).

Theorem 3.1 Suppose that f ∈ BV||0||(R2). Then, for ξ ̸= 0 and η ̸= 0,

F(f)(ξ, η) = − 1

ξη

∫∫
R2

e−i(ξt1+ηt2)df(t1, t2).

Proof:
Let R = [a, b] × [c, d] ⊂ R2 and ξ ̸= 0, η ̸= 0. Let g(t1, t2) = e−i(ξt1+ηt2) and G(t1, t2) =

−e−i(ξt1+ηt2)/ξη, for each (t1, t2) ∈ R2. By [10, Theorem 6.5.9], we have that fg ∈ KH(R) and∫∫
R

f(t1, t2)g(t1, t2)d(t1, t2) =f(b, d)G(b, d)− f(b, c)G(b, c)− f(a, d)G(a, d) + f(a, c)G(a, c)

−
∫ b

a

G(t1, d)df(t1, d) +

∫ b

a

G(t1, c)df(t1, c)−
∫ d

c

G(b, t2)df(b, t2)

+

∫ d

c

G(a, t2)df(a, t2) +

∫∫
R

G(t1, t2)df(t1, t2).

(3.2)
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It is easy to prove that

lim
a,c→−∞
b,d→∞

f(b, d)G(b, d) = lim
a,c→−∞
b,d→∞

f(b, c)G(b, c) = lim
a,c→−∞
b,d→∞

f(a, d)G(a, d) = lim
a,c→−∞
b,d→∞

f(a, c)G(a, c) = 0.

From Lemma 2.4, ∣∣∣∣∣
∫ b

a

G(t1, d)df(t1, d)

∣∣∣∣∣ ≤ 2

|ξη|
V ar(f,R× [d,∞)).

By Remark 2.2, it follows that

lim
a,c→−∞
b,d→∞

∫ b

a

G(t1, d)df(t1, d) = 0.

Similarly, we have that

lim
a,c→−∞
b,d→∞

∫ b

a

G(t1, c)df(t1, c) = lim
a,c→−∞
b,d→∞

∫ d

c

G(b, t2)df(b, t2) = lim
a,c→−∞
b,d→∞

∫ d

c

G(a, t2)df(a, t2) = 0.

Since the real and imaginary part of G belong to Cb(R2), according to Proposition 2.1, we can claim
that

∫∫
R2 Gdf exists. Therefore, applying the limit to (3.2) as a, c → and b, d → we concluded that

lim
a,c→−∞
b,d→∞

∫∫
R

f(t1, t2)e
−i(ξt1+ηt2)d(t1, t2) = − 1

ξη

∫∫
R2

e−i(ξt1+ηt2)df(t1, t2).

2

Example 3.1 Considering the function defined in the Example 2.1 and by Theorem 3.1 we prove that,
for (ξ, η) ∈ R2 with ξ ̸= 0 and η ̸= 0, its KP-Fourier transform is

F(f)(ξ, η) = Γ(0, iξ)Γ(0, iη),

where Γ(·, ·) is the incomplete Gamma function. Let us note that when ξ = 0 or η = 0, F(f)(ξ, η) does
not exist.

In [3, Corollary 4.1] the following result is proved, however we provide an alternative proof.

Proposition 3.1 Let f ∈ BV||0||(R2) be. Then F(f) is continuous at (ξ, η) with ξ ̸= 0 and η ̸= 0.

