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Entropy Solutions for Anisotropic Neumann Problems with Variable Exponents and
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abstract: In this work, we study an anisotropic obstacle problem driven by a Leray-Lions-type operator
with a Hardy-type singular potential, defined in anisotropic weighted Sobolev spaces with variable exponents.
The problem involves a nonlinear lower-order term depending on the gradient, under homogeneous Neumann
boundary conditions. We establish the existence of entropy solutions using truncation techniques combined
with the monotonicity method.
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1. Introduction

Our research is situated at the confluence of two pivotal domains within the theory of partial differen-
tial equations (PDEs): the theory of anisotropic Sobolev spaces, as elaborated in [18,19], and the theory
of variable exponent Sobolev spaces, introduced in [11,12,16]. It is worth noting that the mathematical
literature contains relatively few results concerning weighted anisotropic problems. In contrast, the the-
ory of variable exponent Sobolev spaces has attracted considerable attention over the past few decades
[21,22], leading to a wealth of studies that explore their diverse applications.

Variable exponent Sobolev spaces have played a particularly important role in the study of materi-
als, especially in the field of electro-rheological fluids, commonly known as smart fluids. Revolutionary
contributions in this field were made by Winslow, who obtained a US patent on this phenomenon in
1947 [24] and published a seminal paper in 1949 [25]. Electro-rheological fluids have the remarkable
property that their viscosity changes considerably when they are subjected to an electromagnetic field.
Winslow observed that the viscosity of these fluids is inversely proportional to the field strength, with the
electromagnetic field inducing string-like structures aligned with its direction. These structures can lead
to an increase in viscosity of up to five orders of magnitude, a phenomenon now known as the Winslow
effect.

For a comprehensive discussion on the properties, modeling, and applications of variable exponent
spaces in the study of electro-rheological fluids, we refer the reader to [13,14,20]. Furthermore, variable
exponent Sobolev spaces have found substantial applications in other areas, including elasticity theory
[28] and image processing [9].

In sequel of this paper, let Ω ⊂ RN (N ≥ 2) be a bounded open subset with a smooth boundary ∂Ω.
Our objective is to investigate the existence of entropy solutions for the following Neumann problem

−
N∑
i=1

∂iκi(z, w,∇w) +H(z, w,∇w) + |w|r(z)−1w = f + µ
|w|p0(z)−2w

|z|p0(z)
in Ω,

N∑
i=1

κi(z, w,∇w) · ηi = 0 on ∂Ω,

(1.1)
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in the convex class D∆ :=
{
w ∈ W 1,p⃗(z)(Ω, ϱ⃗), w ≥ ∆ a.e in Ω

}
, where ∆ is a fixed obstacle function,

such that
(H1) ∆+ ∈W 1,p⃗(z)(Ω, ϱ⃗) ∩ L∞(Ω).

In the following pages, we will consider Ω is an open bounded set of RN (N ≥ 2). The functions κi :
Ω × R × RN → R are Carathódory functions, which satisfy the following conditions, for all s ∈ R, ξ ∈
RN , ξ′ ∈ RN and a. e. in z ∈ Ω,

κi(z, s, ξ)ξi ≥ αϱi |ξi|pi(z), (1.2)

|κi(z, s, ξ)| ≤ βϱ
1

pi(z)

i

(
Ri(z) + ϱ

1
p′
i
(z)

i |s|
pi(z)

p′
i
(z) + ϱ

1
p′
i
(z)

i |ξi|pi(z)−1
)
, (1.3)(

κi(z, s, ξ)− κi(z, s, ξ
′)
)(
ξi − ξ′i

)
> 0 for ξi ̸= ξ′i, (1.4)

where Ri(z) is a nonnegative function lying in Lp
′
i(z)(Ω) and α, β > 0. Moreover, we suppose that

f ∈ L1(Ω) and
|w|p0(z)−2w

|z|p0(z)
∈ L1(Ω). (1.5)

The nonlinear term H(z, s, ξ) is a Carathéodory function which satisfies only the growth condition

∣∣H(z, s, ξ)
∣∣ ≤ b(z) + g(|s|)

N∑
i=1

ϱi
∣∣ξi∣∣pi(z) (1.6)

where g : R → R+ is a continuous positive function that belongs to L1(R) and b(z) ∈ L1(Ω). In addition
to addressing the main problem, we will also discuss relevant previous studies. Several authors, including
Hjiej et al. [3], Benkirane and Elmahi [5], and Chrif [10], have provided proofs for the existence of
solutions to certain nonlinear elliptic obstacle problems. These solutions were established in the classical
anisotropic Sobolev space W 1,p⃗

0 (Ω) and the weighted anisotropic Sobolev space W 1,p⃗
0 (Ω, ϱ⃗).

In [29,30,31], Zineddaine et al. studied an anisotropic elliptic problem involving the p(z)-Laplacian
operator or the Leray-Lions operator. Using the monotonicity method, they established the existence of a
weak approximate solution to the problem under consideration. Subsequently, they proved the existence
of an entropy solution by leveraging the strong convergence of the truncated sequence of approximate
solutions.

On the other hand, in the most general setting, the problems were addressed in [2], where the
authors considered the framework of anisotropic Sobolev spaces and imposed only mild assumptions on
the coefficients ai. Their objective was to establish the uniqueness of weak solutions to the considered
problems.

The main point in our study is to consider separately some class of anisotropic obstacle nonlinear
elliptic problems of kind (1.1), and prove only existence results, the uniqueness problem being a rather
delicate one, this kind of problems still attracting the interest of the researchers (see [23,7] for a survey).
This paper is to extend the results in [3], One of the motivations for studying (1.1) comes from applications
to elasticity as the equations that models the shape of an elastic membrane which is pushed by an obstacle
from one side affecting its shape.

The remaining part of this paper is organized as follows : Section 2 contains a brief discussion of the
weighted space with variable exponent Lebesgue and the weighted anisotropic variable exponent Sobolev
space, moreover we give some useful technical lemmas, The main existence results are stated and proved
in Section 3.

2. Preliminaries and interesting properties

This section aims to provide a general overview of the aforementioned spaces. We set C+(Ω) =
{
p ∈

C(Ω) : min
z∈Ω

p(z) > 1
}
and denote, for all p ∈ C+(Ω),

p+ = sup
z∈Ω

p(z) and p− = inf
z∈Ω

p(z).
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Let pi ∈ C+(Ω) for any 1 ≤ i ≤ N , we pose

(H2) p0(z) ≥ max{pi(z), i = 1, 2, . . . , N},

and ϱ⃗ = {ϱ0, . . . , ϱN} be a vector of weight functions; i.e., every component ϱi is a measurable function
which is strictly positive a.e. in Ω.
We define the weighted Lebesgue space with variable exponent Lpi(z)(Ω, ϱi) as follows

Lpi(z)(Ω, ϱi) =
{
w is a measurable real-valued function :

∫
Ω

|w|pi(z)ϱidz <∞
}

endowed with the so-called Luxemburg norm

∥w∥Lpi(z)(Ω,ϱi)
= ∥w∥pi(z),ϱi = inf

{
µ > 0 :

∫
Ω

∣∣∣w
µ

∣∣∣pi(z)ϱidx ≤ 1
}
.

Throughout this paper, we assume there exists a weight function ϱi, for any i = 1, . . . , N , such that

(H3) ϱi ∈ L1
loc(Ω); ϱ

−1
pi(z)−1

i ∈ L1
loc(Ω).

(H4) ϱ
−s(z)
i ∈ L1(Ω) with s(z) ∈

( N

pi(z)
,∞

)
∩
[ 1

pi(z)− 1
,∞

)
.

If (H3) holds, then
(
Lpi(z)(Ω, ϱi), ∥·∥pi(z),ϱi

)
is a Banach, separable and reflexive space for each 0 ≤ i ≤ N

(see for example [13,27]).
Next, we introduce the anisotropic weighted Sobolev space with variable exponents, employed in the

analysis of our obstacle elliptic Neumann problem (1.1). We denote

p⃗(z) = {p0(z), p1(z), . . . , pN (z)} , ∂0w = w and ∂iw =
∂w

∂zi
for i = 1, . . . , N,

and if we set
p = min{p−0 , p

−
1 , . . . , p

−
N}, then p > 1. (2.1)

The anisotropic weighted Sobolev space with variable exponents W 1,p⃗(z)(Ω, ϱ⃗) is defined as follow

W 1,p⃗(z)(Ω, ϱ⃗) =
{
w ∈ Lp0(z)(Ω, ϱ0) and ∂iw ∈ Lpi(z)(Ω, ϱi), i = 1, · · · , N

}
,

is a Banach space with respect to norm (cf. [10])

∥w∥ := ∥w∥1,p⃗(z),ϱ⃗ = ∥w∥p0(z) +
N∑
i=1

∥∂iw∥pi(z),ϱi . (2.2)

Let V = Lp0(z)(Ω) ×
∏N
i=1 L

pi(z)(Ω), and consider the operator T : W 1,p⃗(z)(Ω, ϱ⃗) → V, defined by

T (w) =
(
w,wϱ

1
pi(z)

i

)
. It is evident that W 1,p⃗(z)(Ω, ϱ⃗) and V are isometric via T , as

∥T w∥V = ∥w∥p0(z) +
N∑
i=1

|∂iw|pi(z),ϱi = ∥w∥.

