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ABSTRACT: In this work, we study an anisotropic obstacle problem driven by a Leray-Lions-type operator
with a Hardy-type singular potential, defined in anisotropic weighted Sobolev spaces with variable exponents.
The problem involves a nonlinear lower-order term depending on the gradient, under homogeneous Neumann
boundary conditions. We establish the existence of entropy solutions using truncation techniques combined
with the monotonicity method.
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1. Introduction

Our research is situated at the confluence of two pivotal domains within the theory of partial differen-
tial equations (PDEs): the theory of anisotropic Sobolev spaces, as elaborated in [18,19], and the theory
of variable exponent Sobolev spaces, introduced in [11,12,16]. It is worth noting that the mathematical
literature contains relatively few results concerning weighted anisotropic problems. In contrast, the the-
ory of variable exponent Sobolev spaces has attracted considerable attention over the past few decades
[21,22], leading to a wealth of studies that explore their diverse applications.

Variable exponent Sobolev spaces have played a particularly important role in the study of materi-
als, especially in the field of electro-rheological fluids, commonly known as smart fluids. Revolutionary
contributions in this field were made by Winslow, who obtained a US patent on this phenomenon in
1947 [24] and published a seminal paper in 1949 [25]. Electro-rheological fluids have the remarkable
property that their viscosity changes considerably when they are subjected to an electromagnetic field.
Winslow observed that the viscosity of these fluids is inversely proportional to the field strength, with the
electromagnetic field inducing string-like structures aligned with its direction. These structures can lead
to an increase in viscosity of up to five orders of magnitude, a phenomenon now known as the Winslow
effect.

For a comprehensive discussion on the properties, modeling, and applications of variable exponent
spaces in the study of electro-rheological fluids, we refer the reader to [13,14,20]. Furthermore, variable
exponent Sobolev spaces have found substantial applications in other areas, including elasticity theory
[28] and image processing [9].

In sequel of this paper, let 2 C RV (N > 2) be a bounded open subset with a smooth boundary 9.
Our objective is to investigate the existence of entropy solutions for the following Neumann problem

N

po(z)—2
=3 umi(z w, Vo) + Mz, w, Vo) + o Ol = £ + MW in 0,
Nt (1.1)
Z ki(z,w,Vw) -m; =0 on 01},
i=1
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in the convex class Dp := {w € WP)(Q,5),w > A aein Q}, where A is a fixed obstacle function,
such that -
(H1) At e WHPE(Q, 8) N L=(Q).

In the following pages, we will consider 2 is an open bounded set of RV (N > 2). The functions ; :
Q2 x R x RV — R are Carathédory functions, which satisfy the following conditions, for all s € R, £ €
RV, ¢ ¢ RN and a. e. in z € Q,

"{i(za 875)61' Z Q0 |§i|pi(Z)a (12)
|/€1(Z s f)‘ < ﬂgp,( B) (Rz(z) + Q;’EEZ) ‘S|£ Z) T v ( )|§z }h‘(z)*l)7 (1.3)
(kiz5,6) = milz5,)) (G- &) >0 for & #¢, (1.4)

where R;(z) is a nonnegative function lying in Lp;(z)(Q) and a, 8 > 0. Moreover, we suppose that

|w[Po(£) =2y

feLY(Q) and e L'(Q). (1.5)

|Z|P0(z)

The nonlinear term H(z, s, ) is a Carathéodory function which satisfies only the growth condition

pi(2) (1.6)

N
[H(z,5,6)] < b(2) +9(|8|)Z 0il&

where g : R — RT is a continuous positive function that belongs to L*(R) and b(z) € L*(). In addition
to addressing the main problem, we will also discuss relevant previous studies. Several authors, including
Hjiej et al. [3], Benkirane and Elmahi [5], and Chrif [10], have provided proofs for the existence of
solutions to certain nonlinear elhptlc obstacle problems. These solutions were ebtabhbhed in the classical
anisotropic Sobolev space W, () and the weighted anisotropic Sobolev space Wy’ 7(Q, 7).

In [29,30,31], Zineddaine et al. studied an anisotropic elliptic problem involving the p(z)-Laplacian
operator or the Leray-Lions operator. Using the monotonicity method, they established the existence of a
weak approximate solution to the problem under consideration. Subsequently, they proved the existence
of an entropy solution by leveraging the strong convergence of the truncated sequence of approximate
solutions.

On the other hand, in the most general setting, the problems were addressed in [2], where the
authors considered the framework of anisotropic Sobolev spaces and imposed only mild assumptions on
the coefficients a;. Their objective was to establish the uniqueness of weak solutions to the considered
problems.

The main point in our study is to consider separately some class of anisotropic obstacle nonlinear
elliptic problems of kind (1.1), and prove only existence results, the uniqueness problem being a rather
delicate one, this kind of problems still attracting the interest of the researchers (see [23,7] for a survey).
This paper is to extend the results in [3], One of the motivations for studying (1.1) comes from applications
to elasticity as the equations that models the shape of an elastic membrane which is pushed by an obstacle
from one side affecting its shape.

The remaining part of this paper is organized as follows : Section 2 contains a brief discussion of the
weighted space with variable exponent Lebesgue and the weighted anisotropic variable exponent Sobolev
space, moreover we give some useful technical lemmas, The main existence results are stated and proved
in Section 3.

2. Preliminaries and interesting properties

This sectlon aims to provide a general overview of the aforementioned spaces. We set Cy (Q {p €
C(Q) : minp(z) > 1} and denote, for all p € C1(9),
2€Q

pT =supp(z) and p~ = inf p(2).
z€Q z€0
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Let p; € C(Q) for any 1 <i < N, we pose
(H2)  po(z) =2 max{pi(2), i=1,2, ..., N},

and ¢ = {0o,...,0n} be a vector of weight functions; i.e., every component p; is a measurable function
which is strictly positive a.e. in €.
We define the weighted Lebesgue space with variable exponent LPi(%)(€, g;) as follows

Lri(Q, o) = {w is a measurable real-valued function : / |w|Pi ) g;dz < oo}
Q

endowed with the so-called Luxemburg norm

pi(2)
pi(2),0i :inf{ﬂ>03/ ‘E pidx < 1}.
Q' M

Hw”LPi(Z)(Q,Qi) = [lw
Throughout this paper, we assume there exists a weight function g;, for any ¢ = 1,..., N, such that
-1
i(z)—1
(Hi’)) 0i € Llloc(Q); Qipb( ) € Llloc(Q)'

(Ha) Q;S(z) € L'(Q) with s(z) € (%, oo) N [Iﬁ’ oo).