Proof: By Theorem 3.1, for f ∈ BV||0||(R2) and (ξ0, η0) ∈ R2 with ξ0 ̸= 0 and η0 ̸= 0, it is satisfied that

F(f)(ξ0, η0) = − 1

ξ0η0

∫∫
R2

cos(ξ0t1 + η0t2)df(t1, t2) +
i

ξ0η0

∫∫
R2

sin(ξ0t1 + η0t2)df(t1, t2). (3.3)

Let (ξ, η) ∈ {(x, y) ∈ R2 : x ̸= 0 and y ̸= 0}. By Lemma 2.3 and the Mean Value Theorem, we obtain
the following inequality∣∣∣∣∣
∫∫

[a,b]×[c,d]

cos(ξt1 + ηt2)df(t1, t2)−
∫∫

[a,b]×[c,d]

cos(ξ0t1 + η0t2)df(t1, t2)

∣∣∣∣∣
≤ |ξ − ξ0|

∫∫
[a,b]×[c,d]

|t1|dV (f ; t1, t2) + |η − η0|
∫∫

[a,b]×[c,d]

|t2|dV (f ; t1, t2).

Then, for each [a, b]× [c, d] ⊂ R2,

lim
(ξ,η)→(ξ0,η0)

∫∫
[a,b]×[c,d]

cos(ξt1 + ηt2)df(t1, t2) =

∫∫
[a,b]×[c,d]

cos(ξ0t1 + η0t2)df(t1, t2). (3.4)
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By Remark 2.2, given ε > 0 there exists M > 0 such that

V ar(f, [M,∞)× R) < ε/4,

V ar(f,R× [M,∞)) < ε/4,

V ar(f, (−∞,−M ]× R) < ε/4

and V ar(f,R× (−∞,−M ]) < ε/4.

Suppose that [a, b] × [c, d], [a1, b1] × [c1, d1] ⊃ [−M,M ]2. Applying ii) of Theorem 2.3 on compact
rectangles and the previous inequalities we have that, for each (ξ, η) ∈ R2,∣∣∣∣∣

∫∫
[a1,b1]×[c1,d1]

cos(ξt1 + ηt2)df(t1, t2)−
∫∫

[a,b]×[c,d]

cos(ξt1 + ηt2)df(t1, t2)

∣∣∣∣∣ < ε. (3.5)

Thus, the limit

lim
a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

cos(ξt1 + ηt2)df(t1, t2) (3.6)

is uniform with respect to (ξ, η) ∈ R2.

Applying [12, Theorem 1], (3.4) and (3.6),

lim
(ξ,η)→(ξ0,η0)

− 1

ξη

∫∫
R2

cos(ξt1 + ηt2)df(t1, t2) = − 1

ξ0η0

∫∫
R2

cos(ξ0t1 + η0t2)df(t1, t2). (3.7)

Similarly, it is proved that

lim
(ξ,η)→(ξ0,η0)

i

ξη

∫∫
R2

sin(ξt1 + ηt2)df(t1, t2) =
i

ξ0η0

∫∫
R2

sin(ξ0t1 + η0t2)df(t1, t2). (3.8)

According to (3.3), (3.7) and (3.8), we conclude that F(f) is continuous at (ξ0, η0). 2

For 0 < αi < βi < ∞ with i = 1, 2, we denote

Rβ1,β2
α1,α2

= {(x, y) ∈ R2 : α1 ≤ |x| ≤ β1, α2 ≤ |y| ≤ β2}

and

hαi,βi
(t) = (sin(βit)− sin(αit))/πt.

Proposition 3.2 Suppose that f ∈ BV||0||(R2) and (x, y) ∈ R2. Then

1

4π2

∫∫
R

β1,β2
α1,α2

F(f)(ε, η)ei(xε+yη)d(ε, η) =
1

π2
lim

a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

f(x+ t1, y + t2)

×
(
sin(β1t1)− sin(α1t1)

t1

)(
sin(β2t2)− sin(α2t2)

t2

)
d(t1, t2).