Thus, T
(
W 1,p⃗(z)(Ω, ϱ⃗)

)
is a closed subspace of V, which is a reflexive Banach space. By [8, Proposition

III.17], it follows that T
(
W 1,p⃗(z)(Ω, ϱ⃗)

)
is reflexive, and consequently, W 1,p⃗(z)(Ω, ϱ⃗) is itself a reflexive

Banach space.

Lemma 2.1 Let Ω be a smooth bounded open subset of RN (N ≥ 2). Under the hypothesis (H1), (H3)
and inf ϱi(z) > 0 a.e. in Ω for each 1 ≤ i ≤ N , we have the following continuous and compact embedding
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1. If p < N then W 1,p⃗(z)(Ω, ϱ⃗) ↪→↪→ Lq(z)(Ω) for any q ∈ [p, p∗[ where p∗ =
Np

N−p

2. If p = N , then W 1,p⃗(z)(Ω, ϱ⃗) ↪→↪→ Lq(z)(Ω) for all q ∈ [p,+∞[,

3. If p > N , then W 1,p⃗(z)(Ω, ϱ⃗) ↪→↪→ L∞(Ω) ∩ C0(Ω).

Proof: See [4, Proposition 2.1] 2

Moreover, we consider

T 1,p⃗(z)(Ω, ϱ⃗) :=
{
w : Ω → R, measurable, such that Tℓ(w) ∈W 1,p⃗(z)(Ω, ϱ⃗), for any ℓ > 0

}
,

where Tℓ(s) is the truncation function setting by

Tℓ(s) =

{
s if |s| ≤ ℓ,

ℓ
s

|s|
if |s| > ℓ.

In sequel, we provide some preliminary Lemmas that are crucial to prove our main result.

Lemma 2.2 [4] Let ϱi be a function weight in Ω, ri ∈ C+(Ω), g ∈ Lri(z)(Ω, ϱi) and (gε)ε ⊂ Lri(z)(Ω, ϱi)
such that ∥gn∥ri(z),ϱi ≤ C, for any i ∈ {1, . . . , N}.
If gε → g a.e. in Ω, then gε ⇀ g weakly in Lri(z)(Ω, ϱi).

Lemma 2.3 [4] Assume that (1.2)-(1.4) are true, and let (wε)ε be a sequence in W 1,p⃗(z)(Ω, ϱ⃗) and
w ∈W 1,p⃗(z)(Ω, ϱ⃗), if

wε ⇀ w weakly in W 1,p⃗(z)(Ω, ϱ⃗),

and

N∑
i=1

∫
Ω

(κi(z, wε,∇wε)− κi(z, wε,∇w))(∂iwε − ∂iw)dz

+

∫
Ω

(∣∣wε∣∣p0(z)−2
wε −

∣∣w∣∣p0(z)−2
w
)(
wε − w

)
dz → 0,

then, wε −→ w strongly in W 1,p⃗(z)(Ω, ϱ⃗).

Lemma 2.4 [1] Let (wε)ε be a sequence of W 1,p⃗(z)(Ω, ϱ⃗) such that wε ⇀ w weakly in W 1,p⃗(z)(Ω, ϱ⃗).
Then Tℓ(wε)⇀ Tℓ(w) weakly in W 1,p⃗(z)(Ω, ϱ⃗).

3. Existence of entropy solutions

In this section, we define entropy solutions to the obstacle elliptic problem (1.1). Furthermore, we
demonstrate the primary outcome of this paper.

Definition 3.1 A measurable function w is said to be an entropy solution for the obstacle problem (1.1), if

w ∈ T 1,p⃗(z)(Ω, ϱ⃗), |w|r(z) ∈ L1(Ω),
|w|p0(z)−2w

|z|p0(z)
∈ L1(Ω)

and

N∑
i=1

∫
Ω

κi(z, w,∇w)∂iTℓ(w − ψ)dz +

∫
Ω

H(z, w,∇w)Tℓ(w − ψ)dz

+

∫
Ω

∣∣w∣∣r(z)−1
wTℓ(w − ψ)dz ≤

∫
Ω

fTℓ(w − ψ)dz + µ

∫
∂Ω

|w|p0(z)−2w

|z|p0(z)
Tℓ(w − ψ)dz, (3.1)

for all ψ ∈ D∆ ∩ L∞(Ω).

Theorem 3.1 Let f ∈ L1(Ω), supposing that (H1)− (H2) and (1.2) − (1.6) hold. Then there exists at
least one entropy solution for the problem (1.1).
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Proof of the Theorem 3.1

To prove the result of Theorem 3.1, we divide the proof into several steps.

Step 1: Approximate problems Let (fε)ε∈N be a sequence of smooth functions such that fε → f in L1(Ω)
and |fε| ≤ |f |. We consider the approximate problem

wε ∈ D∆
N∑
i=1

∫
Ω

κi
(
z, Tε(wε),∇wε

)(
∂iwε − ∂iφ

)
dz +

1

ε

∫
Ω

|wε|p0(z)−2wε(wε − φ)dz

+

∫
Ω

|Tε(wε)|r(z)−1Tε(wε)(wε − φ)dz +

∫
Ω

Hε

(
z, Tε(wε),∇wε

)
(wε − φ)dz

≤
∫
Ω

fε
(
wε − φ

)
dz + µ

∫
Ω

|Tε(wε)|p0(z)−2Tε(wε)

|z|p0(z) + 1
ε

∀φ ∈ D∆,

(3.2)

where Hε(z, s, ξ) =
H(z, s, ξ)

1 + 1
ε |H(z, s, ξ)|

.

Note that |Hε(z, s, ξ)| ≤ |H(z, s, ξ)| and |Hε(z, s, ξ)| ≤ ε for any ε ∈ N∗

Let’s consider the operator Gε : D∆ → D∗
∆ by

⟨Gεw, v⟩ =
∫
Ω

|Tε(w)|r(z)−1Tε(w)vdz − µ

∫
Ω

|Tε(w)|p0(z)−2Tε(w)

|z|p0(z) + 1
ε

vdz

+

∫
Ω

Hε(z, Tε(wε),∇wε)vdz, for any w, v ∈ D∆.

Thanks to the Hölder’s inequality and by using (2.2), we have

|⟨Gεw, v⟩| ≤
∫
Ω

|Tε(w)|r(z)|v|dz + µ

∫
Ω

|Tε(w)|p0(z)−1

|z|p0(z) + 1
ε

|v|dz

+

∫
Ω

|Hε(z, Tε(wε),∇wε)||v|dz ≤
(∫

Ω

|Tε(w)|r(z)(p
′
0(z)dz

) 1
p′0(z) ∥v∥p0(z)

+ µ
(∫

Ω

( |Tε(w)|p0(z)−1

|z|p0(z) + 1
ε

)p′0(z)
dz

) 1

(p′0)− ∥v∥p0(z) (3.3)

+
( 1

p−0
+

1

(p−0 )
′

)( ∫
Ω

ε(p
−
0 )′dz + 1

) 1

(p
−
0 )′ ∥v∥p0(z)

≤ (εr
−
+ µεp

−
0 + ε(p

−
0 )′ + 1)(meas(Ω))

1
(p0(z))′ ∥v∥p0(z)

≤ C ′∥v∥.

Lemma 3.1 We consider the operator Lε : D∆ → D∗
∆ defined by

⟨Lεu, v⟩ =
N∑
i=1

∫
Ω

κi
(
z, Tε(wε),∇wε

)
∂ivdz +

1

ε

∫
Ω

|wε|p0(z)−2wεvdz.

The operator Bε = Lε + Gε acted from W 1,p⃗(z)(Ω, ϱ⃗) into
(
W 1,p⃗(z)(Ω, ϱ⃗)

)∗
is bounded, pseudo-monotone

and coercive in the following sense

⟨Bεv, v − v0⟩
∥v||

→ +∞ as ∥v∥ → ∞ for v ∈ D∆.
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Proof: Let us first show that Lε is bounded, thus by applying Hölder’s inequality, and combining it with
the growth condition (1.3), let w0 belongs to D∆, for any w in D∆, we obtain

∣∣∣⟨Lεw,w0⟩
∣∣∣ = ∣∣∣ N∑

i=1

∫
Ω

κi(w, Tε(w),∇w)∂iw0dz +
1

ε

∫
Ω

|w|p0(z)−2ww0dz
∣∣∣

≤
N∑
i=1

(∫
Ω

|κi(z, Tε(w),∇w)|p
′
i(z)ϱ

1−p′i(z)
i dz

) 1

(p′
i
)− ∥ϱ

1
pi(z)

i ∂iw0∥Lpi(z)(Ω)

+
(∫

Ω

|w|(p0(z)−1)p′0(z)dz
) 1

(p
−
0 )′ ∥w0∥p0(z) (3.4)

≤ β

N∑
i=1

(∫
Ω

(
R
p′i(z)
i + |Tε(w)|pi(z) +

N∑
i=1

ϱi|∂iw|pi(z)
)) 1

(p′
i
)− ∥∂iw0∥Lpi(z)(Ω,ϱi)

+
(∫

Ω

|w|p0(z)dz
) 1

(p0)− ∥w0∥p0(z) ≤ C0∥w0∥,

then, in view of (3.4) and (3.3) we can conclude that Bε is bounded.
Thereafter, to establish the coercivity, let w0 belongs to D∆. Then, for any w in D∆, According to (1.2)
we obtain ∣∣∣⟨Lεw,w⟩∣∣∣ ≥ α

N∑
i=1

∫
Ω

∣∣∂iw∣∣pi(z)ϱi(z)dz + 1

m

∫
Ω

|w|p0(x)dz
∣∣∣

≥ α∥w∥p, (3.5)

with α = min(α,
1

m
).