If (H3) holds, then (LP«(*)(, g;), ||-
(see for example [13,27]).

Next, we introduce the anisotropic weighted Sobolev space with variable exponents, employed in the
analysis of our obstacle elliptic Neumann problem (1.1). We denote

pi(2), Qi) is a Banach, separable and reflexive space for each 0 < ¢ < N

0
ﬁ(Z) = {po(Z),pl(Z),. e ;pN(Z)}ﬂ 8OU-) =w and alw = 8,1: for i = 17' . 7N7
and if we set
p =min{py,p,...,px}, then p>1. (2.1)

The anisotropic weighted Sobolev space with variable exponents W1 7(*) (€, §) is defined as follow
W@, 0) = {we LmO(@,00) and dw e IO, 0), i =1+ N},

is a Banach space with respect to norm (cf. [10])

N
lwll := llwll 5,6 = lwllpoey + Y 10w (2.2)

i=1

pi(2),0i"

Let V = LPO(Z)(lQ) X Hfil LPi(*)(Q), and consider the operator 7 : WP)(Q,5) — V, defined by
T(w) = (w,we;*™). It is evident that W7(*)(Q, §) and V are isometric via T, as

3

N
1Tl = o) + 3 100, (0., = Il
i=1
Thus, T(leﬁ(z)(Q, é’)) is a closed subspace of V, which is a reflexive Banach space. By [8, Proposition

I11.17], it follows that T (W1P()(, g)) is reflexive, and consequently, WP(2)(€, §) is itself a reflexive
Banach space.

Lemma 2.1 Let Q be a smooth bounded open subset of RN (N > 2). Under the hypothesis (H1), (H3)
and inf g;(z) > 0 a.e. in Q for each 1 < i < N, we have the following continuous and compact embedding
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1. If p< N then WP (Q, §) s LIG)(Q) for any q € [p, p*[ where p* = NN—_%)

2. If p= N, then WP (Q, 9) < L1=)(Q) for all q € [p,+o0],
8. If p> N, then WHP)(Q, ) —— L>=(Q) N C°(Q).
Proof: See [4, Proposition 2.1] 0

Moreover, we consider
THPE(Q, §) = {w:Q — R, measurable, such that Ty(w) € WP (Q, ), for any £ > 0 },

where Ty(s) is the truncation function setting by
s if s <,
Ti(s) =13 02 it s>
sl
In sequel, we provide some preliminary Lemmas that are crucial to prove our main result.
Lemma 2.2 [/] Let g; be a function weight in Q, r; € CT(Q), g € L™*)(Q, 0;) and (g:). C L") (Q, 0;)
such that ||gnlly,(2),0, < C, for any i€ {1,...,N}.

If g. — g a.e. in Q, then g. — g weakly in L"*)(Q, o;).
Lemma 2.3 [/] Assume that (1.2)-(1.4) are true, and let (w.). be a sequence in W'P)(Q, 9) and

w € WHPE)(Q, §), if )
we — w weakly in Wl’p(z)(Q, 0),

and
N
Z / (ki(z,we, Vwe) — £ (2, we, VW) (Qjwe — Qjw)dz
i=179

+/ (|w€’p0(z)_2w5 — ’w‘po<z)_2w) (we — w)dz — 0,
Q

then, w. — w strongly in WP)(Q, ).

Lemma 2.4 [1] Let (w.). be a sequence of WHP)(Q, ) such that w. — w weakly in WHP3)(Q, 3).
Then Ty(w.) — Ty(w) weakly in WPZ)(Q, §).

3. Existence of entropy solutions

In this section, we define entropy solutions to the obstacle elliptic problem (1.1). Furthermore, we
demonstrate the primary outcome of this paper.

Definition 3.1 A measurable function w is said to be an entropy solution for the obstacle problem (1.1), if

|w[Po(2)=2qy

we THO©,9), ) € 1), Frre e 1)
and
N
Z/ ki(z,w, V)0, Tp(w — ¢¥)dz + / H(z, w, Vw)Te(w — 1)dz
=179 @
r(2)—1 ‘w|P0(z)—2w
+ A ’w’ wTy(w —)dz < A fTo(w —)dz + p . WT@(M —)dz, (3.1)

for all € Da N L>(9Q).

Theorem 3.1 Let f € LY(Q), supposing that (H1)— (H2) and (1.2) — (1.6) hold. Then there exists at
least one entropy solution for the problem (1.1).
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Proof of the Theorem 3.1

To prove the result of Theorem 3.1, we divide the proof into several steps.

Step 1: Approzimate problems Let (f-)-en be a sequence of smooth functions such that f. — f in L1(Q)
and | fe| < |f|. We consider the approximate problem

we € Da

N
Z/ Ki (z,Tg(wg),VwE) ([“)Z-w6 — aiga)dz + %/ ‘ws‘pO(z)_QwE(wE — )z
i=17% Q

r(z)—1 (32)
+ [ T (we)] T.(we)(we — p)dz +/ He (2, T (we), V. ) (we — ¢)dz
Q
[T ()T ()
§/Qf5( - dz+u/ |z|p0(z)+ Vo € Da,
H(z,s,€)
where H.(z,5,§) = ————————.
= T s g
Note that |H:(z,s,&)| < |H(z,s,€)| and |H:(z,s,§)] < e for any e € N*
Let’s consider the operator G, : Da — DA by
T.(w)[Po)= 2T
(Gew, v) / T (w)|" & T (w)vdz — / [ Te(w)l (w )vdz
|z|Po(2) 4 g
+/ He(z, Te(we), Vwe )vdz, for any w, v € Da.
Q

Thanks to the Holder’s inequality and by using (2.2), we have

T

| ‘Po

(Gew, v)] < / T2 ()" foldz + o]z
Q Q

1
+ [ Mot o). Vu)olds < ([ |T5<w>v<z><po<z>dz) 5 ooy
Q Q
[T (w) [P =1\ po(2) | =
+M</Q (W) dz) ”UHpo(z) (3.3)

) 1 ., —L
(py) @5
(po%_(po)’)(/ggj% e 1) " lelloce)

g . . 1
< (€ 4 pe + o) 4 1)(meas(2)) @0 [[v]|py (2)
< o]

Lemma 3.1 We consider the operator L. : Dan — DA defined by

N
1
(Leou,v) :Z/ mi(z,TE(ws),VwE)aivdz—i—g/ |ws|p°(z)_2w€vdz.
— JQ

Q

The operator B. = L. + G. acted from W P)(Q, 3) into (Wl’ﬁ(z) (Q, @'))* is bounded, pseudo-monotone
and coercive in the following sense

