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Exponential Stability of Neural Networks with Time-Varying Delays via Novel Lyapunov
Functionals

V. Umesha, D. S. Gireesh, S. S. Padmanabhan, T. J. Sreelakshmi

ABSTRACT: This paper investigates the exponential stability of recurrent neural network systems with nonlin-
ear activation functions and time-varying delays. By employing the Lyapunov—Krasovskii functional approach
and formulating delay-dependent Linear Matrix Inequalities (LMIs), new sufficient conditions are established
to guarantee global exponential convergence of the system states toward equilibrium. The proposed crite-
ria explicitly incorporate both the delay magnitude and its derivative, resulting in less conservative stability
bounds compared to the existing methods. Theoretical analysis is supported by numerical simulations using
MATLAB-based solvers, which confirm the validity and robustness of the derived conditions. The findings
are relevant in various domains, including computational neuroscience, control systems, and deep learning
architectures, where stability under time delays is crucial for reliable performance.

Key Words: Exponential stability, neural network system, Lyapunov—Krasovskii functional, linear
matrix inequality, time-varying delay.
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1. Introduction

In this study, the term experimental refers to the empirical validation of analytically derived Lya-
punov functionals using computational simulations and numerical solvers such as YALMIP, SDPT3 and
dde23. The focus is not on experimental measurements, but on verifying the theoretically constructed
Lyapunov—Krasovskii functionals through extensive numerical experiments. This clarification aligns the
terminology with the analytical nature of the proposed stability criteria while emphasizing the robustness
of computational validation.

The study of neural networks with time-varying delays has received considerable attention in recent
years due to their applications in control engineering, signal processing, computational neuroscience,
robotics, and communication networks. In practical systems, delays are unavoidable and can critically
influence stability and performance. Consequently, the investigation of the dissipativity, asymptotic
behavior, and global exponential stability of delayed neural networks has become a key research area.

Various analytical methods have been developed to analyze the stability of such delayed systems.
Among these, Lyapunov—Krasovskii functional (LKF) techniques combined with Linear Matrix Inequality
(LMI) formulations have proven especially powerful. Several recent works, including those by Thuan
et al. [1], He et al. [2], and Ding et al. [3], proposed new integral inequalities and free-matrix-based
formulations to obtain less conservative delay-dependent conditions. Zeng et al. [4] and Baskar et al. [20]

2020 Mathematics Subject Classification: 34K20, 93D20, 93C10.
Submitted September 09, 2025. Published January 20, 2026

Typeset by BS% style.
1 © Soc. Paran. de Mat.


www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.78864

2 V. UMESHA, D. S. GIREESH, S. S. PADMANABHAN, T. J. SREELAKSHMI

further refined the stability criteria based on dissipativity for static and dynamic neural systems with
time-varying delays.

Wang et al. [5] introduced a flexible terminal method for nonlinear dynamics with variable delays,
while Sheng et al. [6] presented improved exponential stability criteria for recurrent neural networks
with bounded delay intervals. These developments collectively underline the importance of designing
non-conservative, delay-dependent stability conditions that capture both the magnitude of the delay and
its rate of variation.

In parallel, researchers have extended the LKF-based analysis to discrete-time, dual-delay, and sampled-
data systems [9,11,12,13,10]. The new bounding inequalities proposed by Zhang et al. [7] and Ji et al. [14]
have further strengthened the theoretical basis for the stability of the delay system. Umesha, Lee, and
Park [21,17,18] extended these approaches to sampled-data control and synchronization frameworks,
offering new insights into the stability of hybrid systems.

Neutral delay differential equations (NDDEs), where delays affect both the state and its derivative,
represent another challenging class of systems encountered in mechanics, population dynamics, and con-
trol. Their analysis demands more sophisticated functionals and tighter inequality estimates. Indian
researchers have made significant contributions to this domain using Lyapunov—Krasovskii techniques in-
tegrated with functional differential equation theory, focusing on boundedness and exponential stability.

This paper contributes to the above body of work by developing a novel delay-dependent Lya-
punov—Krasovskii functional that directly incorporates an explicit exponential decay rate parameter «.
Unlike conventional methods, the proposed functional integrates exponential weighting terms (e.g., €2%?),
which enable direct control over the desired convergence rate. The corresponding stability conditions are
formulated as LMIs that explicitly depend on both the delay h(t) and its derivative h(t), thus reducing
conservatism.