Combining (3.4) and (3.5), we have

⟨Lεw,w − w0⟩ =⟨Lεw,w⟩ − ⟨Lεw,w0⟩

≥ α
N∑
i=1

∫
Ω

ϱi|∂iw|pi(z)dz − C0∥w0∥

≥ α∥w∥p − C0∥w0∥,

it follows that

⟨Lεw,w − w0⟩
∥w∥

≥ α

∥w∥
∥w∥p − C0

∥w∥
∥w0∥ −→ +∞ as ∥w∥ → ∞.

Witch implies that

⟨Bεw,w − w0⟩
∥w∥

=
⟨Lεw,w − w0⟩

∥w∥
+

⟨Gεw,w − w0⟩
∥w∥

−→ +∞ as ∥w∥ → ∞.

We still need to prove that Bε is pseudo-monotone. Let (wε)ε∈N be a sequence inW 1,p⃗i(z)(Ω, ϱ⃗) satisfying
the following condition 

wn ⇀ w in W 1,p⃗(z)(Ω, ϱ⃗)
Bεwε ⇀ χε in (W 1,p⃗(z))(Ω, ϱ⃗))∗

lim sup
n→∞

⟨Bεwn, wn⟩ ≤ ⟨χε, w⟩
(3.6)

We will show that χε = Bεw and ⟨Bεwn, wn⟩ → ⟨χε, w⟩ as n→ +∞.
With the help of the compact embedding W 1,p⃗(z)(Ω, ϱ⃗) ↪→ Lp(Ω), we obtain wn converges to w in Lp(Ω)
for a subsequence noted again (wn)n∈N.
Since (wn)n∈N is a bounded sequence in W 1,p⃗(z)(Ω, ϱ⃗). By (1.3) it is obvious that the sequence
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(κi(z, Tm(wn),∇wn))n∈N is bounded in Lp
′
i(z)(Ω, ϱ∗i ), which implies the existence of a measurable function

πεi ∈ Lp
′
i(z)(Ω, ϱ∗i ) such that

κi(z, Tε(w),∇w)⇀ πεi in Lp
′
i(z)(Ω, ϱ∗i ) as n→ ∞. (3.7)

We apply the Lebesgue dominated convergence theorem to obtain

|Tε(wn)|p0(z)−2Tε(wn)

|z|p0(z) + 1
ε

→ |Tε(w)|p0(z)−2Tε(w)

|z|p0(z) + 1
ε

in Lp
′
0(z)(Ω, ϱ∗0). (3.8)

|Tε(wn)|r(z)−1Tε(wn) → |Tε(w)|r(z)−1Tε(w) in Lp
′
0(z)(Ω, ϱ∗0). (3.9)

Also, we have
|wn|p0(z)−2wn ⇀ |w|p0(z)−2w in Lp

′
0(z)(Ω, ω∗). (3.10)

Similarly, we have (Hε (z, wn,∇wn))ε∈N is bounded in Lp
′
(Ω, γ∗) (i.e γ∗ is the conjugate of γ := inf

i∈N
ϱi) ,

then there exists a function σε ∈ Lp
′
(Ω, γ∗) such that

Hε (z, wn,∇wn) → σε in Lp
′
(Ω, γ∗) as n→ ∞. (3.11)

For all ω ∈W 1,p⃗(z)(Ω, ϱ⃗), we obtain

⟨χε, φ⟩ = lim
n→∞

⟨Bεwn, φ⟩ = lim
n→∞

N∑
i=1

∫
Ω

κi(z, Tm(wn),∇wn)∂iφdx

+ lim
n→∞

1

ε

∫
Ω

|wn|p0(z)−2wnφdz − lim
n→∞

µ

∫
Ω

|Tε(wn)|p0(z)−2Tε(wn)

|z|p0(z) + 1
ε

φdz

+ lim
n→∞

∫
Ω

Hε

(
z, Tε(wn),∇wn

)
φdz +

∫
Ω

|Tε(wn)|r(z)−1Tε(wn)φdz (3.12)

=

N∑
i=1

∫
Ω

πεi ∂iφdz +

∫
Ω

|w|p0(z)−2wφdz − µ

∫
Ω

|Tε(w)|p0−2Tε(w)

|z|p0 + 1
ε

φdz

+

N∑
i=1

∫
Ω

σε∂iφdz +

∫
Ω

|Tε(w)|r(z)−1Tε(w)φdz.

From (3.6) and (3.12), we have

lim sup
n→∞

⟨Bεwn, wn⟩ = lim sup
n→∞

{ N∑
i=1

∫
Ω

κi(z, Tε(wn),∇wn)∂iwndz

+
1

ε

∫
Ω

|wn|p0(z)dz − µ

∫
Ω

|Tε(wn)|p0(z)−2Tm(wn)

|z|p0(z) + 1
ε

wndz

+

∫
Ω

Hε

(
z, Tε(wn),∇wn

)
wndz +

∫
Ω

|Tε(wn)|r(z)−1Tε(wn)φdz
}

≤
N∑
i=1

∫
Ω

πεi ∂iwdz +
1

ε

∫
Ω

|w|p0(z)dz − µ

∫
Ω

|Tε(w)|p0(z)−2Tε(w)

|z|p0(z) + 1
ε

wdz

+

∫
Ω

σεwdz +

∫
Ω

|Tε(w)|r(z)−1Tε(w)wdz.

By using (3.8)-(3.11), we obtain∫
Ω

|Tε(wn)|p0(z)−2Tε(wn)

|z|p0(z) + 1
ε

wndz →
∫
Ω

|Tε(w)|p0(z)−2Tε(w)

|z|p0(z) + 1
ε

wdz, (3.13)
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Ω

|Tε(wn)|r(z)−1Tε(wn)wndz →
∫
Ω

|Tε(w)|r(z)−1Tε(w)wdz (3.14)

and ∫
Ω

Hε

(
z, Tε(wn),∇wn

)
wndz →

∫
Ω

σεwdz. (3.15)

Which implies that

lim sup
n→∞

( N∑
i=1

∫
Ω

κi(z, Tε(wn),∇wn)∂iwndz +
1

ε

∫
Ω

|wn|p0(z)dz
)

≤
N∑
i=1

∫
Ω

πεi ∂iwdz +
1

ε

∫
Ω

|w|p0(z)dz. (3.16)

On the other side, taking into account (1.4), we get

N∑
i=1

∫
Ω

(κi(z, Tε(wn),∇wn)− κi(x, Tε(wn),∇w))(∂iwn − ∂iw)dz

+
1

ε

∫
Ω

(|wn|p0(z)−2wn − |w|p0(z)−2w)(wn − w)dz ≥ 0,

hence

N∑
i=1

∫
Ω

κi(z, Tε(wn),∇wn)∂iwndz +
1

ε

∫
Ω

|wn|p0(z)dz

≥
N∑
i=1

∫
Ω

κi(z, Tε(wn),∇wn)∂iwndz +
1

ε

∫
Ω

|w|p0(z)−2wnwdz

+

N∑
i=1

∫
Ω

κi(z, Tε(wk),∇w)(∂iwn − ∂iw)dz +

∫
Ω

|w|p0(z)−2w(wn − w)dz.

The Lebesgue dominated convergence theorem implies Tε(wn) −→ Tε(w) in Lpi(z)(Ω, ϱi), hence
κi(z, Tε(wn),∇w) converges to κi(z, Tε(w),∇w) in Lp

′
i(z)(Ω, ϱ∗i ), by employing (3.6) we infer

lim inf
n→∞

( N∑
i=1

∫
Ω

κi(z, Tε(wn),∇wn)∂iwndz +
1

ε

∫
Ω

|wn|p0(z)dz
)

≥
N∑
i=1

∫
Ω

πi∂iwdz +
1

ε

∫
Ω

|w|p0(z)dz.

According to (3.16), we deduce that

lim
n→∞

( N∑
i=1

∫
Ω

κi(z, Tε(wn),∇wn)∂iwndz +
1

ε

∫
Ω

|wn|p0(z)dz
)
=

N∑
i=1

∫
Ω

πεi ∂iwdz +
1

ε

∫
Ω

|w|p0(z)dz. (3.17)

Hence, from (3.10)-(3.13), it follows that

⟨Bεwn, wn⟩ → ⟨χε, w⟩ as n→ ∞.
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In the sequel, by means (3.17) we can establish that

lim
n→+∞

( N∑
i=1

∫
Ω

(κi(z, Tε(wn),∇wn)− κi(z, Tε(wn),∇w))(∂iwn − ∂iw)dz

+
1

ε

∫
Ω

(
|wn|p0(z)−2wn − |w|p0(z)−2w)(wn − w)dz

)
= 0.

Once again, by Lemma 2.3, we obtain

wn → w in W 1,p⃗(z)(Ω, ϱ⃗) and ∂iwn → ∂iw a.e. in Ω,

which means that

κi(z, Tε(wn),∇wn)⇀ κi(z, Tε(w),∇w) in Lp
′
i(z)(Ω, ϱ∗i ) for i = 1, . . . , N,

and

Hε(z, Tε(wn),∇wn)⇀ Hε(z, Tε(w),∇w) in Lp
′(z)(Ω, γ∗),

and it follows from (3.7)-(3.10) that χε = Bεw, which conclude the proof of Lemma 3.1. 2

According to Lemma 3.1, there exists at least one weak solution wn ∈W 1,p⃗(z)(Ω, ϱ⃗) of the problem (3.2).