(Bev,v — vo)
o]

— 400 as ||v]| = oo for v € Da.
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Proof: Let us first show that L. is bounded, thus by applying Holder’s inequality, and combining it with
the growth condition (1.3), let wy belongs to Da, for any w in Da, we obtain

N
1
’(CEw,w())‘ :‘ E /ﬁi(w,TE(w),Vw)@-wgdz—i—g/ lw|Po ) ~2wwdz
=179 @

IN

N
§j(/anaTquVwﬂm@wim*”d) 1107 Duwoll o
— Q

i=1
+(Lm%@ﬂww4%wwm@ (34)
N , 1
SﬂZ(/ (RPi(Z)+|TE< )p7(z)_|_zg |awp7(z))> 0wol Lri =) (2,01

/wmwawnwm@<%Wﬂ

then, in view of (3.4) and (3.3) we can conclude that B. is bounded.
Thereafter, to establish the coercivity, let wy belongs to Da. Then, for any w in Da, According to (1.2)
we obtain

‘(ﬁww >a2/|8

> aflwlf?, (3-5)

pl(z) z)dz + — /|w\p° dz

with @ = min(c,

1
m
Combining (3.4) an

)-
nd (3.5), we have

<£Ew7 w — ’LU0> :<£ewaw> - <£sw7w0>

N
>0 [ el Oz - Golluol
i=1 7%

2 aljw||? = Collwol,

it follows that

We still need to prove that B is pseudo-monotone. Let (w.).en be a sequence in Wi (2)(Q, g) satisfying
the following condition

Wy, — W in Wl’ﬁ(z)( , 0)
Bewe — xe in (Wl Pz ( 5)) (36)
lim sup(B.wp, wy) < (Xe, w)

n—oo

We will show that xy. = B-w and (Bowy,, w,) = (xe,w) as n — +0o0.

With the help of the compact embedding W17(*)(Q, ) < LP(£2), we obtain w, converges to w in L2(£2)
for a subsequence noted again (wy,)nen-

Since (wn)nen is a bounded sequence in W'P()(Q g). By (1.3) it is obvious that the sequence
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(ki(z, Ty (wy), Vwy ) )nen is bounded in LPi(2)(Q, o¥), which implies the existence of a measurable function
75 € LPi?)(Q, of) such that

ki(z, Te(w), Vw) — 7§ in LP)(Q, 0F) as n — oo. (3.7)

We apply the Lebesgue dominated convergence theorem to obtain

T (w,) [P ) =T (w,, T po(z)=2T /
T (wh,))| 1s(w ) _, [Te(w)] ls(w) in LM (Q, 07). (3.8)
|z|Po() 4 : |z|Po(=) 4 2
T2 (w,) " M (wy) — |Te(w)|" @ To(w)  in LPA)(Q, 0f). (3.9)
Also, we have
|wy [P0~ 20p,, — Ja|Po2) =20y i LPO) (Q, w*). (3.10)

Similarly, we have (Hc (2, wy,, Vwy)), ¢y is bounded in LP (Q,7*) (i.e v* is the conjugate of  := inlg 0i) »
1€
then there exists a function o, € LBI(Q, ~*) such that
He (z,wn, V) — 0c in LY (Q,7*) as n — oo. (3.11)

For all w € WHP(2)(Q, g), we obtain

<X5780> - 11m <B Wn,P) = nh‘g)loz‘/\ Kzz z, T w'fl an)az(pdx

+ lim ~ |w [Po=) =24, pdz — lim ITe (wn) 72 2T (0n) dz
n—oco g n® ’I’LHOOM |Z|IJ0(Z) +1 ¥

+ lim [ H. (z T (wy), Vuwy, godz—i—/ T2 (wn) |3~ T (wy, ) pd 2 (3.12)
n— oo Q

2
(2)—2 |Te(w)[Po~ T( )
—Z/ 3z<pd2+/ [w[P P wepdz — / ER pdz
+Z/Qogai<pdz+/ﬂ|T€(w)|r(z)_1T€(w)cpdz.
i=1

From (3.6) and (3.12), we have

lim sup(B.w,,, w,) = lim sup Z/ ki(z, Te (wy,), Vwy,) 0w, dz

n—oo n— oo

T. (wy,) [P0 2T, (wy,
/|w [Po(=) g — / | ol (w )wndz

i
|Z|p0 +3

—l—/’HE(z,TE(wn),an)wndz—l—/ |T€(wn)|r(z)—1T€(wn)g0dz}
Q

T (w)[Po(#) 2T (w)
< po(z) |
E / s Oywdz + — / |w] dz — / PP+ 1 wdz

+/szdz+/ |ITe (w)|" T (w)wdz.
Q Q

By using (3.8)-(3.11), we obtain

T (wy) [Po(#) = 2T ) T. (w)|Po®)— 2T
| il (w wpdz — | w)l (w )wdz, (3.13)
‘Z|po(2) _|_ |z[Po(2) _|_
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/ T (w,)|" & T (w0 ) wpdz — / |Te ()" (w)wdz
Q Q

(3.14)
and

/H5<2,Ts(wn),an>wndz—>/erdz.
Q Q

(3.15)
Which implies that

N
1
limsup<2/ m(zTe(wn),an)aiwnderf/ ‘wn|llo(z)dz>
n—o00 P ) € Ja

N
1 z
< Z/Qﬂ'f@iwdz—k = lw|Pe®dz.  (3.16)
i=1

On the other side, taking into account (1.4), we get

N
Z /Q (ki(2, Te(wy), V) — ki(z, Te(wy,), Vw)) (85w, — d;w)dz

1
+ = / (Jwn [P )2, — w|P*@~2w) (w, — w)dz > 0,
€ Ja
hence

-

=1

1
/ﬁi(z,TE(wn),an)aiwndz+7/ |wn|p"(z)dz
Q € Ja

-

?