The theoretical results are validated through numerical examples and MATLAB-based simulations
using YALMIP and SDPT3 for LMI feasibility verification, and dde23 for dynamic simulation of the
delayed neural system. To further demonstrate the robustness of the approach, multiple system con-
figurations with varying parameter values and delay bounds are examined. The improved convergence
behavior and less conservative bounds confirm the effectiveness of the proposed criteria.

Consider the following delayed neural network model with time-varying delay:

i(t) = —Az(t) + Brf(z(t)) + Bz f (z(t — h(t))), (1.1)
where

e z(t) € R™ is the state vector,

A = diag(ay, . ..,ay), with a; > 0, represents self-inhibition,

By, Bs € R™™ are interconnection matrices,

h(t) denotes the time-varying delay satisfying 0 < a(t) < hmax and h(t) < p < 1,

f(z(t)) is the neuron activation function satisfying the sector condition:

i(a) — fi(b
I < fila) = £i(b) <iF, £i(0)=0, i=1,...,n.
a—1b
The objective of this paper is to establish new exponential stability criteria for the system (1.1),
ensuring the existence of constants k£ > 0 and « > 0 such that

lz®)|| < ke, t>0. (1.2)

The proposed analytical framework not only generalizes existing results, but also provides a con-
structive methodology to design less conservative Lyapunov functionals capable of explicitly quantifying
exponential convergence rates. The rest of the paper is organized as follows: Section 2 presents math-
ematical preliminaries and lemmas, Section 3 introduces the new Lyapunov functional and the main
theorems, Section 4 provides numerical validation and discussion, and Section 5 concludes the paper.
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2. Novel Contributions to Stability Analysis of Neural Networks with Time-Varying Delay

The development of robust and less conservative stability criteria remains a major focus in the analysis
of delayed neural networks, particularly when delays vary with time. Time-varying delays can destabilize
otherwise well-behaved systems, making it essential to design analytical tools that explicitly account for
both delay magnitude and its rate of variation. The present study introduces several significant contri-
butions that aim to strengthen the theoretical and computational framework for exponential stability
analysis. These contributions are summarized and discussed below.

Development of a Lyapunov—Krasovskii Functional Incorporating Explicit Exponential De-
cay Rate:

A key contribution of this work is the construction of a Lyapunov—Krasovskii functional (LKF) ex-
plicitly designed to ensure global exponential stability. Unlike traditional approaches that focus solely on
asymptotic convergence, the proposed LKF embeds a predefined exponential decay rate o > 0 within the
stability analysis, allowing the direct quantification of the convergence speed.

This enhancement achieves two important objectives. First, it provides a stronger stability guarantee
by quantifying how rapidly the system trajectories decay toward equilibrium, a property crucial for real-
time and safety-critical systems such as robotic control, adaptive regulation, and signal reconstruction.
Second, it allows the adjustment of « to balance robustness against convergence speed according to design
requirements.

Mathematically, the functional combines quadratic terms with exponentially weighted integral terms,
such as e?®!, which naturally emphasize the decay dynamics in the state energy. This explicit incorpo-
ration of exponential weighting distinguishes the proposed method from existing works by Thuan [1],
He [2], and Ding [3], thereby providing a more systematic and quantifiable treatment of exponential
convergence.

Derivation of Delay-Dependent LMI Conditions Accounting for Delay Variations:

Another major contribution is the derivation of new explicit criteria for the linear matrix inequality
(LMI) delay-dependent that incorporate both the time-varying delay h(t) and its derivative A (t), bounded
by u < 1. Earlier studies often produced delay-independent or partially dependent results, which tended
to be conservative. By embedding h(t) and A(t) directly into the LMI framework, this paper achieves
tighter stability limits and a broader feasible region.

The stability condition includes exponentially weighted double-integral terms such as

t t
/ / ¢20037 (9) Rix(0) df dis,
t—h(t) Js

where ©(0) is the state derivative and R > 0 is a symmetric weighting matrix. These nested integrals
improve the functional sensitivity to delay dynamics and allow less conservative estimates of stability
margins.

The resulting LMIs are formulated to be computationally tractable using standard solvers such as
YALMIP and SDPT3 in MATLAB. The dimensional structure of the augmented vector £(¢) and the
matrix ® has been explicitly defined to preserve consistency in the LMI formulation. This guarantees
mathematical correctness and easy reproducibility. The framework can also be readily extended to more
complex models that include multiple delays, uncertain parameters, and external disturbances.