Proof: Theorem 3.1 and Proposition 3.1 give us conditions to apply Lebesgue’s Dominated Convergence
Theorem and Fubini’s Theorem in the following equalities
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1

4π2

∫∫
R

β1,β2
α1,α2

F(f)(ε, η)ei(xε+yη)d(ε, η)

=
1

4π2
lim

a,c→−∞
b,d→∞

∫∫
R

β1,β2
α1,α2

∫∫
[a,b]×[c,d]

f(t1, t2)e
−i(t1ε+t2η)d(t1, t2)e

i(xε+yη)d(ε, η)

=
1

4π2
lim

a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

∫∫
R

β1,β2
α1,α2

f(t1, t2)e
−i(t1−x)εe−i(t2−y)ηd(ε, η)d(t1, t2)

= lim
a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

f(t1, t2)hα1,β1
(x− t1)hα2,β2

(y − t2)d(t1, t2)

= lim
a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

f(x+ µ, y + τ)hα1,β1
(µ)hα2,β2

(τ)d(µ, τ).

(3.9)

The last equality is obtained by making the change of variable µ = t1 − x and τ = t2 − y. 2

Proposition 3.3 Let f ∈ BV||0||(R2) and (x, y) ∈ R2. Then the function

g(x,y)(t1, t2) = f(x− t1, y − t2) + f(x− t1, y + t2) + f(x+ t1, y − t2) + f(x+ t1, y + t2)

belongs to BV||0||(R2) and the limit

lim
a→∞

∫∫
[0,a]×[0,a]

g(x,y)(t1, t2)hα1,β1
(t1)hα2,β2

(t2)d(t1, t2) (3.10)

exists and is uniform with respect to 0 < αi < βi < ∞ for i = 1, 2.

Proof: Making the change of variable µ = x − t1 and τ = y − t2 in (3.9) from Proposition 3.2 we have
that, for 0 < αi < βi < ∞, i = 1, 2, the limit

lim
a→∞

∫∫
[−a,a]×[−a,a]

f(x− t1, y − t2)hα1,β1(t1)hα2,β2(t2)d(t1, t2)

exists.
Considering the appropriate change of variables and for 0 < αi < βi < ∞, i = 1, 2,

lim
a→∞

∫∫
[−a,a]×[−a,a]

f(x− t1, y − t2)hα1,β1(t1)hα2,β2(t2)d(t1, t2)

= lim
a→∞

∫∫
[0,a]×[0,a]

g(x,y)(t1, t2)hα1,β1(t1)hα2,β2(t2)d(t1, t2). (3.11)

Now, let us prove that the limit in (3.10) is uniform. Since g(x,y) belongs to BV||0||(R2), given ε > 0
there exists δ0 > 0 such that

i) If (t1, t2) ∈ (0,∞)2 with ||(t1, t2)|| > δ0, then |g(x,y)(t1, t2)| < ε,

ii) V ar(g(x,y), [δ0,∞)× [0,∞)) < ε,

iii) V ar(g(x,y), [0,∞)× [δ0,∞)) < ε.
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For each (z1, z2) ∈ R2 and 0 < αi < βi < ∞, i = 1, 2, we define the function

Hβ1,β2
α1,α2

(z1, z2) =

∫ z1

0

∫ z2

0

hα1,β1
(t1)hα2,β2

(t2)dt1dt2.

Let a2 > a1 ≥ δ0. Applying the Integration by Parts Theorem [10, Theorem 6.5.9] and the above
statements, we obtain that

∣∣∣∣∣∣∣
∫∫

[0,a1]×[0,a1]

g(x,y)(t1, t2)hα1,β1
(t1)hα2,β2

(t2)d(t1, t2)

−
∫∫

[0,a2]×[0,a2]

g(x,y)(t1, t2)hα1,β1
(t1)hα2,β2

(t2)d(t1, t2)

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∫∫

[0,a2]×[a1,a2]

g(x,y)(t1, t2)hα1,β1
(t1)hα2,β2

(t2)d(t1, t2)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫∫

[a1,a2]×[0,a1]

g(x,y)(t1, t2)hα1,β1(t1)hα2,β2(t2)d(t1, t2)