Step 2 : A priori estimates

Lemma 3.2 Let us suppose that wε is a weak solution of the problem (3.2). In this case, the regularity
results stated below hold

w ∈W 1,q(z)(Ω, ω), where q(z) =
(
r(z), q1(z), · · · , qN (z)

)
, (3.18)

such that r(z) > N(p0(z)−1)
N−p0(z) , 1 ≤ qi(z) <

pi(z)r(z)
r(z)−pi(z) and ω

− pi(z)

1−pi(z) ∈ L1(Ω) ,

N∑
i=1

∫
Ω

ϱi|∂iwε|pi(z)

(1 + |wε|)τ(z)
dz ≤ C for each 1 < τ(z) <

r(z)(pi(z)− qi(z))

qi(z)
, (3.19)

N∑
i=1

∫
Ω

ϱi|∂iTℓ(wε)|p(z)dz ≤ C(1 + ℓ)τ
+

for all ℓ > 0, (3.20)

where C is a positive constant independent of ε and ℓ.

Proof: In this step we will use some methods of [26]. We choose τ(z) > 1 and define the function v(t),
which defines from R to R as follows

ϑ(t) =
(
1− 1

(1 + |t|)τ(z)−1

)
sign(t) and G(b) =

1

α

∫ b

0

g(|β|)dβ.

Note that, as the function g(·) is integrable on R, then 0 ≤ G(∞) =
1

α

∫ ∞

0

g(|β|)dβ <∞.

Let us consider the function φ = wε − ξ ϑ(wε)exp(G(|wε|)), where ξ > 0. It’s obvious that φ ∈
W 1,p⃗(z)(Ω, ϱ⃗) ∩ L∞(Ω) and for all ξ small enough, we deduce that φ ≥ ∆. Then φ is an admissible
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test function in (3.2), this allows to write

(τ− − 1)

N∑
i=1

∫
Ω

κi(z, Tε(wε),∇wε)
(1 + |wε|)τ(z)

∂iwεe
G(|wε|)dz +

1

α

N∑
i=1

∫
Ω

κi(z, Tε(wε),∇wε)

× ∂iwεg(|wε|)ϑ(wε)eG(|wε|)dz +
1

ε

∫
Ω

|wε|p0(x)−2wεϑ(wε)e
G(|wε|)dz

+

∫
Ω

Hε(z, Tε(wε),∇wε)ϑ(wε)eG(|wε|))dz +

∫
Ω

|Tε(wε)|r(z)−1Tε(wε)ϑ(wε)e
G(|wε|)dz

≤
∫
Ω

fεϑ(wε)e
G(|wε|)dz + µ

∫
Ω

|Tε(wε)|p0(z)−2Tε(wε)

|z|p0(z) + 1
ε

ϑ(wε)e
G(|wε|)dz

Additionally, the sign of ϑ(wε) is the same as that of wε, which makes the third term of the previous
inequality positive. Furthermore, based on the condition (1.2) and |ϑ(·)| ≤ 1 we conclude that

(τ− − 1)α

N∑
i=1

∫
Ω

ϱi|∂iwε|pi(z)

(1 + |wε|)τ(z)
eG(|wε|)dz +

N∑
i=1

∫
Ω

ϱi|∂iwε|pi(z)g(|wε|)

× ϑ(wε)e
G(|wε|)dz +

∫
Ω

|Tε(wε)|r(z)|ϑ(wε)|eG(|wε|)dz

≤
∫
Ω

(
|f |+ |b|

)
eG(|wε|)dz + µ

∫
Ω

|Tε(wε)|p0(z)−1

|z|p0(z) + 1
ε

eG(|wε|)dz

+

N∑
i=1

∫
Ω

ϱi|∂iwε|pi(z)g(|wε|)ϑ(wε)eG(|wε|)dz,

which implies that

(τ− − 1)α

N∑
i=1

∫
Ω

ϱi|∂iwε|pi(z)

(1 + |wε|)τ(z)
eG(|wε|)dz +

∫
Ω

|Tε(wε)|r(z)|ϑ(wε)|eG(|wε|)dz

≤ 2eG(∞)
(
∥f∥L1(Ω) + ∥b∥L1(Ω)

)
+ µ

∫
Ω

|Tε(wε)|p0(z)−1

|z|p0(z) + 1
ε

eG(|wε|)dz (3.21)

It is easy to see that

1

2
≤ 1− 1

(1 + |wε|)τ(z)−1
for |wε| ≥ R = max

(
2

1

τ−−1 − 1, 1
)
.

then, we infer

1

2

∫
{|wε|≥R}

∣∣Tε(wε)∣∣r(z)dz ≤ ∫
{|wε|≥R}

∣∣Tε(wε)∣∣r(z)(1− 1

(1 + |wε|)τ(z)−1

)
dz

≤
∫
Ω

∣∣Tε(wε)∣∣r(z)(1− 1

(1 + |wε|)τ(z)−1

)
dz,

which means

1

2

∫
Ω

|Tε(wε)
∣∣r(z)dz = 1

2

∫
{|wn|<R}

|Tε(wε)
∣∣r(z)dz + 1

2

∫
{|wε|≥R}

|Tε(wε)
∣∣r(z)dz

≤ 1

2
max

(
Rr

−
, Rr

+)
|Ω|+

∫
Ω

∣∣Tε(wε)∣∣r(z)(1− 1

(1 + |wε|)τ(z)−1

)
dz.
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Using (3.21), we obtain

(τ− − 1)α

N∑
i=1

∫
Ω

ϱi|∂iwε|pi(z)

(1 + |wε|)τ(z)
dz +

1

2

∫
Ω

|Tε(wε)|r(z)dz ≤
1

2
max

(
Rr

−
, Rr

+)
|Ω|

+ 2eG(∞)
(
∥f∥L1(Ω) + ∥b∥L1(Ω)

)
+ µ

∫
Ω

|Tε(wε)|p0(z)−1

|z|p0(z)
eG(∞)dz. (3.22)

As r(z) > p0(z)− 1, according to Young’s inequality, we obtain

µ

∫
Ω

|Tε(wε)|p0(z)−1

|z|p0(z)
dz ≤ 1

4

∫
Ω

|Tε(wε)|r(z)dz + C1

∫
Ω

dz

|z|
r(z)p0(z)

r(z)−p0(z)+1

,

with C1 is a positive constant depending only on r(z), p0(z) and µ. Thus, we obtain

(τ− − 1)α

N∑
i=1

∫
Ω

ϱi|∂iwε|pi(z)

(1 + |wε|)τ(z)
dz +

1

4

∫
Ω

|Tε(wε)|r(z)dz (3.23)

≤ 1

2
max

(
Rr

−
, Rr

+)
|Ω|+ 2eG(∞)

(
∥f∥L1(Ω) + ∥b∥L1(Ω)

)
+ C1

∫
Ω

dz

|z|
r(z)p0(z)

r(z)−p0(z)+1

. (3.24)

Under the assumption r(z) > N(p0(z)−1)
N−p0(z) , the integral

∫
Ω

dz

|z|
r(z)p0(z)

r(z)−p0(z)+1

is finite. Consequently, (3.19) is

valid. Furthermore, we have ∫
Ω

|Tε(wε)|r(z)dz ≤ C. (3.25)

If we take qi(z) such that 1 ≤ qi(z) < pi(z) for i = 1, . . . , N . By means of Hölder’s generalized inequality,
we derive

N∑
i=1

∫
Ω

ϱi|∂iwε|qi(z)dz ≤
N∑
i=1

(∫
Ω

ϱi|∂iwε|pi(z)

(1 + |wε|)τ(z)
dz

) q
−
i

p
−
i ∥ϱi∥

1−
q
+
i

p
+
i

p′i(z)
(3.26)

×
∥∥∥(1 + |wε|)

qi(z)τ(z)

pi(z)−qi(z)

∥∥∥1− q
+
i

p
+
i

pi(z)
≤

( N∑
i=1

∫
Ω

ϱi|∂iwε|pi(z)

(1 + |wε|)τ(z)
dz

) q
−
i

p
−
i

×
(∫

Ω

ϱ
− pi(z)

1−pi(z)

i dz
)(1− 1

p
+
i

)(1−
q
+
i

p
+
i

)(∫
Ω

(1 + |wε|)
qi(z)τ(z)pi(z)

(pi(z)−qi(z)) dz
) 1

p
−
i

(1−
q
+
i

p
+
i

)

≤ C2

( N∑
i=1

∫
Ω

ϱi|∂iwε|pi(z)

(1 + |wε|)τ(z)
dz

) q
−
i

p
−
i

(∫
Ω

(1 + |wε|)
pi(z)τ(z)qi(z)

pi(z)−qi(z) dz
) 1

p
−
i

(1−
q
+
i

p
+
i

)

.

We now choose τ(z) > 1 such that qi(z)τ(z)pi(z)
pi(z)−qi(z) < r(z), such a real number τ(z) exists if

1 <
r(z)(pi(z)− qi(z))

pi(z)qi(z)
that is qi(z) <

pi(z)r(z)

r(z) + pi(z)
.