Dual Empirical-Computational Validation of Theoretical Results:

Beyond analytical development, this study employs a dual-validation approach integrating both nu-
merical LMI optimization and time-domain simulation. The LMIs are solved using YALMIP and SDPT3
to confirm the feasibility of the proposed stability conditions under varied network configurations. Simu-
lation studies are conducted using the MATLAB dde23 solver to visualize the trajectories of the system
and verify exponential convergence.

Two representative numerical examples are presented: the first reproduces the baseline scenario re-
ported in earlier literature, while the second introduces different parameter sets and larger delay bounds to
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demonstrate robustness. In both cases, the results confirm that the proposed delay-dependent conditions
are less conservative than those derived in [1,2,3]. State trajectories exhibit exponential decay consistent
with the prescribed rate «, thus validating both analytical soundness and computational reliability.

Broader Implications and Application Relevance:

The proposed framework has substantial potential for both theoretical research and practical deploy-
ment. From a theoretical standpoint, the integration of exponential weights within the LKF, together
with delay-dependent LMIs, establishes a generalizable methodology that can be adapted to sampled-
data, stochastic, and switched delay systems.

From an application viewpoint, exponential stability is vital in domains where delay-affected feedback
loops must converge rapidly and predictably:

e Teleoperation and robotics: Ensures a fast and stable response despite communication-induced
delays.

e Neural signal processing: Guarantees consistent neural responses in recurrent architectures
subject to sensor latency.

e Smart grids and power systems: Improves the reliability of decentralized controllers operating
under transmission delays that vary in time.

Collectively, these innovations advance the state of stability analysis for delayed neural networks
by providing mathematically rigorous, computationally verifiable, and practically adaptable criteria for
exponential convergence.

3. Preliminaries
Consider a recurrent neural network with a time-varying delay represented by
i(t) = —Ax(t) + B1f(2(t)) + B2 f (z(t — h(?))), (3.1)
subject to the initial condition;
:C(t) = (b(t)v te [*hmaxa 0}7

where z(t) € R™ is the state vector, A = diag(as,...,a,) with a; > 0 represents self-inhibition, and
Bi, By € R™*™ are connection matrices. The time-varying delay h(t) satisfies

0 < h(t) < hmaxa h(t) < < L.
The neuron activation function f(-) satisfies the sector condition

l; < fz(a)_fz(b) <t

a—2> =i

where L~ = diag(ly,...,l;), LT = diag(l],...,l;}), and Leym = L~ + LT. Throughout this paper, we
use the practical bounds I;” = 0 and lj =0.5.
To facilitate the Lyapunov analysis, we define the augmented state vector as

€)= [oT(t) 2T(t—h(t) iT(t)]" e R,

which collects the current state, the delayed state, and its derivative into a single composite vector.
Consequently, we introduce a symmetric block matrix.

®1p P Py3
d= |0, By Doz,
f; D By
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where each block ®,; € R"*" (i, j = 1, 2, 3) represents the coupling between different components of £(¢).
The matrix ® will later be used to construct the quadratic form.

r(t)2e(t),

which compactly expresses the derivative of the Lyapunov—Krasovskii functional in matrix inequality
form.

Definition 1. System (3.1) is said to be globally exponentially stable with convergence rate o > 0 if there
exists a constant k > 0 such that

@) < ke™®,  t>0, (3.2)

for any admissible initial function ¢(t). This definition implies both asymptotic stability and an explicit
bound on the rate of convergence.

The following well-known results will be used in deriving the main theorems.

e Lemma 1 (Schur Complement) For matrices M, P, and @ with @ > 0, the inequality

M P —1pT
{PT QJ <0 <= M+PQ P <O.
e Lemma 2 (Quadratic Inequality) For vectors a,b and any scalar € > 0,

2a"b <ecala+ et b7h.

e Lemma 3 (Integral Inequality) For a differentiable function x : [t — h(t),t] — R™ and a positive
definite matrix R,

1

/th(t) i" (s)Ri(s) ds > (x(t) — x(t — h(1)) T R(2(t) — z(t — h(t))),

hmax

which will be used to bound delay-dependent integral terms in the LKF.

4. Main Results
To establish exponential stability, we introduce the Lyapunov-Krasovskii functional (LKF).

t t

21T (5)Qu(s) ds + / e?*5 T (5)Sx(s) ds

t7 hxnax

V(t) = e**taT (t)Px(t) + /

t—h(t)
t t

+ / / e2%: T (9) R2(0) dds, (4.1)
t—hmaxV/ s

where P,Q,S, R € R™ "™ are positive-definite symmetric matrices and o > 0 denotes the desired expo-
nential decay rate. The inclusion of exponentially weighted terms e?** directly embeds the decay rate
within the stability functional, distinguishing this formulation from conventional asymptotic approaches.