∣∣∣∣∣∣∣
=

∣∣Hβ1,β2
α1,α2

(a2, a2)g(x,y)(a2, a2)−Hβ1,β2
α1,α2

(0, a2)g(x,y)(0, a2)

+Hβ1,β2
α1,α2

(0, a1)g(x,y)(0, a1)−Hβ1,β2
α1,α2

(a2, a1)g(x,y)(a2, a1)

−
∫ a2

0

Hβ1,β2
α1,α2

(·, a2)dg(x,y)(·, a2) +
∫ a2

0

Hβ1,β2
α1,α2

(·, a1)dg(x,y)(·, a1)

−
∫ a2

a1

Hβ1,β2
α1,α2

(a2, ·)dg(x,y)(a2, ·) +
∫ a2

a1

Hβ1,β2
α1,α2

(0, ·)dg(x,y)(0, ·)

+

∫∫
[0,a2]×[a1,a2]

Hβ1,β2
α1,α2

dg(x,y)

∣∣∣∣∣+ ∣∣Hβ1,β2
α1,α2

(a2, a1)g(x,y)(a2, a1)

−Hβ1,β2
α1,α2

(a1, a1)g(x,y)(a1, a1) +Hβ1,β2
α1,α2

(a2, 0)g(x,y)(a2, 0)

−Hβ1,β2
α1,α2

(a1, 0)g(x,y)(a1, 0)−
∫ a2

a1

Hβ1,β2
α1,α2

(·, a1)dg(x,y)(·, a1)

+

∫ a2

a1

Hβ1,β2
α1,α2

(·, 0)dg(x,y)(·, 0)−
∫ a1

0

Hβ1,β2
α1,α2

(a2, ·)dg(x,y)(a2, ·)

+

∫ a1

0

Hβ1,β2
α1,α2

(a1, ·)dg(x,y)(a1, ·) +
∫∫

[a1,a2]×[0,a1]

Hβ1,β2
α1,α2

dg(x,y)

∣∣∣∣∣
≤ Si(π)2

(
V ar(g(x,y)(·, a2), [0, a2]) + V ar(g(x,y)(·, a1), [0, a2])

+ V ar(g(x,y)(a2, ·), [a1, a2]) + V ar(g(x,y), [0, a2]× [a1, a2])

+ V ar(g(x,y)(·, a1), [a1, a2]) + V ar(g(x,y)(a2, ·), [0, a1])
+V ar(g(x,y)(a1, ·), [0, a1]) + V ar(g(x,y), [a1, a2]× [0, a1]) + 4ε

)
< 12Si(π)2ε,

where Si is the Sine Integral function.
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Therefore, given ε > 0, there exists δ0 > 0 such that∣∣∣∣∣∣∣
∫∫

[0,a1]×[0,a1]

g(x,y)(t1, t2)hα1,β1
(t1)hα2,β2

(t2)d(t1, t2)

−
∫∫

[0,a2]×[0,a2]

g(x,y)(t1, t2)hα1,β1(t1)hα2,β2(t2)d(t1, t2)

∣∣∣∣∣∣∣ < 12Si(π)2ε,

for a2, a1 ≥ δ0 and 0 < αi < βi < ∞ with i = 1, 2. 2

4. An Extension of the Dirichlet-Jordan Theorem on BV||0||(R2).

The first of our mains results is a two-dimensional extension of the Dirichlet-Jordan Theorem for
functions in BV0(R).