By combining equations (3.23)-(3.26), we obtain the desired estimates expressed by (3.18). To derive
(3.20), we use (3.19), which allows us to conclude that

N∑
i=1

∫
Ω

|∂iTℓ(wε)|pi(z)ϱidz =
N∑
i=1

∫
{|wε|<ℓ}

ϱi|∂iwε|pi(z)dz ≤ (1 + ℓ)τ
+

N∑
i=1

∫
Ω

ϱi|∂iwε|pi(z)

(1 + |wε|)τ(z)
dz.

2
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Step 3: Weak convergence of truncations To demonstrate the weak convergence of (Tℓ(wε))ε in
W 1,p⃗(z)(Ω, ϱ⃗), we first show that (wε)ε is a Cauchy sequence. This is possible because of the equation
(3.20).

N∑
i=1

∫
Ω

|∂iTℓ(wε)|pi(z)ϱidz ≤ C(1 + ℓ)τ
+

+ ℓp
−
0 |Ω| for ℓ ≥ 1,

Consequently, if the sequence (Tℓ(wε))ε is bounded in W 1,p⃗(z)(Ω, ϱ⃗), then it is possible to identify a
specific subsequence denoted by (Tℓ(wε))ε such that Tℓ(wε)⇀ δℓ in W

1,p⃗(z)(Ω, ϱ⃗),

Tℓ(wε) → δℓ in L
p(Ω, γ) and a.e. in Ω.

(3.27)

With the help of equation (3.20), we can conclude that there exists a constant C4 that is independent of
both ℓ and ε, implying that

∥∇Tℓ(uε)∥Lp(Ω,γ) ≤ C4ℓ
τ+

p for ℓ ≥ 1 (3.28)

Given a ball BR in Ω, if ℓ is taken to be sufficiently large, by utilizing equation (3.28) and invoking the
Poincaré type inequality and Lemma 2.1, we arrive at the conclusion that

ℓ meas
(
{|wε| > ℓ} ∩BR

)
=

∫
{|wε|>ℓ}∩BR

|Tℓ(wε)|dz (3.29)

≤ C5∥∇Tℓ(wε)∥Lp(Ω,γ)

≤ C6ℓ
τ+

p .

Taking τ(z) such that (1 < τ(z) < p), we infer

meas
(
{|wε| > ℓ} ∩BR

)
≤ C6

1

ℓ
1− τ+

p

→ 0 as ℓ→ +∞. (3.30)

For each ζ > 0, we obtain

meas
(
{|wε − wη| > ζ} ∩BR

)
≤ meas

(
{|wε| > ℓ} ∩BR

)
+meas

(
{|wη| > ℓ} ∩BR

)
+meas

(
{|Tℓ(wε)− Tℓ(wη)| > ζ}

)
.

By the equation (3.30) we can take a sufficiently large value of ℓ = ℓ(m) where m > 0.

meas
(
{|wε| > ℓ} ∩BR

)
≤ m

3
and meas

(
{|wη| > ℓ} ∩BR

)
≤ m

3
. (3.31)

In other words, from the equation (3.27), let (Tℓ(wε))ε∈N is a Cauchy sequence in measure. Consequently,
for every positive value of ℓ and ζ, and for every positive value of m, there exists a specific value
m0 = m0(ℓ, ζ,m) such that

meas
{
|Tℓ(wε)− Tℓ(wη)| > ζ

}
≤ m

3
for all ε, η ≥ m0(ℓ, ζ,m). (3.32)

From the equations (3.31) and (3.32), we conclude that for all positive values of ζ and m there exists a
value m0 = m0(ℓ(m), ζ, R) such that

meas
(
{|wε − wη| > ζ} ∩BR

)
≤ m ∀ε, η ≥ m0(ℓ(m), ζ, R).

This demonstrates that the sequence (wε)ε converges in measure and therefore converges a.e. to a
measurable function w. As a result, we can state that

Tℓ(wε)⇀ Tℓ(w) in W
1,p⃗(z)(Ω, ϱ⃗), (3.33)

and by means of the dominated convergence theorem of Lebesgue we arrive at

Tℓ(wε) → Tℓ(w) in L
p0(z)(Ω, ϱ0) and a.e in Ω. (3.34)
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Step 4 : Strong convergence of truncations In the next section, we use the notation ni(ε), where i =
1, 2, . . ., to represent various real-valued functions with respect to real variables. These functions converge
to 0 as ε approaches infinity. Let gℓ = max{g(t) : |t| ≤ ℓ}, where ℓ ≥ 0, and define φλ(t) = teλt

2

, with
λ = ( gℓ2α )

2. It can be readily verified that

φ′
λ(t)−

gℓ
α
|φλ(t)| ≥

1

2
, ∀t ∈ R.

Let t > ℓ > 0 and define N = 4ℓ+ s. Introduce σε := wε − Ts(wε) + Tℓ(wε)− Tℓ(w) and ϖε := T2ℓ(σε).
On the set {|wε| ≥ N}, it is simple to check that the function ϖε, proposed in [17], is constant and so
∂iϖε = 0. Taking φ = wε− ξeG(|wε|)φλ(ϖε), we infer φ ∈W 1,p⃗(z)(Ω, ϱ⃗) and let ξ small enough such that
φ ≥ ∆, then φ is an admissible test function in (3.2), and by (1.2) we obtain

N∑
i=1

∫
Ω

κi

(
z, Tε(wε),∇wε

)
∂i
(
eG(|wε|)φλ(ϖ

+
ε )

)
dz

+

∫
Ω

Hε(z, wε,∇wε)eG(|wε|)φλ(ϖ
+
ε )dz +

1

ε

∫
Ω

|wε|p0(z)−2wεe
G(|wε|)φλ(ϖ

+
ε )dz

+

∫
Ω

|Tε(wε)|r(z)−1Tε(wε)e
G(|wε|)φλ(ϖ+ε)dz

≤ µ

∫
Ω

|Tε(wε)|p0(z)−2Tε(wε)

|z|p0(z) + 1
ε

eG(|wε|)φλ(ϖ
+
ε )dz +

∫
Ω

fεe
G(|wε|)φλ(ϖ

+
ε )dz.

Given that wε and ϖε exhibit identical signs within the set {|wε| > ℓ}, we are able to write that

∫
Ω

Hε(z, wε,∇wε)φγ(ϖ+
ε )e

G(wε)dx =

∫
{|wε|≤ℓ}

Hε(z, wε,∇wε)φγ(ϖ+
ε )e

G(wε)dz

+

∫
{wε>ℓ}

Hε(z, wε,∇wε)φγ(ϖ+
ε )e

G(wε)dz.

Combined with (1.6) and Young’s inequality this leads to

N∑
i=1

∫
{ϖε≥0}

κi(z, wε,∇wε)∂iϖεφ
′
λ(ϖ

+
ε )e

G(wε)dz +

∫
{|wε|≤ℓ}

Hε(z, wε,∇wε)φλ(ϖ+
ε )e

G(wε)dz

+

∫
{|wε|≤ℓ}

|wε|r(z)−1wεφλ(ϖ
+
ε )e

G(wε)dz +
1

ε

∫
{|wε|≤ℓ}

|wε|p0(z)−1wεφλ(ϖ
+
ε )e

G(wε)dz (3.35)

≤ µ

∫
{|wε|≤ℓ}

|wε|p0(z)−1

|z|p0(z) + 1
ε

φλ(ϖ
+
ε )e

G(wε)dz + C3

∫
{wε>ℓ}

φλ(ϖ
+
ε )e

G(wε)

|z|
p0(z)r(z)

r(z)−p0(z)+1

dz

+

∫
Ω

(|f |+ |b|)φλ(ϖ+
ε )e

G(wε)dz.

where C3 = ζλζ
(p0(z)−1

r(z)

)ζ
, such that ζ = r−−p++1

r+ . It is straightforward to verify that

N∑
i=1

κi(z, wε,∇wε)Diϖε ≥
N∑
i=1

κi(z, Tℓ ∇Tℓ(wε))∂i(Tℓ(wε)− Tℓ(w))

−
∣∣ N∑
i=1

κi(z, TN (wε),∇TN (wε))
∣∣|∂iTℓ(w)|χ{|wε|>ℓ},



14 Zineddaine et al.

which means that

N∑
i=1

∫
{ϖε≥0}

(
κi(z, Tℓ(wε),∇Tℓ(wε))− κi(z, Tℓ(wε),∇Tℓ(w))

)
(∂iTℓ(wε)− ∂iTℓ(w))φ

′
λ(ϖ

+
ε )e

G(wε)dz

≤
N∑
i=1

∫
{|wε|>ℓ}

∣∣κi(z, TN (wε),∇TN (wε))
∣∣|∂iTℓ(w)|φ′

λ(ϖ
+
ε )e

G(wε)dz

+

N∑
i=1

∫
{ϖε≥0}

κi(z, wε,∇wε)∂iϖεφ
′
λ(ϖ

+
ε )e

G(wε)dz

−
N∑
i=1

∫
{ϖε≥0}

κi(z, Tℓ(wε),∇Tℓ(w))
(
∂iTℓ(wε)− ∂iTℓ(w)

)
φ′
λ(ϖ

+
ε )e

G(wε)dz.

Then, we get

∣∣∣ N∑
i=1

∫
{|wε|>ℓ}

|κi(z, TN (wε),∇TN (wε))||∂iTℓ(w)|φ′
λ(ϖ

+
ε )e

G(wε)dz
∣∣∣

≤ φ′
λ(2ℓ)e

G(∞)
N∑
i=1

∫
{|wε|>ℓ}

|κi(z, TN (wε),∇TN (wε))||∂iTℓ(w)|dz.