1
/m(z,Tg(wn),an)(?iwnder7/ Jw|Po*) 2w, wdz
1/ €Ja

2

+ Z ki(z, Te(wy), V) (9w, — d;w)dz + [ |w|P°® 2w (w, —w)dz.
=179 Q

The Lebesgue dominated convergence theorem implies Ti(w,) — T.(w) in LP/*)(Q, p;), hence
ki(2, Te(wy), Vw) converges to r;(z, Te(w), Vw) in LPi*)(Q, ¥), by employing (3.6) we infer

N
1
lim inf /,‘{,i 2, Te(wy,), Vwy, 3¢wndz—|—f/ wy, po(2) 1,
m(;Q(E() ) A

N
1
> Z/Qmazwderg/Q|w|p“(z)dz
=1

According to (3.16), we deduce that

N

1
l i(2, To(wn), V) diwndz + = [ w,|°@)d
ng&(;/gm(z (wy,), Vw,)d;w z+6/9|w| z)

al 1
=Z/ﬂfaiwdz—|—f/ lw|Pe@dz.  (3.17)
i—1/Q € Ja

Hence, from (3.10)-(3.13), it follows that

(Bewn, wn) = (xe, w) as n — oo.
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In the sequel, by means (3.17) we can establish that

n—4oo

N
lim (Z /Q(Kai(z,TE(wn), Vwy) — ki(2, Te(wy), Vw)) (0w, — d;w)dz

1
+ f/ (|wn|”°(z)_2wn — Jw[P ) =2 w) (w,, — w)dz) =0.
€Ja
Once again, by Lemma 2.3, we obtain
w, —»w in WHE(Q, ) and Qw, — Ow ae. in
which means that
ki(z, Te(wy), Vwy,) = Ki(z, T (w), Vw)  in Lp;(z)(Q, 07) for i=1,...,N,

and
He (2, To(wy), V) = He(z, Te(w), V) in L2 E)(Q,4%),

and it follows from (3.7)-(3.10) that x. = B.w, which conclude the proof of Lemma 3.1. O
According to Lemma 3.1, there exists at least one weak solution w,, € W'P()(Q, 3) of the problem (3.2).
Step 2 : A priori estimates

Lemma 3.2 Let us suppose that we is a weak solution of the problem (3.2). In this case, the reqularity
results stated below hold

we WO (Qu), where g(z) = (r(z).a1(2), -+ an(2)) (3.18)
pi(z)
such that r(z) > %ZU)(;)I), 1<gqi(2) < % and w” TP € LYQ)
0il diw [P ) r(2)(pi(2) — 4i(2))
Z/ I+ [, )7 —————dz < C for each 1<7(2) < () , (3.19)
N
> / 0i|0:To(w)|PPdz < C(L+ 07 for all €0, (3.20)
— Jo

where C' is a positive constant independent of € and £.

Proof: In this step we will use some methods of [26]. We choose 7(z) > 1 and define the function v(t),
which defines from R to R as follows

1 1°
) sion(®) and G(b) = - [ a((51)a3

90 = (1~ Ty

1 o0
Note that, as the function g(-) is integrable on R, then 0 < G(o0) = —/ g(|18)dp < .
a

0
Let us consider the function ¢ = w. — ¥ (we)exp(G(Jwe|)), where & > 0. It’s obvious that ¢ €
WLPE)(Q, 9) N L°(Q) and for all ¢ small enough, we deduce that ¢ > A. Then ¢ is an admissible
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test function in (3.2), this allows to write

N
K}'L Z, T sz) G(Jwe|) 1
Z/ 1—|— |’LU | T(z) dywee dz + a; QRi(Z’T€(w6)7vws)

% (9iw5g(|wg|)19(’w5)6G(‘w€DdZ+ ,/ |w8|Po(m)—2w€19(wa)eG(|we|)dZ

+/He(z,Tg(w5),VwE)e9( c)ec el dz+/ T2 (w2) ") 1T (w2 )0 (w, ) eCweD g
Q

po(2)—2
S/fgﬂ(wg)eG(‘wEDdZ“ru/ |Te (we)|P Ta(wa)ﬁ(ws)eG(\wgl)dz
Q Q =

|z|po(=) 4- 1

Additionally, the sign of ¥(w.) is the same as that of w,, which makes the third term of the previous
inequality positive. Furthermore, based on the condition (1.2) and |9(-)| < 1 we conclude that

pi(2)

00w Y
v 2 G(|wel) 19,
Z/ i |w | ‘r(z) dZ‘i‘;/QQszwe

xﬂ(wa)eG“wstH/ T2 (w2)]" @0 (w.) [N g
Q

P g(juwe)

|T5 (U15) ‘po(z)—

Pel@e/l  eG(weD
o |zpe@ +1 € dz

< [ Q1+ ez 4

+Z/§2Q¢\3iwe
i=1

Pi(2) g (Jwe )9 (we)eC D dz,

which implies that

pi(2)
Z/ Q1|8ws| G(|wE dZJr/ |T |r(z)|19( )|6 \wg\)dz

I+ w )@ °

we)| )

T
< 2650 (|| F L e + b1l 1) + 1 / | Sl gz (3.21)

|z[Po(2) _|_
It is easy to see that

1<1 _ for |Jwe] > R = ma (2*11 1,1)
- — =max (271 —1,1).
2~ (1 4 |we])7)—1 o

then, we infer

1 r(z) / (2) 1
Py T (w dz < T 1o = \ds
2/{wa>R}| “(we)l - {\wam}' we) (- eyt

r(z) _ 1
S/Q|T5(w5)| (1 (1—|—|w8|)7(z)—1)dz’

which means

’I" z 1 r(z 1 Tz
/|T (2) f/ T2 (we)| )dz+f/ T2 (we) @ dz
2 J{jwal<R} 2 J{jw|>R}

r(z 1
maz(R,R"™) |Q|+/\T ][

<
8 (L @1

l\D\»—~
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Using (3.21), we obtain

pl(z)

Qz|8 We 1/ (2) 1 _ "
- T, "ldy < = R" [R" )|
Z/Q 1+ fwel) T(Z ° Q| (e o= 2max( R)I9Y

T po(z)—1
#2650 (s + Wliey) + [ T cCo0s, 3

‘Z|ZD0 (2)

As r(2) > po(z) — 1, according to Young’s inequality, we obtain

T (w,)|Po(2) =
(w5 L /\T |T(z)dz+Ol/L,

|2[Po(2) [Ore)

Q Q |z|FH=ro(1F1

with C] is a positive constant depending only on r(z), po(z) and u. Thus, we obtain

E d — [ |T. "#d 2
1 G(o0) dz
< fmam(R )|Q| + 2e (||f||L1(Q) + (bl 21 (o) ) +C1 | — o (3.24)
2 Q |z|w(z) po(2)+1

dz

r(2)pg(2)
Q |Z|T(Z) po(2)+1

is finite. Consequently, (3.19) is

Under the assumption r(z) > %Z)(;)l), the integral /

valid. Furthermore, we have
/ T (w.) P dz < C. (3.25)
Q

If we take g;(z) such that 1 < ¢;(2) < p;(2) for i =1,..., N. By means of Holder’s generalized inequality,
we derive

N P

pi(2)
qi(2) Ql‘awf‘i )Pf ) vy
iz < E:(/ 1+| ) ey (3.26)