Theorem 4.1 Suppose that f ∈ BV||0||(R2) and (x, y) ∈ R2. Then,

1

4π2
lim

α1,α2→0
β1,β2→∞

∫∫
R

β1,β2
α1,α2

F(f)(ε, η)ei(xε+yη)d(ε, η)

=
f(x+, y+) + f(x+, y−) + f(x−, y+) + f(x−, y−)

4
. (4.1)

Proof: By Proposition 3.2 and (3.11), for 0 < αi < βi < ∞ with i = 1, 2,

1

4π2

∫∫
R

β1,β2
α1,α2

F(f)(ε, η)ei(xε+yη)d(ε, η) = lim
a→∞

∫∫
[0,a]×[0,a]

g(x,y)(t1, t2)hα1,β1
(t1)hα2,β2

(t2)d(t1, t2). (4.2)

We know that for a > 0, the following statements are satisfied.

i) lim
α2→0
β2→∞

∫ a

0
g(x,y)(t1, t2)hα2,β2

(t2)dt2 = g(x,y)(t1, 0+)/2 for t1 ∈ [0, a],

ii)
∣∣∫ a

0
g(x,y)(t1, t2)hα2,β2

(t2)dt2
∣∣ ≤ 2Si(π)

[
||g(x,y)||∞ + V ar(g(x,y),R2)

]
for t1 ∈ [0, a] and 0 < α2 <

β2 < ∞,

iii)
{∫ a

0
g(x,y)(·, t2)hα2,β2

(t2)dt2 : 0 < α2 < β2 < ∞
}
⊂ L1([0, a]).

From Fubini’s Theorem and Dominated Convergence Theorem we have, for a > 0, that

lim
α2→0
β2→∞

∫∫
[0,a]×[0,a]

g(x,y)(t1, t2)hα1,β1(t1)hα2,β2(t2)d(t1, t2) =

∫ a

0

g(x,y)(t1, 0+)

2
hα1,β1(t1)dt1. (4.3)

From Proposition 3.3, [12, Theorem 1] and (4.3), it follows that

lim
α2→0
β2→∞

lim
a→∞

∫∫
[0,a]×[0,a]

g(x,y)(t1, t2)hα1,β1
(t1)hα2,β2

(t2)d(t1, t2)

= lim
a→∞

lim
α2→0
β2→∞

∫∫
[0,a]×[0,a]

g(x,y)(t1, t2)hα1,β1
(t1)hα2,β2

(t2)d(t1, t2). (4.4)
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By (4.2) and (4.4), we obtain that

1

4π2
lim

α1,α2→0
β1,β2→∞

∫∫
R

β1,β2
α1,α2

F(f)(ε, η)ei(xε+yη)d(ε, η) = lim
α1→0
β1→∞

lim
α2→0
β2→∞

lim
a→∞

∫∫
[0,a]×[0,a]

g(x,y)(t1, t2)

× hα1,β1
(t1)hα2,β2

(t2)d(t1, t2)

= lim
α1→0
β1→∞

lim
a→∞

lim
α2→0
β2→∞

∫∫
[0,a]×[0,a]

g(x,y)(t1, t2)

× hα1,β1(t1)hα2,β2(t2)d(t1, t2)

= lim
α1→0
β1→∞

lim
a→∞

∫ a

0

g(x,y)(t1, 0+)

2
hα1,β1(t1)dt1

= lim
α1→0
β1→∞

∫ ∞

0

g(x,y)(t1, 0+)

2
hα1,β1(t1)dt1

=
g(x,y)(0+, 0+)

4
,

where g(x,y)(0+, 0+) = f(x+, y+) + f(x+, y−) + f(x−, y+) + f(x−, y−). 2

Theorems 1 and 3 in [5] and Theorem 2.1 in [2] claim that Fourier series of functions f in L1(R2) ∩
BVH(R2) are bounded and converge locally uniform at points of continuity of f . Thus, the extensions of
such results for functions in BV||0||(R2) are stated as follows.

Theorem 4.2 Let f ∈ BV||0||(R2) and (un), (vm) ∈ (L) with constants A1 and A2, respectively. Then,
for each (x, y) ∈ R2,

∞∑
i,j=2

sup
u∈[ui−1,ui]

sup
v∈[vj−1vj ]

∣∣∣∣∣ 1

4π2

∫∫
Ru,v

ui−1,vj−1

F(f)(ξ, η)ei(xξ+yη)d(ξ, η)

∣∣∣∣∣ ≤ k,

where k = (3A1 + 4)(3A2 + 4)V ar(f,R2)/π2.