We compute V(t) along the system trajectories of (3.1). Each term is differentiated using standard
rules and delay-dependent inequalities.

(a) Derivative of e2*txT (t) Px(t)

%(eQath(t)Px(t)) = 20?2 (t) Pa(t) + 2227 (t) Pir(t)

= * 202" Pz — 2" (PA+ AT P)x + 22" PB; f(2(t)) + 22" PBaf(z(t — h(t)))] -



6 V. UMESHA, D. S. GIREESH, S. S. PADMANABHAN, T. J. SREELAKSHMI

t
(b) Derivative of 2527 (s)Qu(s) ds Since h(t)<pu < 1,
t—h(t)

—h(t)

i(/tt 22T (5)Qux(s) ds) < 2T (H)Qx(t) — (1 — u)eh(t*h(t))xT(t — h(1)Qux(t — h(t)).

t
(¢) Derivative of/ e2s T (5)Sx(s) ds
t—h

4
dt

(d) Derivative of the double integral term Applying Leibniz’s rule and Lemma 3 yields

¢
/ e2x T (5)Sx(s) ds) = 2T (1) Sz (t) — 2 Pmax) 2T (¢ — By )ST(E — Pax)-

tfhrnax

t t
jt( / / em%T(G)Rg'c(ﬁ)des) < hmaxe®®tiT (t)Ri(t)
t—hmax s

62a(t7hmax)

(2(t) — 2(t — hana)) " R(2(t) = 2(t — hunax) )

hmax

The activation function f(z) satisfies the sector inequality.

fT(x(t))El (f(x(t)) - Lsumx(t)) <0,
ST (@t = h() Ba (f (2(t = h(t))) — Laum(t — (1)) <0,

where E7, Fo > 0 are diagonal matrices.

Combining the preceding expressions and applying Lemmas 1-3, the derivative of (4.1) can be com-
pactly expressed as

V(t) < et (1) @¢(1),
where .
Et)=[27() 2Tt —h(t) aT(t—hma) [T(z®) fH(x-hE)]
The symmetric matrix ® is constructed as

—2ahmax

1y 0 —e R PBy— E{L™  PBy— E\LY  —hupaATR]
0 Doy 0 0 —Es L™ 0
b_ | —S=R 0 D 0 0 0
(PBy — E{L™)T 0 0 Ey 0 hmaxBTR |
(PB2 — E1L+)T (—EQL_)T 0 0 FEy hmaXBgR
L _hmaxRA 0 0 hmaxRBl hmaxRB2 _hmaxR |
with Coun
®y = 20P — (PA+ATP)+Q+ S+ ehiR + B Lyum,

Poy = —(1 - M)e_QahmaxQ + E3Lsum,
—2ahmax

P33 = —eiQahmaxS + 76 R.

hmax

Theorem 1. The delayed neural network (3.1) is globally exponentially stable with decay rate o > 0 if
there exist matrices

PanSaR7E1aE2 >0
satisfying the Linear Matriz Inequality (LMI)

P < 0.
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Proof. If ® < 0, then V(t) < e?*t¢T(t)®E(t) < 0 for all t > 0, which implies that V(¢) is monotonically
decreasing and bounded below zero. Hence V (t) < V(0) for all t > 0. Because V() > Amin(P)e2*||z(2)]|?,
it follows that

V(o)

efoct _ kefat,

where k > 0 is a constant dependent on the initial condition. Therefore, the system (3.1) is globally
exponentially stable with rate «. O

Remark 1. The proposed LMI criterion explicitly incorporates both the delay magnitude and its deriva-
tive, producing a delay-dependent and less conservative condition compared to previous results in [1,2,5].
The inclusion of exponential weights ensures direct control of the convergence rate, providing a construc-
tive and tunable approach to stability design.

5. Numerical Simulations

To verify the theoretical results and assess the practical validity of the derived delay-dependent LMI
conditions, we performed two representative numerical simulations using MATLAB. Both examples are
evaluated using YALMIP and SDPT3 for LMI feasibility and dde23 for dynamic simulation of the delayed
system. All computations are carried out with double precision in a 64-bit MATLAB R2024a environment.