The integral on the right tends to zero as ε approaches infinity. This is guaranteed by (3.20), since
it preserves the boundedness of the sequence {κi(z, TX(wε),∇TX(wε))}ε in the space (Lp

′
i(z)(Ω, ϱ∗i ))

N .
Furthermore, the Lebesgue dominated convergence theorem gives, for all i = 1, . . . , N , that

|∂iTℓ(w)|χ{|wε|>ℓ} → 0 strongly in Lpi(z)(Ω, ϱi) as ε→ ∞.

This implies that

N∑
i=1

∫
{|wε|>ℓ}

|κi(z, TN (wε),∇TN (wε))||∂iTℓ(w)|φ′
λ(ϖ

+
ε )e

G(wε)dz = n1(ε).

By employing (3.20), (3.33), and (3.34), it is straightforward to verify that

N∑
i=1

∫
{ϖε≥0}

κi(z, Tℓ(wε),∇Tℓ(w))
(
∂iTℓ(wε)− ∂iTℓ(w)

)
φ′
λ(ϖ

+
ε )e

G(wε)dz = n2(ε).

As a result, we obtain

N∑
i=1

∫
{ϖε≥0}

(κi(z, Tℓ(wε),∇Tℓ(wε))− κi(z, Tℓ(wε),∇Tℓ(w)))(∂iTℓ(wε)− ∂iTℓ(w))φ
′
λ(ϖ

+
ε )e

G(wε)dz

≤
N∑
i=1

∫
{ϖε≥0}

κi(z, wε,∇wε)∂iϖεφ
′
λ(ϖ

+
ε )e

G(wε)dz + n3(ε). (3.36)
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In view of (1.2) and (1.6) we are able to express the following∣∣∣ ∫
{|wε|≤ℓ}

Hε(z, wε,∇wε)φλ(ϖ+
ε )e

G(wε)dz
∣∣∣

≤
∫
{|wε|≤ℓ}

bφλ(ϖ
+
ε )e

G(wε)dz +

N∑
i=1

∫
{|wε|≤ℓ}

ϱi|∂iTℓ(wε)|pi(z))φλ(ϖ+
ε )e

G(wε)dz

≤
∫
{|wε|≤ℓ}

bφλ(ϖ
+
ε )e

G(wε)dz +
gℓ
α

N∑
i=1

∫
Ω

κi(z, Tℓ(wε),∇Tℓ(wε))∂iTℓ(wε)φλ(ϖ+
ε )e

G(wε)dz

≤
∫
{|wε|≤ℓ}

bφλ(ϖ
+
ε )e

G(wε)dz +
gℓ
α

N∑
i=1

∫
Ω

κi(z, Tℓ(wε),∇Tℓ(wε))∂iTℓ(w)φλ(ϖ+
ε )e

G(wε)dz

+
gℓ
α

N∑
i=1

∫
Ω

(κi(z, Tℓ(wε),∇Tℓ(wε))− κi(z, Tℓ(wε),∇Tℓ(w))(∂iTℓ(wε)− ∂iTℓ(w))φλ(ϖ
+
ε )e

G(wε)dz

(3.37)

+
gℓ
α

N∑
i=1

∫
Ω

κi(z, Tℓ(wε),∇Tℓ(w))(∂iTℓ(wε)− ∂iTℓ(w))φλ(ϖ
+
ε )e

G(wε)dz.

According to the Lebesgue Dominated Convergence Theorem, we have

lim
ε→∞

∫
{|wε|≤ℓ}

bφλ(ϖ
+
ε )e

G(wε)dz =

∫
{|w|≤ℓ}

bφλ(T2ℓ(w − Ts(w))
+)eG(w)dz = 0.

Regarding the last term on the right-hand side of (3.37), analogous reasoning as previously discussed
leads to

N∑
i=1

∫
Ω

κi(z, Tℓ(wε),∇Tℓ(w))(∂iTℓ(wε)− ∂iTℓ(w))φλ(ϖ
+
ε )e

G(wε)dz → 0,

as ε → ∞. Since {κi(z, Tℓ(wε),∇Tℓ(wε))}ε bounded in (Lp
′
i(z)(Ω, ϱ∗i ))

N , there is a vector function

πi,ℓ ∈ (Lp
′
i(z)(Ω, ϱ∗i ))

N such that

κi(z, Tℓ(wε),∇Tℓ(wε))⇀ πi,ℓ in (Lp
′
i(z)(Ω, ϱ∗))N , as ε→ ∞, (3.38)

and due to

φλ(ϖ
+
ε )e

G(wε) ⇀ φλ(T2ℓ(w − Ts(w))
+)eG(w) in L∞(Ω) for σ∗(L∞, L1),

as ε→ ∞, the last term on the right-hand side of (3.37) can be simplified as follows

lim
ε→∞

N∑
i=1

∫
Ω

κi(z, Tℓ(wε),∇Tℓ(wε))∂iTℓ(w)φλ(ϖ+
ε )e

G(wε)dz =

∫
Ω

πi,ℓ∂iTℓ(w)φλ(T2ℓ(w − Ts(w))
+)eG(w)dz = 0.

Hence, we can conclude that

∣∣∣ ∫
{|wε|≤ℓ}

Hε(z, wε,∇wε)φλ(ϖ+
ε )e

G(wε)dz
∣∣∣

≤ gℓ
α

N∑
i=1

∫
Ω

(κi(z, Tℓ(wε),∇Tℓ(wε))−κi(z, Tℓ(wε),∇Tℓ(w))(∂iTℓ(wε)−∂iTℓ(w))φλ(ϖ+
ε )e

G(wε)dz+n4(ε).

(3.39)
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Combining (3.35), (3.36), and (3.39), we can derive that

N∑
i=1

∫
{ϖε≥0}

(κi(z, Tℓ(wε),∇Tℓ(wε))− κi(z, Tℓ(wε),∇Tℓ(w))

× (∂iTℓ(wε)− ∂iTℓ(w))(φ
′
λ(ϖ

+
ε )−

gℓ
α
φλ(ϖ

+
ε ))e

G(wε)dz

≤
N∑
i=1

∫
{ϖε≥0}

κi(z, wε,∇wε)∂iϖεφ
′
λ(ϖ

+
ε )e

G(wε)dz +

∫
{|wε|≤ℓ}

Hε(z, wε,∇wε)φλ(ϖ+
ε )e

G(wε)dz + n5(ε)

≤
∣∣∣ ∫

{|wε|≤ℓ}
|wε|r(z)−1wεφλ(ϖ

+
ε )e

G(wε)dz
∣∣∣+ 1

ε

∣∣∣ ∫
{|wε|≤ℓ}

|wε|p0(z)−1wεφλ(ϖ
+
ε )e

G(wε)dz
∣∣∣

+
∣∣∣µ∫

{|wε|≤ℓ}

|wε|p0(z)−1

|z|p0(z) + 1
ε

φλ(ϖ
+
ε )e

G(wε)dz
∣∣∣

+ C1

∣∣∣ ∫
{wε>ℓ}

φλ(ϖ
+
ε )e

G(wε)

|z|
p0(z)r(z)

r(z)−p0(z)+1

dz
∣∣∣+ ∫

Ω

(|f |+ |b|)φλ(ϖ+
ε )e

G(wε)dz + n5(ε).

It can be observed that∣∣∣ ∫
{|wε|≤ℓ}

|wε|κ(z)−1wεφλ(ϖ
+
ε )e

G(wε)dz
∣∣∣

≤ max
(
ℓκ

+

, ℓκ
−) ∫

{|wε|≤ℓ}
φλ(ϖ

+
ε )e

G(wε)dz with κ(z) = r(z) or p0(z).

By applying the Lebesgue Dominated Convergence Theorem, we find that

lim
ε→∞

∫
{|wε|≤ℓ}

φλ(ϖ
+
ε )e

G(wε)dz =

∫
{|w|≤ℓ}

φλ(T2ℓ(w − Tℓ(w))
+)eG(w)dz = 0,

which means that

lim
ε→∞

∫
{|wε|≤ℓ}

|wε|r(z)−1wεφλ(ϖ
+
ε )e

G(wε)dz = 0,

lim
ε→∞

1

ε

∫
{|wε|≤ℓ}

|wε|p0(z)−1wεφλ(ϖ
+
ε )e

G(wε)dz = 0.

Applying the Hölder inequality, we can deduce that

∣∣∣µ∫
{|wε|≤ℓ}

|wε|p0(z)−1

|z|p0(z) + 1
ε

φλ(ϖ
+
ε )e

G(wε)dz
∣∣∣

≤ µmax(ℓr
+

, ℓr
−
)eG(∞)

(∫
Ω

dz

|z|
p0(z)r(z)

r(z)−p0(z)+1

) r−−p
+
0 +1

r−
(∫

{|wε|≤ℓ}
φλ

(
ϖ+
ε

) r(z)
p0(z)−1 dz

) p
−
0 −1

r−

After the previous steps, we arrive at

lim
ε→∞

∣∣∣µ∫
{|wε|≤ℓ}

|wε|p0(z)−1

|z|p0(z) + 1
ε

φλ(ϖ
+
ε )e

G(wε)dz
∣∣∣ = 0.