Proof: Let (x, y) ∈ R2 be. For u ∈ [ui−1, ui], v ∈ [vj−1, vj ] with i, j ≥ 2, let

Ai,j(u, v) :=
1

4π2

∫∫
Ru,v

ui−1,vj−1

F(f)(ξ, η)ei(xξ+yη)d(ξ, η).

By Proposition 3.2, we have that

Ai,j(u, v) =
1

π2
lim

a,c→−∞
b,d→∞

∫∫
[a,b]×[c,d]

f(x+ t1, y + t2)

(∫ u

ui−1

cos(t1τ)dτ

)(∫ v

vj−1

cos(t2τ)dτ

)
d(t1, t2).

Since f(x+ ·, y + ·) ∈ BV||0||(R2) and from Propositions 2.1 and 2.2, we obtain that

Ai,j(u, v) =
1

π2

∫∫
R2

f(x+ t1, y + t2)d

(∫ u

ui−1

sin(t1τ)

τ
dτ

)(∫ v

vj−1

sin(t2τ)

τ
dτ

)

=
1

π2

∫∫
R2

(∫ u

ui−1

sin(t1τ)

τ
dτ

)(∫ v

vj−1

sin(t2τ)

τ
dτ

)
df(x+ t1, y + t2).

Now, ii) of Lemma 2.3 assures that

|Ai,j(u, v)| ≤
1

π2

∫∫
R2

∣∣∣∣∣
∫ u

ui−1

sin(t1τ)

τ
dτ

∣∣∣∣∣
∣∣∣∣∣
∫ v

vj−1

sin(t2τ)

τ
dτ

∣∣∣∣∣ dVx,y(f ; t1, t2)

=:B(u, v),

(4.5)
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where Vx,y(f ; t1, t2) = V ar(f, (−∞, x+ t1]× (−∞, x+ t2]).
Applying Theorem 2.1, there exists a σ−algebra M of R2 and a measure µx,y on M such that

B(u, v) =
1

π2

∫∫
R2

∣∣∣∣∣
∫ u

ui−1

sin(t1τ)

τ
dτ

∣∣∣∣∣
∣∣∣∣∣
∫ v

vj−1

sin(t2τ)

τ
dτ

∣∣∣∣∣ dµx,y(t1, t2)

≤ 1

π2

∫∫
R2

(
max

u∈[ui−1,ui]

∣∣∣∣∣
∫ u

ui−1

sin(t1τ)

τ
dτ

∣∣∣∣∣
)(

max
v∈[vj−1,vj ]

∣∣∣∣∣
∫ v

vj−1

sin(t2τ)

τ
dτ

∣∣∣∣∣
)
dµx,y(t1, t2).

(4.6)

From (4.5) and (4.6), for each u ∈ [ui−1, ui] and v ∈ [vj−1, vj ], the following is satisfied

|Ai,j(u, v)| ≤
1

π2

∫∫
R2

(
max

u∈[ui−1,ui]

∣∣∣∣∣
∫ u

ui−1

sin(t1τ)

τ
dτ

∣∣∣∣∣
)(

max
v∈[vj−1,vj ]

∣∣∣∣∣
∫ v

vj−1

sin(t2τ)

τ
dτ

∣∣∣∣∣
)
dµx,y(t1, t2).

We define, for each i, j ≥ 2,

Mi,j(f ;x, y) := sup
u∈[ui−1,ui]

sup
v∈[vj−1vj ]

|Ai,j(u, v)| .