N
Z/Qi\aiwe
=179

H(l I |w6|)pff(f)2(f<)z>

9

pT Z/ Ql|a We pi(2) LTl s )p?
O 14 fwe[)7®)

p;(2) ( +) 2 ()7 (2)pi(2) (1—i)

([ o) ([ o B az)

Q

0i|0ywe|Pi(#) e / Pi()T(x)a;(2) L

< C d )pi ( 1 pi(z)—q;(2) d )pi

2 Z/ 1+ |we]) ‘r(z) Q( +lwe)) *

We now choose 7(z) > 1 such that % < r(z), such a real number 7(z) exists if

(
r(2)(pi(2) — 4i(2)) _pi(2)r(z)
pi(2)ai(2) r(2) +pi(2)

By combining equations (3.23)-(3.26), we obtain the desired estimates expressed by (3.18). To derive
(3.20), we use (3.19), which allows us to conclude that

N N
> [ omwr Dotz =Y [
i=179 i=1

1<

that is  ¢;(2) <

’La EPL(Z
0| Oswe PP dz < (1+0)7 Z/ 0il0iwe| dz

{lwe|<t} L+ we])™
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Step 3: Weak convergence of truncations To demonstrate the weak convergence of (Ty(we)). in

WP (Q, §), we first show that (w.). is a Cauchy sequence. This is possible because of the equation
(3.20).

Pi2) pidz < C(L+0)7 + 0% |Q for £>1,

N
> /Q 0Ty (we)

Consequently, if the sequence (Ty(w.)). is bounded in Wh#(*)(Q, 3), then it is possible to identify a
specific subsequence denoted by (T;(w.))e such that

Tg(’wg) — Jg in Wl’ﬁ(z)(ﬂ, 5),
(3.27)
Ty(we) — dp in L2(2,v) and a.e. in Q.

With the help of equation (3.20), we can conclude that there exists a constant Cj that is independent of
both ¢ and ¢, implying that

+
HVT((UE)||L£(Q7,Y) <Oz forl>1 (328)

Given a ball Bg in €, if ¢ is taken to be sufficiently large, by utilizing equation (3.28) and invoking the
Poincaré type inequality and Lemma 2.1, we arrive at the conclusion that

¢ meas({Jw.| > €} N Bg) = / Ty (w.)|d= (3.20)
{lws|>£}NBr
< G5[|VTy(we )| e(0,q)
ot
<Cglz.
Taking 7(z) such that (1 < 7(z) < p), we infer

meas({|we| > ¢} N Br) < Cq

= — 0 as { — +oc. (3.30)

Y/ P
For each { > 0, we obtain
meas({|we — w,| > ¢} N Bg) < meas({|w.| > ¢} N Bg)
+ meas({Jwy| > €} N Br) 4+ meas ({|Ty(we) — Ty(wy)| > ¢}).
By the equation (3.30) we can take a sufficiently large value of ¢ = ¢(m) where m > 0.

meas({|we| > €} N Bg) < % and meas({|wy| > €} N Br) < % (3.31)

In other words, from the equation (3.27), let (Tp(w;))cen is a Cauchy sequence in measure. Consequently,
for every positive value of ¢ and (, and for every positive value of m, there exists a specific value
mo = mo(¢, {,m) such that

meas{|Ty(w.) — Te(wy)| > ¢} < % for all €, n > mo(¢,¢,m). (3.32)
From the equations (3.31) and (3.32), we conclude that for all positive values of ¢ and m there exists a
value mg = mg(¢(m), ¢, R) such that
meas({|we —wy| > (} N Br) <m Ve, n > mo({(m), ¢, R).

This demonstrates that the sequence (w.). converges in measure and therefore converges a.e. to a
measurable function w. As a result, we can state that

Ty(we) = Ty(w) in WHPE)(Q, g), (3.33)
and by means of the dominated convergence theorem of Lebesgue we arrive at

To(we) — Typ(w) in LP*)(Q, go) and a.e in €. (3.34)
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Step 4 : Strong convergence of truncations In the next section, we use the notation n;(e), where i =
1,2,..., to represent various real-valued functions with respect to real variables. These functions converge
to 0 as ¢ approaches infinity. Let g, = max{g(t) : [t| < ¢}, where £ > 0, and define ¢, (t) = te*’, with
A= ()2, Tt can be readily verified that

, Vt e R.

l\J\H

A1) = Zloa(t)] 2

Let t > £ > 0 and define N' = 4¢ + s. Introduce 0. := w. — Ts(w.) + Typ(w:) — Te(w) and w, := Toe(oe).
On the set {|w| > N}, it is simple to check that the function w,, proposed in [17], is constant and so
diw. = 0. Taking ¢ = w. — £l ) (w.), we infer ¢ € WHP(*)(Q, §) and let & small enough such that
® > A, then ¢ is an admissible test function in (3.2), and by (1.2) we obtain

Z/ m z, Te(we), sz)a( GllweD) iy ( wl))dz
1
+/QHs(z,w&sz)ec(lwsl)%(wj)dz+E/Q|ws|po(z)72wsec(\wal)%(w:)dz

+ / 1T ()" ) O D o (-2 )

T po(z) 2T w
/| w.) (We) G(1weD) (o) + / feCUv Doy (e )d.
Q
8

|Z|P0

Given that w. and w, exhibit identical signs within the set {|w.| > ¢}, we are able to write that

/H 2, W, Ve )~ (wd )G(wf)dx—/ He (2, we, Ve )y (wh)e? ) dz
{lwe|<}

+/ He (2, we, Ve )y (w)eF W) dz.
{we>0}

Combined with (1.6) and Young’s inequality this leads to

N
/ Ki(2, we, Vwe ) diwe (w7 e G(UJE)dz—i—/ He(z, we, Vwe)pa (@ e Gw)dz
i=1 {we>0} {lwe|<2}
1
+/ jwe "D wopx (wh) e dz 4 - / . [Po )Ly (w ) e W) dz (3.35)
{lwe| <t} {Jwe| <}
w, [Pol2)-1 .. o5 (@) eClw:)
5”/ %@( F)ecte dz+03/ %dz
{Jwe|<ey [2[P00) + fwest) ||

+ [ 71+ Bloale)e e
Q

where C3 = C)\C(p O(Z) ) , such that ¢ = ﬁ#. It is straightforward to verify that

N N
Zm 2, we, Vw:)D Z 2, Ty VT (we))0i(Ty(we) — Ty(w))
i=1 im1

N

— > ka2, Tn(we), VI (we))|[0:Te (w) X {jw. |56
i=1
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which means that

N
Z/{ - (ki(z, To(we), VTp(we)) — ki(2, To(we), VI (w))) (95 Te(we) — 0iTe(w))ph (wd)eC ™) dz

i=1

N
<30 [ el Tov(ue), VT (e 0T e

{lwe|>£}
N
+Z/ Ki(2z,we, Vw, ) 0w (e Gwe) gy
{WE>O}

i=1

_ Z/ >0} (2, To(we), VI (w)) (8:Te(we) — 0iTe(w)) ph (wd)e ) dz.