With the application of the Lebesgue dominated convergence theorem, we can conclude that

lim
ε→∞

∫
{wε>ℓ}

φλ(ϖ
+
ε )e

G(wε)

|z|
p0(z)r(z)

r(z)−p0(z)+1

dz =

∫
{w>ℓ}

φλ(T2ℓ(w − Ts(w))
+)eG(w)

|z|
p0(z)r(z)

r(z)−p0(z)+1

dz.
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Regarding the last term, and considering that φλ(ϖ
+
ε )e

G(wε) ⇀ φλ(T2ℓ(w−Ts(w))
+)eG(w) in L∞(Ω) for

σ∗(L∞, L1), we obtain

lim
ε→∞

∫
Ω

(|f |+ |b|)φλ(ϖ+
ε )e

G(wε)dz =

∫
Ω

(|f |+ |b|)φλ(T2ℓ(w − Ts(w))
+)eG(w)dz.

With these considerations, we can rewrite (3) as

1

2

N∑
i=1

∫
{ϖε≥0}

(
κi(z, Tℓ(wε),∇Tℓ(wε))− κi(z, Tℓ(wε), ∇Tℓ(w))

)
(∂iTℓ(wε)− ∂iTℓ(w))e

G(wε)dz

≤
∫
{w>ℓ}

φλ(T2ℓ(w − Ts(w))
+)eG(w)

|z|
p0(z)r(z)

r(z)−p0(z)+1

dz +

∫
Ω

(|f |+ |b|)φλ(T2ℓ(w − Ts(w))
+)eG(w)dz + n6(ε).

Taking the limit as s tends to infinity, considering (1.4), we arrive at

lim
ε→∞

N∑
i=1

∫
{ϖε≥0}

(κi(z, Tℓ(wε),∇Tℓ(wε))−Θ(z, Tℓ(wε),∇Tℓ(w)))(∂iTℓ(wε)− ∂iTℓ(w))e
G(wnε)dz ≤ 0.

(3.40)
Next, by taking φ = wε + ξφλ(ϖ

−
ε )e

−G(wε), we have φ ∈ W 1,p⃗(z)(Ω, ϱ⃗), let ξ small enough such that
φ ≥ ∆, then φ is an admissible test function in (3.2), and a similar approach, we obtain

N∑
i=1

∫
{ϖε≤0}

κi(z, wε,∇wε)∂iϖεφ
′
λ(ϖ

−
ε )e

−G(wε)dz −
∫
{|wε|≤ℓ}

Hε(z, wε,∇wε)φλ(ϖ−
ε )e

−G(wε)dz

−
∫
{|wε|≤ℓ}

|wε|r(z)−1wεφγ(ϖ
−
ε )e

−G(wε)dz − 1

ε

∫
{|wε|≤ℓ}

|wε|p0(z)−1wεφγ(ϖ
−
ε )e

−G(wε)dz (3.41)

≤ µ

∫
{|wε|≤ℓ}

|wε|p0(z)−1

|z|p0(z) + 1
ε

φλ(ϖ
−
ε )e

−G(wε)dz + C3

∫
{wε>ℓ}

φλ(ϖ
−
ε )e

−G(wε)

|z|
p0(z)r(z)

r(z)−p0(z)+1

dz

+

∫
Ω

(|f |+ |b|)φλ(ϖ−
ε )e

−G(wε)dz.

As in the process used to derive equation (3.36), we also establish that

N∑
i=1

∫
{ϖε≤0}

(κi(z, Tℓ(wε),∇Tℓ(wε))− κi(z, Tℓ(wε),∇Tℓ(w))(∂iTℓ(wε)− ∂iTℓ(w))φ
′
λ(ϖ

−
ε )e

−G(wε)dz

≤
N∑
i=1

∫
{ϖε≤0}

κi(z, wε,∇wε)Diϖεφ
′
λ(ϖ

−
ε )e

−G(wε)dz + n7(ε). (3.42)

By estimating the term
∣∣∣ ∫

{|wε|≤ℓ}
Hε(z, wε,∇wε)φλ(ϖ−

ε )e
−G(wε)dz

∣∣∣ in the manner demonstrated in equa-

tion (3.37), we arrive at

∣∣∣ ∫
{|wε|≤ℓ}

Hε(z, wε,∇wε)φλ(ϖ−
ε )e

−G(wε)dz
∣∣∣ (3.43)

≤ gℓ
α

N∑
i=1

∫
Ω

(
κi(z, Tℓ(wε),∇Tℓ(wε))− κi(z, Tℓ(wε),∇Tℓ(w))

)
(∂iTℓ(wε)− ∂iTℓ(w))φλ(ϖ

−
ε )e

−G(wε)dz + n8(ε).
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According to (3.41), (3.42) and (3.43) we get

N∑
i=1

∫
{ϖε≥0}

(
κi(z, Tℓ(wε),∇Tℓ(wε))− κi(z, Tℓ(wε),∇Tℓ(w))

)
×

(
∂iTk(wε)− ∂iTℓ(w)

)
(φ′
λ(ϖ

+
ε )−

gell
α
φλ(ϖ

+
ε ))e

−G(wε)dz

≤
N∑
i=1

∫
{ϖε≤0}

κi(z, wε,∇wε)∂iϖεφ
′
λ(ϖ

−
ε )e

−G(wε)dz −
∫
{|wε|≤ℓ}

Hε(z, wε,∇wε)φλ(ϖ−
ε )e

−G(wε)dz + n9(ε)

≤
∣∣∣ ∫

{|wε|≤ℓ}
|wε|r(z)−1wεφλ(ϖ

−
ε )e

−G(wε)dz
∣∣∣+ 1

ε

∣∣∣ ∫
{|wε|≤ℓ}

|wε|p0(z)−1wεφλ(ϖ
−
ε )e

−G(wε)dz
∣∣∣ (3.44)

+
∣∣∣µ ∫

{|wε|≤ℓ}

|wε|p0(z)−1

|z|p0(z) + 1
ε

φλ(ϖ
−
ε )e

−G(wε)dz
∣∣∣+ C3

∣∣∣ ∫
{wε<−ℓ}

φλ(ϖ
−
ε )e

−G(wε)

|z|
p0(z)r(z)

r(z)−p0(z)+1

dz
∣∣∣

+

∫
Ω

(|f |+ |b|)φλ(ϖ−
ε )e

−G(wε)dz + n9(ε).

As above, going to the limit as ε and then as s tends to 0 on both sides of (3.44), we get

lim
ε→∞

N∑
i=1

∫
{ϖε≤0}

(κi(z, Tℓ,∇Tℓ(wε))− κi(z, Tℓ,∇Tℓ(w))(∂iTℓ(wε)− ∂iTℓ(w))e
−G(wε)dz ≤ 0. (3.45)

Continuing with the analysis, we sum up the two inequalities (3.40) and (3.45), leading us to

lim
ε→∞

N∑
i=1

∫
Ω

(
κi(z, Tℓ(wε),∇Tℓ(wε))− κi(z, Tℓ(wε),∇Tℓ(w))

)
(∂iTℓ(wε)− ∂iTℓ(w))dz = 0. (3.46)

Hence, by applying Lemma 5 from [6], we arrive at

Tℓ(wε) → Tℓ(w) strongly in W 1,p⃗(z)(Ω, ϱ⃗). (3.47)

Then we can infer, up to a subsequence still indexed by ε, that

∂iwε → ∂iw a.e. in Ω for all i = 1, . . . , N. (3.48)

Step 4: The equi-integrability of the nonlinear terms In this part, we will prove that

Hε(z, wε,∇wε) → H(z, w,∇w) strongly in L1(Ω), (3.49)

|Tε(wε)|r(z)−1Tε(wε) → |w|r(z)−1w strongly in L1(Ω), (3.50)

|Tε(wε)|p0(z)−2Tε(wε)

|z|p0(z) + 1
ε

→ |w|p0(ε)−2w

|z|p0(z)
strongly in L1(Ω), (3.51)

and
1

ε
|wε|p0(z)−2wε → 0 strongly in L1(Ω). (3.52)

By combining (3.47) and (3.48), we obtain

Hε(x,wε,∇wε) → H(z, w,∇w) a.e. in Ω, (3.53)

|Tε(wε)|r(z)−1Tε(wε) → |w|r(z)−1w a.e. in Ω, (3.54)

|Tε(wε)|p0(w)−2Tε(wε)

|z|p0(z) + 1
ε

→ |w|p0(z)−2w

|z|p0(z)
a.e. in Ω, (3.55)
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and

1

ε
|wε|p0(z)−2wε → 0 a.e. in Ω. (3.56)

To establish the uniform equi-integrability of these functions. Taking φ = wε− ξT1(wε−Tℓ(w)), we infer
φ ∈W 1,p⃗(z)(Ω, ϱ⃗) and let ξ small enough such that φ ≥ ∆, then φ is an admissible test function in (3.2),
and by (1.2) we get

N∑
i=1

∫
{ℓ<|wε|≤ℓ+1}

|∂iwε|pi(z)ϱidz +
∫
{|wε|≥ℓ}

Hε(z, wε,∇wε)T1(wε − Tℓ(wε))dz

+

∫
{|wε|≥ℓ}

|Tε(wε)|r(z)|T1(wε − Tℓ(wε))|dz +
1

ε

∫
{|un|≥ℓ+1}

|wε|p0(z)−1dz

≤
∫
{|wε|≥ℓ}

|fε|dz + µ

∫
{|wε|≥ℓ}

|T1(wε|p0(z)−1

|z|p0(z) + 1
ε

|T1(wε − Tℓ(w)|dz.