One can prove, for each i, j ≥ 2,

Mi,j(f ;x, y) ≤
1

π2

∫∫
R2

(
max

u∈[ui−1,ui]

∣∣∣∣∣
∫ u

ui−1

sin(t1τ)

τ
dτ

∣∣∣∣∣
)(

max
v∈[vj−1,vj ]

∣∣∣∣∣
∫ v

vj−1

sin(t2τ)

τ
dτ

∣∣∣∣∣
)
dµx,y(t1, t2).

Considering the above inequalities and by Lemma 2.5, for i, j ≥ 2, we obtain that

∞∑
i=2

∞∑
j=2

Mi,j(f ;x, y) ≤
1

π2

∞∑
i=2

∞∑
j=2

∫∫
R2

(
max

u∈[ui−1,ui]

∣∣∣∣∣
∫ u

ui−1

sin(t1τ)

τ
dτ

∣∣∣∣∣
)

×

(
max

v∈[vj−1,vj ]

∣∣∣∣∣
∫ v

vj−1

sin(t2τ)

τ
dτ

∣∣∣∣∣
)
dµx,y(t1, t2)

=
1

π2

∫∫
R2

( ∞∑
i=2

max
u∈[ui−1,ui]

∣∣∣∣∣
∫ u

ui−1

sin(t1τ)

τ
dτ

∣∣∣∣∣
)

×

 ∞∑
j=2

max
v∈[vj−1,vj ]

∣∣∣∣∣
∫ v

vj−1

sin(t2τ)

τ
dτ

∣∣∣∣∣
 dµx,y(t1, t2)

≤ 1

π2

∫∫
R2

(3A1 + 4)(3A2 + 4)dµx,y(t1, t2)

=
1

π2
(3A1 + 4)(3A2 + 4)V ar(f,R2).

(4.7)

2

Theorem 4.3 Let f ∈ BV||0||(R2) and (x, y) ∈ R2 a point of continuity of f . If (un), (vm) ∈ (L) with
constants A1 y A2, respectably, then the series

∞∑
i=2

∞∑
j=2

sup
u∈[ui−1,ui]

sup
v∈[vj−1vj ]

∣∣∣∣∣ 1

4π2

∫∫
Ru,v

ui−1,vj−1

F(f)(ξ, η)ei(·ξ+·η)d(ξ, η)

∣∣∣∣∣
converges locally uniform at (x, y).
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Proof: Let n,m ∈ N be. From (4.7), for (x, y) ∈ R2, the following holds

∞∑
i=n+1

∞∑
j=m+1

Mi,j(f ;x, y) ≤
1

π2

∫∫
R2

( ∞∑
i=n+1

max
u∈[ui−1,ui]

∣∣∣∣∣
∫ u

ui−1

sin(t1τ)

τ
dτ

∣∣∣∣∣
)

×

 ∞∑
j=m+1

max
v∈[vj−1,vj ]

∣∣∣∣∣
∫ v

vj−1

sin(t2τ)

τ
dτ

∣∣∣∣∣
 dµx,y(t1, t2), (4.8)

where µx,y is a measure satisfying

µx,y((a, b)× (c, d)) ≤ V ar(f, [a, b]× [c, d] + (x, y)) (4.9)

and µx,y(R2) ≤ V ar(f,R2). (4.10)

Suppose that (x0, y0) ∈ R2 is a point of continuity of f and ε > 0. By Lemma 2.2, there exits
δ > δ0 = δ/2 > 0, such that

V ar(f, [x0 − 2δ0, x+ 2δ0]× [y0 − 2δ0, y0 + 2δ0]) < ε.

Now, if (x′, y′) ∈ (x0 − δ0, x0 + δ0)× (y0 − δ0, y0 + δ0), we can claim that

[x′ − δ0, x
′ + δ0]× [y′ − δ0, y

′ + δ0] ⊂ [x0 − 2δ0, x0 + 2δ0]× [y0 − 2δ0, y0 + 2δ0].