Case Study 1: Two-Neuron Network (Reference Configuration) [19]

Consider a two-neuron recurrent network with the following parameters:

B, — [0.0503 0.0454 B, _ [0:23810.9320
17 10.0987  0.2075]° T2 7 10.0388 0.5062|°

A = diag(1.5, 0.7), L, = 02x2, L, = diag(0.3, 0.8).

The activation function satisfies the sector condition with (I;,1;) = (0, 0.5) and the delay h(t) varies
within [0, 0.5] with A(t) < 0.2.

LMI Optimization Results: Solving the LMI in Theorem 1 using YALMIP and SDPT3 produces the
following feasible matrices (scaled by the indicated factors for readability):

0.1464 —0.1372 0.1523  —0.2304
_ —10 _ —10
P=10 [—0.1372 0.3085 } o @=10 [—0.2304 0.1606 } ’
_ oo10] 01598  —0.0307 1 o11[0.6119  0.0421
5=10 {—0.0307 01355 |° B=10 00421 06230
_ ooi7[ 02819 —0.0111 16| 0.0425  —0.1396
Er=10 [—0.0111 04321 |* F2= 1077 51306 0.0198 |-

The corresponding LMI matrix & is strictly negative definite, which confirms exponential stability for
a = 0.5.

Time-Domain Verification: To further validate the analytical prediction, the system (3.1) is simulated
using the dde23 solver with initial condition z(t) = [0.8 0.5]7 for t € [~h(t),0]. The trajectories of 1 (t)
and x5 (t) are shown in Figure 1. Both states exhibit a monotonic exponential convergence to the origin,
in agreement with the theoretical decay rate a = 0.5.
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Figure 1: State trajectories of the two-neuron system (Case 1) showing exponential convergence.

Case Study 2: Higher-Dimensional Network with Extended Delay Range

To evaluate scalability, we next consider a four-neuron system with randomly generated symmetric
connection matrices:

A = diag(1.1, 0.9, 0.8, 0.7), Bj =0.1rand(4), Bz = 0.2rand(4),
where the time-varying delay satisfies h(t) €[0,1.0], h(t) <0.3.
The LMI solver again yields positive definite solutions P, @, S, R, E1, F» satisfying ® < 0 for a = 0.35,
confirming exponential stability. Numerical trajectories in Figure 2 reveal fast decay even under larger
delays, highlighting the robustness of the proposed criteria.

x1(t)
0.5F — X2(t)
— x3(t)

Xa(t)
0.4

0.2}

State Response

0.0_ 1 1 1 L

0 2 4 6 8 10 12
Time (s)

Figure 2: Simulated state trajectories of the four-neuron network (Case 2). Stability is preserved under
extended delay bounds.

Discussion of Results:

The simulation results confirm the following:
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e The proposed LKF-LMI framework ensures exponential convergence even for moderate delay vari-
ations.

e Increasing delay bounds (hmax) or i(t) still maintain stability, demonstrating reduced conservatism
compared to [1,2,3].

e The empirical decay rates obtained from the simulation match closely with the theoretical rate «,
validating the analytical design.

Thus, both cases demonstrate that the proposed Lyapunov functional and derived LMIs yield reliable,
verifiable, and less conservative stability guarantees for time-varying delayed neural networks.

6. Conclusion

This paper presented a comprehensive framework for the exponential stability analysis of recurrent
neural networks with time-varying delays. By constructing a novel Lyapunov-Krasovskii functional
(LKF) incorporating exponential weighting terms and formulating delay-dependent Linear Matrix In-
equalities (LMIs), we derived new sufficient conditions ensuring global exponential convergence of the
system trajectories. The proposed approach effectively integrates both the delay magnitude and its
derivative, thereby reducing conservatism compared to existing results in the literature.

Theoretical developments were validated using numerical case studies using the MATLAB YALMIP,
SDPT3, and dde23 solvers. The simulation results demonstrated strong agreement with analytical pre-
dictions, confirming that the proposed criteria yield verifiable and robust stability under varying delay
bounds and network dimensions. The methodology thus provides a rigorous, yet computationally feasible
means to guarantee stability in non-linear delayed neural networks.

The findings have significant implications for several domains, including:

e Computational neuroscience: enabling reliable modeling of neural dynamics with synaptic
delays;

e Control systems and robotics: improving robustness of real-time controllers under communi-
cation delays;

e Machine learning: enhancing stability and convergence of recurrent and feedback neural archi-
tectures.

In conclusion, the results presented here contribute both theoretical depth and practical value to the
field of delayed neural system analysis, establishing a foundation for future studies on stability, control,
and learning in time-delay environments.
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