Note that

∫
{|wε|≥ℓ}

Hε(z, wε,∇wε)T1(wε − Tℓ(wε))dz

≥
∫
{|wε|≥ℓ+1}

Hε(z, wε,∇wε)T1(wε − Tℓ(wε))dz =

∫
{|wε|≥ℓ+1}

|Hε(z, wε,∇wε)|dz.

Given Young’s inequality, we obtain

µ

∫
{|wε|≥ℓ}

|T1(wε|p0(z)−1

|z|p0(z) + 1
ε

|T1(wε − Tℓ(w)|dz ≤
1

3

∫
{|wε|≥ℓ}

|Tε(wε)|r(x)|T1(wε − Tℓ(wε))|dz

+ C3

∫
{|wε|≥ℓ}

|T1(wε − Tε(wε))|

|z|
r(z)p0(z)

r(z)−p0(z)+1

dz,

As a result

∫
{|wε|≥ℓ+1}

|Hε(z, wε,∇wε)|dz +
1

3

∫
{|wε|≥ℓ+1}

|Tε(wε)|r(z)dz

+ µ

∫
{|wε|≥ℓ+1}

|Tε(wε)|p0(z)−1

|z|p0(z) + 1
ε

dz +
1

ε

∫
{|un|≥ℓ+1}

|wε|p0(z)−1dz

≤ 2C3

∫
{|wε|≥ℓ}

|T1(wε − Tℓ(wε))|

|z|
r(z)p0(z)

r(z)−p0(z)+1

dz +

∫
{|wε|≥ℓ}

|fε|dz.

Therefore, for each δ > 0, there exists ℓ(δ) > 0 such that

∫
{|wε|≥ℓ(δ)}

|Hε(z, wε,∇wε)|dz +
∫
{|wε|≥ℓ(δ)}

|Tε(wε)|r(z)dz

+

∫
{|wε|≥ℓ(δ)}

|Tε(wε)|p0(z)−1

|z|p0(z) + 1
ε

dz +
1

ε

∫
{|un|≥ℓ(δ)}

|wε|p0(z)−1dz ≤ δ

2
. (3.57)
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Conversely, for every measurable subset F ⊆ Ω, we have∫
F
|Hε(z, wε,∇wε)|dz +

∫
F
|Tε(wε)|r(z)dz +

∫
F

|Tε(wε)|p0(z)−1

|z|p0(z) + 1
ε

dz +
1

ε

∫
F
|wε|p0(z)−1dz

≤
∫
F∩{|wε|<ℓ(δ)}

|Hε(z, Tℓ(δ)(wε),∇Tℓ(δ)(wε)|dz +
∫
F∩{|wε|<ℓ(δ)}

|Tℓ(δ)(wε)|r(z)dz (3.58)

+
1

ε

∫
F∩{|wε|<ℓ(δ)}

|wε|p0(z)−1dz +

∫
F∩{|wε|<ℓ(δ)}

|Tℓ(δ)(wε)|p0(z)−1

|z|p0(z) + 1
ε

dz +

∫
{|wε|≥ℓ(δ)}

|Hε(z, wε,∇wε)|dz

+

∫
{|wε|≥ℓ(δ)}

|Tε(wε)|r(z)dz +
∫
{|wε|≥ℓ(δ)}

|Tε(wε)|p0(z)−1

|z|p0(z) + 1
ε

dz +
1

ε

∫
{|wε|≥ℓ(δ)}

|wε|p0(z)−1dz

In the sequel, by (1.6) we have∫
F∩{|wε|<ℓ(δ)}

|Hε(z, Tℓ(δ)(wε),∇Tℓ(δ)(wε)|dz ≤
∫
F∩{|wε|<ℓ(δ)}

(
b(z)+g(|ℓ(δ)|)

N∑
i=1

ϱi|∂iTℓ(δ)(wε)|pi(z)
)
dz.

Hence, from (3.47) and (3.48), there exists γ(δ) > 0 such that : for each F ⊆ Ω with meas(F) ≤ γ(δ)∫
F∩{|wε|<ℓ(δ)}

|Hε(z, Tℓ(δ)(wε),∇Tℓ(δ)(wε)|dz +
∫
F∩{|wε|<ℓ(δ)}

|Tℓ(δ)(wε)|r(z)dz

+

∫
F∩{|wε|<ℓ(δ)}

|Tℓ(δ)(wε)|p0(z)−1

|z|p0(z) + 1
ε

dz +
1

ε

∫
F∩{|wε|<ℓ(δ)}

|wε|p0(z)−1dz ≤ δ

2
. (3.59)

Finally, according to (3.57)-(3.59), we infer∫
F
|Hε(z, wε,∇wε)|dz +

∫
F
|Tε(wε)|r(z)dz +

∫
F

|Tε(wε)|p0(z)−1

|z|p0(z) + 1
ε

dz

+
1

ε

∫
F
|wε|p0(z)−1dz ≤ δ, with meas(F) ≤ β(δ).

It follows that
(
Hε(z, wε,∇wε)

)
ε
,
(
|Tε(wε)|r(z)−1Tε(wε)

)
ε
,
(
|wε|p0(z)−1wε

)
ε
and

(
|Tε(wε)|p0(z)−2Tε(wε)

|z|p0(z)+ 1
ε

)
ε

are equi-integrable. In view of (3.53)-(3.59) and Vitali’s theorem, the convergences (3.49)-(3.56) are
established

Step 6: Passage to the limit Let ψ ∈ D∆ ∩ L∞(Ω) and K = ℓ + ∥ψ∥∞, with ℓ > 0. By taking φ =
wε − ξTℓ(wε − ψ) as a test function in (3.2), we obtain

N∑
i=1

∫
Ω

κi(z, Tε(wε),∇wε)∂iTℓ(wε − ψ)dz +

∫
Ω

Hε(z, wε,∇wε)Tℓ(w − ψ)dz +
1

ε

∫
Ω

|wε|p0(z)−2wεTℓ(wε − ψ)dz

+

∫
Ω

|Tε(wε)|r(z)−1Tε(wε)Tℓ(wε − ψ)dz = µ

∫
Ω

|Tε(wε)|p0(z)−2Tε(wε)

|z|p0(z) + 1
ε

Tℓ(wε − ψ)dz +

∫
Ω

fεTℓ(wε − ψ)dz.

One the one side, when |wε| > K we infer |wε−ψ| ≥ |wε|−∥ψ∥∞ > ℓ, then {|wε−ψ| ≤ ℓ} ⊆ {|wε| ≤ K},
this means that∫

Ω

κi(z, Tε(wε),∇wε)∂iTℓ(wε − ψ)dz =

∫
Ω

κi(z, TK(wε),∇TK(wε))(∂iTK(wε)− ∂iψ)χ{|wε−ψ|≤ℓ}dz

=

∫
Ω

(κi(z, TK(wε),∇TK(wε))− κi(z, TK(wε),∇ψ))(∂iTK(wε)− ∂iψ)χ{|wε−ψ|≤ℓ}dz

+

∫
Ω

κi(z, TK(wε),∇ψ)(∂iTK(wε)− ∂iψ)χ{|wε−ψ|≤ℓ}dz.
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It’s obvious that

lim
ε→∞

∫
Ω

κi(z, TK(wε),∇ψ)(∂iTε(wε)− ∂iψ)χ{|wε−ψ|≤ℓ}dz =

∫
Ω

κi(z, TK(w),∇ψ)(∂iTK(w)− ∂iψ)χ{|w−ψ|≤ℓ}dz.

In view of Fatou’s Lemma, we get

lim inf
ε→∞

N∑
i=1

∫
Ω

κi(z, Tε(wε),∇wε)∂iTℓ(wε − ψ)dz ≥
N∑
i=1

∫
Ω

(κi(z, TK(w),∇TK(w))− κi(z, TK(w),∇ψ))

× (∂iTK(w)− ∂iψ)χ{|w−ψ|≤ℓ}dz +

N∑
i=1

∫
Ω

κi(z, TK(w),∇ψ)(∂iTK(w)− ∂iψ)χ{|w−ψ|≤ℓ}dz

=

N∑
i=1

∫
Ω

κi(z, TK(w),∇TK(w))(∂iTK(w)− ∂iψ)χ{|w−ψ|≤ℓ}dz

=

N∑
i=1

∫
Ω

κi(z, w,∇w)∂iTℓ(w − ψ)dz.

Conversely, we can observe that Tℓ(wε−ψ)⇀ Tℓ(w−ψ) weak-* in L∞(Ω) and by using (3.49)-(3.52), it
follows that∫

Ω

Hε(z, wε,∇wε)Tℓ(w − ψ)dz →
∫
Ω

H(z, w,∇w)Tℓ(w − ψ)dz,∫
Ω

|Tε(wε)|r(z)−1Tε(wε)Tℓ(wε − ψ)dz →
∫
Ω

|w|r(z)−1wTℓ(w − ψ)dz,∫
Ω

|Tε(wε)|p0(z)−2Tε(wε)

|z|p0(z) + 1
ε

Tℓ(wε − ψ)dz →
∫
Ω

|w|p0(z)−2w

|z|p0(z)
Tℓ(w − ψ)dz,

1

ε

∫
Ω

|wε|p0(z)−2wεTℓ(wε − ψ)dz → 0, and

∫
Ω

fεTℓ(wε − ψ)dz →
∫
Ω

fTℓ(w − ψ)dz.

Finally, combining all these components, we have now successfully concluded the proof of Theorem 3.1.
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