Then,
V ar(f, [x′ − δ0, x

′ + δ0]× [y′ − δ0, y
′ + δ0]) < ε. (4.11)

Let 0 < δ1 < δ0 and (x′, y′) ∈ (x0 − δ0, x0 + δ0)× (y0 − δ0, y0 + δ0). From (4.8), it follows that

∞∑
i=n+1

∞∑
j=m+1

Mi,j(f ;x
′, y′) ≤ 1

π2


∫∫

|t1|≤δ1
|t2|≤δ1

+

∫∫
|t1|≥δ1
|t2|≤δ1

+

∫∫
|t1|≤δ1
|t2|≥δ1

+

∫∫
|t1|≥δ1
|t2|≥δ1


( ∞∑

i=n+1

max
u∈[ui−1,ui]

∣∣∣∣∣
∫ u

ui−1

sin(t1τ)

τ
dτ

∣∣∣∣∣
)

×

 ∞∑
j=m+1

max
v∈[vj−1,vj ]

∣∣∣∣∣
∫ v

vj−1

sin(t2τ)

τ
dτ

∣∣∣∣∣
 dµx′,y′(t1, t2)

=:I1 + I2 + I3 + I4.

(4.12)

By (4.9), (4.11) and Lemma 2.5,

I1 ≤ (3A1 + 4)(3A2 + 4)

π2

∫∫
|t1|≤δ1
|t2|≤δ1

dµx′,y′(t1, t2)

≤ (3A1 + 4)(3A2 + 4)

π2
µx′,y′([−δ1, δ1]× [−δ1, δ1])

≤ (3A1 + 4)(3A2 + 4)

π2
µx′,y′((−δ0, δ0)× (−δ0, δ0))

≤ (3A1 + 4)(3A2 + 4)

π2
V ar(f, [x′ − δ0, x

′ + δ0]× [y′ − δ0, y
′ + δ0])

≤ (3A1 + 4)(3A2 + 4)

π2
ε.

(4.13)
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From Lemmas 2.5, 2.6 and inequality in (4.10),

I2 ≤ (3A2 + 4)

π2

∫∫
|t1|≥δ1
|t2|≤δ1

3A1

|t1|un
dµx′,y′(t1, t2)

≤3A1(3A2 + 4)

δ1unπ2
V ar(f,R2).

(4.14)

Using similar arguments, we conclude that

I3 ≤ (3A1 + 4)

π2

∫∫
|t1|≤δ1
|t2|≥δ1

3A2

|t2|vm
dµx′,y′(t1, t2)

≤3A2(3A1 + 4)

δ1vmπ2
V ar(f,R2).

(4.15)

Applying Lemma 2.6 it follows that

I4 ≤ 1

π2

∫∫
|t1|≥δ1
|t2|≥δ1

(
3A1

|t1|un

)(
3A2

|t2|vm

)
dµx′,y′(t1, t2)

≤ 9A1A2

δ21unvmπ2
V ar(f,R2).

(4.16)

Adding the expressions in (4.13), (4.14), (4.15) and (4.16), we have that

∞∑
i=n+1

∞∑
j=m+1

Mi,j(f ;x
′, y′) ≤ (3A1 + 4)(3A2 + 4)

π2

(
ε+

(
1

δ1un
+

1

δ1um
+

1

δ21unvm

)
V ar(f,R2)

)
,

for each (x′, y′) ∈ (x0 − δ0, x0 + δ0)× (y0 − δ0, y0 + δ0) and n,m ∈ N.
Considering (4.12) and un, vm → ∞, as n,m → ∞, respectively, and given ε > 0, there exist N,M ∈ N

such that n ≥ N and m ≥ M , then

∞∑
i=n+1

∞∑
j=m+1

Mi,j(f ;x
′, y′) ≤ (3A1 + 4)(3A2 + 4)

π2
4ε,

for each (x′, y′) ∈ (x0 − δ0, x0 + δ0)× (y0 − δ0, y0 + δ0). This prove the theorem. 2
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