Then, we get

N
Ki(z, Tar(we), VIn (we))]]05T Glwe) g
(32 T, DT 0T )l ()

N
<g0/)\(2£)eG(OO)Z/{| | é}|/<;i(z,TN(w€),VTN(wE))HaiTg(w)\dz.
We | >

The integral on the right tends to zero as € approaches infinity. This is guaranteed by (3.20), since
it preserves the boundedness of the sequence {r;(z, T (w.), VTx (w:))}e in the space (LPi(*)(Q, g¥))¥
Furthermore, the Lebesgue dominated convergence theorem gives, for all = 1,..., N, that

|0:Te(w)[X {jw.|>ey — 0 strongly in LP(Q, ;) as € — 0.

This implies that

N
Z/H >0} [i(2, T (we ), VI (we))|| 0 To (w) |94 (@) dz = na (o).
we | >4

By employing (3.20), (3.33), and (3.34), it is straightforward to verify that

Z / il i), T w) (0Tiwe) ~ BT (w)) 9 (@) S dz = mye).

As a result, we obtain

N
/{ >0}(/@¢(2,Te(w5), VT(w.)) — kilz, Te(we), VIp(w)))(0;Te(we) — diTy(w))ph (wd)eC ) dz

i=1

< Z/ (2, e, Vwe ) Dm0 (wh)eC W) dz + ng(e).  (3.36)

w5>0}
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In view of (1.2) and (1.6) we are able to express the following

’ / HE(Z7w57vwg)(p)\(w:)ec(ws)dz‘
{lws <L}

N
< / bpx(w)eC W) dz + Z/ 0i|0;Te(we) [P )px (wl)e¥ o) dz
{lwe| <€} i=1 v {

|we <€}

N
S/ b (w )eC W) dz + e Z/ ki(z, To(wz), VI(we)) 0T (we ) px(wd )eC W) dz
{Jw.|<e} a = o
N
< /{l < b@A(w:)BG(wz)dz+ %Z/Qni(z,Tg(ws),VTZ(ws))aiTg(w)goA(w;F)eG(ws)dz
We |[> =1

N
+ % Z /Q(m-(z, To(we), VT(we)) — ki(z, Te(we), VI (w))(0;Te(we) — BiTg(w))go)\(wj)eG(wf)dz
i=1
(3.37)

N
+ % Z/ ki(z, To(we), VI (w)) (0 To(we) — 8;To(w))px(wd )eF W) dz.
=179
According to the Lebesgue Dominated Convergence Theorem, we have

lim bpx(w)eC W) dz = / b (Tae(w — Ty(w))F)eC™@dz = 0.
£ Jlwe| <t} {lw|<e}

Regarding the last term on the right-hand side of (3.37), analogous reasoning as previously discussed
leads to

N
> /Q ki(z, To(we), VI (w)) (0 To(we) — 8;Ty(w))px(wd)eF ™) dz — 0,
i=1

as e — oo. Since {r;(z, Typ(w.), VIy(we))}e bounded in (LPi() (€2, 0*))N, there is a vector function
mie € (LPi) (9, o))V such that
ki(z, To(we), VIp(we)) = mip in (Lp;(z)(Q, N, as e — oo, (3.38)
and due to
oA(@)eCW) oy (Toglw — Ty(w)) )™ i I2(Q) for o*(I%,LY),

as € — 00, the last term on the right-hand side of (3.37) can be simplified as follows

N
lim 3 / ki (2, To(w.), VTo(w.)) O Te(w)or (w )e S dz = / 7100 o (w)or (Toe(w — To(w)) )@ dz = 0.

1=

Hence, we can conclude that
’/ ’Hg(z,wa,ng)%(w;r)ec(ws)dz
{lwe|<e}

N
<3 [ (e D), TTale)) s T ), VT ) LT 0) 0,7 ) (e ).
i=1

(3.39)
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Combining (3.35), (3.36), and (3.39), we can derive that
Z/ (ki(z, To(we), VT (we)) — ki(z, To(we), VITy(w))
{w:>0}
x (0;Ty(we) — O Ty(w)) (A (wd) — %%\(w;))eG(wf)dz

<Z/

(2, we, V) Dy o)\ (wl e G(“’E)dz+/{ W}H (2, we, Ve )ox () e W) dz + ns (¢)
We

w6>0}
< |’lU |T(z) 1wg(PA( ) wi)dz‘ + - ’/ w |P0( 2)=1, (P)\( ) Glwn) g,
. {|we|<0}
‘wE‘Po(z o
|We |77 iy ’
' ‘M/{Iw |<e} |z|Po(z) +1 1 90)\( ) .

eG
+G ‘/ z> 1) dz‘ +/ ] + b)) oa(ww)e ™) dz + ns e).

T(Z) po(2)+1

It can be observed that

[ O e (el
{lwe[<£}

Smax(w’m/ﬂ _, @ with w(z) = r(2) or po(2)
we | <t

By applying the Lebesgue Dominated Convergence Theorem, we find that

lim cp)\(w;r)eg(wf)dz = / ox(Top(w — Tg(w))ﬂeG(w)dz =0,
{

£ J{|w.|<e} lw|<e}

which means that

lim lwe|"®) "t pp (w)eF W) dz = 0,

£ J{|we|<e}

1
lim — |we [Po®) L oy (w)eC W) dz = 0.
FTO0E Sjwe|<e}

Applying the Holder inequality, we can deduce that

|we[Po(x)—1 .
’H/{ |<e} m%\(wj)e@ s)dz‘

——pF 41 S-1
T —pg + ~(2) Py

- dz = —
< gr+’gT G(o0) / o S r / o1 gy) "
< pmax( Je ( A ONO) ) ( o<t ©x (w‘S ) z)

|z‘ r(2)—po(z)+1

After the previous steps, we arrive at

po(z)—1
lim | L on(@)eSdz| =0,
€—00 {lwe|<e} | |PO(Z) + 1

With the application of the Lebesgue dominated convergence theorem, we can conclude that

+)eG(we) T T, G(w)
lim —<p,\(w Je dzZ/ 2a(Toelw <z)(r(z2) Je dz.
{w>0}

OLE)
£ J{we >0} |Z\r<z> po (=) F1 |Z|r<z) Po(m)F1
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Regarding the last term, and considering that ¢y (w)eC (W) — oy (Top(w — Ty (w))T)eC™) in L°(Q) for
o*(L>, L), we obtain

o / (L1 + [bpx (@) dz = / (IF1+ [B))ea(Tae(w — Tu(w))*)eC @ dz,
E— 0O Q Q

With these considerations, we can rewrite (3) as

N
1
) | (s Towe), VT(we)) = (e Talwe). VI(w) O Ti(ue) = DLTh(w))e =
i=1 /{w=20
Top(w — Ty(w))T)eE )
< [ oo B ICE g [ (1514 s Tarlr = Tu(w)) )OOz + o).
{w>0} |z| T —poFT Q

Taking the limit as s tends to infinity, considering (1.4), we arrive at

B S0 [ e i), V() 00z T, VIAw)) (LT (we) = 1wz <0

(3.40)
Next, by taking ¢ = w. + &px(wo )e W) we have ¢ € WHPE)(Q, ), let € small enough such that

» > A, then ¢ is an admissible test function in (3.2), and a similar approach, we obtain

Z/{ }Hi(z’ws’vwf)aiws@’x(we)eG(ws)d'z_/ﬂ | }Hs(z’we,sz)sOA(wz)e*G(w”dz
i=1/1we=0 we|<t
— N —C(w 1 o o tw
_/ |’er|7“(z) 1’LU5(,07(’(D5 )e G(we) g, 7/ ‘we‘Po( ) 1w630'y(w5 )6 Gwe) g, (341)
fho=l=t € J{jwel<ty
e~ —,—G(w.) (g e~ we)
- M/{wase} W%(wa Je dz+Cs T e E R

_po()r(2)
{we>2} \z| m(z)—po(2)+1

+ / (1] + [b)ox (o )e= S .
Q

As in the process used to derive equation (3.36), we also establish that
N

/{ 0}(/@-(2, Ty(we), VTu(w:)) = ki(z, To(ws), VI (w)) (0 To(we) — 0, Te(w)) oy (w2 Je~ <) dz
i=1 /1@<

ki(z, we, Ve ) Diw. o) (wD e~ W) dz + nq(e).  (3.42)

By estimating the term ‘ /
{

He (2, we, Ve )pa(w: )e”9(e)dz| in the manner demonstrated in equa-
|we <0}

tion (3.37), we arrive at

‘ / He (2, we, ng)cp)\(w;)efG(ws)dz‘ (3.43)
{lwe|<e}

< % Z/Q (ki(z, Te(we), VTe(we)) — ki(z, Te(we), VTe(w))) (8iTe(ws) — 8;Te(w))pa(wz Je~ ™) dz + ns(e).
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According to (3.41), (3.42) and (3.43) we get

Z/{ oy (18 Tilwe), VTe(we)) = il Te(we), VIe(w)))

X (T (we) — ATy(w)) (PA () — T pn (wd))e Oz

N

< / m(z,wg7Vwe)aiwsgal)\(w;)efc;(%)dz —/ He(z, we, sz)npk(w;)efc(wi)dz + ng(e)
i=1 {w:<0} {lwe <2}
() . 1 _ . —

< / lwe|" P weox (w2 e G(wi)dz‘—i—f‘/ Jwe [P " . ox (w0 e G<w5)dz’ (3.44)

{lwe|<e} N {lwe 1<y

w. [P0 -1 o o )e—Cwe)

+ ‘N/ Jwe 0 7 ;l(z) (e e G(“’E)dz‘ +C’3‘/ ea(we Je” 7 EOEZ)T(Z) dz‘

{uel<ey 12[P0) + 2 {we<—} || T =po(a) 71

+ / (F] + b)oa (@2 )e~ @) dz + no(e).
Q

As above, going to the limit as e and then as s tends to 0 on both sides of (3.44), we get

E— 0O

N

lim > / (kilz, Ty, VTp(we)) — ki(2, T, VT (w)) (8 Ty(w.) — 8;Te(w))e”¢W)dz < 0. (3.45)
i=1 7/ {w<0}

Continuing with the analysis, we sum up the two inequalities (3.40) and (3.45), leading us to

N
lim 2/9 (ki(z, Ty(we), VI (we)) — Ki(z, To(we), VI (w))) (0; Ty (we) — 8;Ty(w))dz = 0. (3.46)

£—00 4
Hence, by applying Lemma 5 from [6], we arrive at
Ty(w.) — Ty(w) strongly in ~ WHPE)(Q, 5). (3.47)
Then we can infer, up to a subsequence still indexed by ¢, that
Oiwe = Qyw a.e. in)  foralli=1,...,N. (3.48)

Step 4: The equi-integrability of the nonlinear terms In this part, we will prove that

He(z,we, Vw.) — H(z,w, Vw) strongly in L*(Q), (3.49)
T (we)|" & T (we) — |w]"*) 1w strongly in L'(Q), (3.50)
|Te (w2) [P 2T (w,) |w[Po(€) 2w <ol
2o 4 1 2P strongly in L"(Q), (3.51)
and )
g|w5|p°(z)*2w5 — 0 strongly in L'(Q). (3.52)

By combining (3.47) and (3.48), we obtain

He(z,we, Vwe) = Hiz,w, Vw) a.e. in Q, (3.53)

ITe(we)|" & e (we) — |w]™® " w  ace. in Q, (3.54)
po(w)—2 po(2)—2

LRI Te(we) _, vl Y ae inQ, (3.55)

|Z‘PO(Z) —+ % ‘z|p0(z)
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and

1
ZJwe PP 2w, - 0 ae. in Q. (3.56)
€

To establish the uniform equi-integrability of these functions. Taking ¢ = w. — T (we — Tp(w)), we infer
0 € WHP()(Q, §) and let € small enough such that ¢ > A, then ¢ is an admissible test function in (3.2),
and by (1.2) we get

N
Z/ |9 P13 0y +/ He(z, we, Vw )Ty (we — To(we))dz
i=1 {<|we |[<L+1} {lwe| >0}

: 1
+/ |Te (we)|" Ty (we — Ty(we))|dz + ,/ w2~z
{lwe| >0} € J{un|>e+1}

|T1(w6|po(z)fl
<[ gpdee [ B - e
{lwe| >0} (uwelzey 2P0 + 2

Note that

/ He(z, we, Vwe ) Th (we — Te(we))dz
{lwe| =2}

> / He (2, we, Vwe )Ty (we — Typ(we))dz = / |He (2, we, Vwe)|dz.
{|w5|25+1} {st|24+1}

Given Young’s inequality, we obtain

T, (w.|Po(z)—1 1
pf - < g [ T T . - Tl
{lwelzey [P+ 2 {lwe |22}

T - T,
+ Cs3 / | l(war(@pf((zfug))‘ dz,
fwe|>€}  |z|r@=po) 1

As a result

1
/ M, Vs + 5 T (w,) ") d
{Jwe|>e+1} 3 J{jwe|>0+1}
Te(we)|® 1
+u/ | (w<)|> T dZJr*/ |we|P) " dz
(welze41y 2P0 + 2 € J{lun|>041}

T (we — Tp(we
< 203/ | 1(ww<e<(i))|dz+/ \fulde.
{lwel2€} | 2| 7@ =po(FT {we|>£}

Therefore, for each § > 0, there exists £(§) > 0 such that

/ Mo (2, w2, Vo) de +/ 1T (w.) [ dz
{Jwe|>£(8)} {lwe|>£(8)}

T(w)P@-1 1
+/ [Te(we )P0 =77 E(wg(”) - dz+f/ lwe[PoH)~1dz <
(we>e)}  2Po) + 2 € J{lun|>()}

N >

(3.57)
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Conversely, for every measurable subset F C €2, we have

A

/|H5(z,wE,VwE)\dz+/ |TE(wE)\T(Z)dz—|— dz+ = /|w |Po ()=1q
F F F

|Z|P0 _|_ =
< / Mo (2, Tyes) (we), Vi) (we)|dz + / | Ty(s) (we)|" P dz (3.58)
F{|we|<L(8)} F{|we|<L(8)}

1 Ty (we ) [Po=) =1
+7/ st|p°<z)‘1dz+/ Tao (e T dz+/ (M (2, we, Vwe)|dz
€ JFa{jw.l<e()} Foflwel<e@y  |2P@ + 2 {Jwe|>(5)}

T po(z)—1 1
+/ T (w.)["dz +/ %dz + f/ lw. [P 1z
{lwe >4} flwe|>e)y |20+ 2 e Jijwi>e61)

In the sequel, by (1.6) we have

e (2, Tugs (w2), Vi) (w2 |d= < /

b Z —|—g w Qz‘ﬁ Tg((g)
F{lwe|<L(8)} ( Z

/ )P ))dz.
Fflwe|<£(6)}

Hence, from (3.47) and (3.48), there exists v(4) > 0 such that : for each F C Q with meas(F) < v(0)

/ |HE (Z, Tg(&) (wg)’ VT@((;) (w6)|dz + / ‘Tg((;) (w8)|r(z)dz
F{lwe|<£()} Fflwe|<£(8)}

Ty (we)[Po(x)—1 1
+/ | 2(6)( (s)| , dz—i—f/ \ws\pO(z)_ldzg
Fo{lw. <o)y |2[Pe®) + 2 € JFA{|we|<(8)}

Finally, according to (3.57)-(3.59), we infer

N >

(3.59)

|T5(w8)|p0(z)‘1

dz
Folelpe@ + 2

/lHa(z,wa,VwE)\der/ |T. (w.)|" ) dz +
7 F

1
+ g/ lwe[PeH)~1dz < 6, with meas(F) < 5(0).
.F

(2)—2
It follows that (Ha(27w57Vw5))8, (|T€<w6)|r(z)—1T€(wE))67 (|w5|p°(z)_1w€)€ and <\T5(w5|illzz(z)+§s(wg)>

are equi-integrable. In view of (3.53)-(3.59) and Vitali’s theorem, the convergences (3.49)-(3.56) are
established

Step 6: Passage to the limit Let ¥ € Da N L®(Q) and K = ¢ + ||¢||e, with £ > 0. By taking ¢ =
— Ty (we — 1)) as a test function in (3.2), we obtain

N
Z/ ki(2, Te(we), Vwe)0sTe(we — 1)dz +/ He(z, we, Vwe ) Te(w — ¢)dz + é/ we [P° ) "2, Ty (we — )dz
Q Q

)= _ | T (we) [0 )~ 2T (w:)
/ |T. (w i Te(we) Ty (we — )dz = / |z|P0( 3 + Ti(we —)dz + /{; feTo(we —v)dz

One the one side, when |w.| > IC we infer |w. — 9| > |w.|— |||l > ¢, then {|w. —v| < €} C {|w.| < K},
this means that

/ Ki(z, Te(w:), Vwe)0;Te(we — )dz = / Ki(2, Tic(we), VI (we))(0i Tic (we) — 3i¢)X{\wafw\ge}dZ
Q Q
= /Q(Hz‘(Z’T)C(we)’ VTic(we)) — ki(2, Tic(we), Vp)) (0 Tic (we) — i) X {jw. —p|<eydz

+ /Q i (2 Tie(w2), V) (05T (W) — Ot (. —s| <ty 2.
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It’s obvious that
llm ki(2, Tic(we), V) (0iTe (we) — Osh) X {|we —w|<eydZ = / ki (2, Tic(w), Vi) (0: Tic (w) — 0it)) X {jw—w| <2y d2.
£ oo Q Q

In view of Fatou’s Lemma, we get

E—0OO

N N
lim inf » / ki(z, Te(we), Vwe) 0, To(we — ¢)dz > > / (ki(z, Tic(w), VTic(w)) — ki(z, Tic(w), Vb))
i=179 i=179
N
X (aiT}C(w) — ai’g[J)Xﬂw,ng}dZ + Z /Q /@(z, TK(w), Vw)(aich(w) — aiw)X{\wagE}dZ
=1

ki(2z, Tic(w), Ve (w))(9; T (w) — 0i)) X {jw—w|<e}dz

Il
M-
S~

&
Il
-

ki(z,w, Vw)0; Ty(w — )dz

I
-

Il
hE
5

%

Conversely, we can observe that Ty(w. — ¢) — Ty(w — ¥) weak-* in L>°(Q) and by using (3.49)-(3.52), it
follows that

/Hg(z,wE,VwE)Tg(w—z/J)dz%/H(z,w,Vw)Tg(w—z/J)dz,

Q

[ O ) Tt - )z / " Ty (w0 — )dz,
o0(2)— 0(z)—

|z\po(2> +1 ~Jelpo(z)

e/Q|w [Po=) =20, Ty(w, —1b)dz — 0, and /QfeTe(ws—Tﬁ)dZ—> /Qsz(w—iﬁ)dZ

Finally, combining all these components, we have now successfully concluded the proof of Theorem 3.1.
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