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Finite Element Methods via Cubic Hermite Shape Functions for a Singularly Perturbed
Boundary Value Problem with Mixed Shifts

Vivek K. and R. Nageshwar Rao∗

abstract: In this paper, Galerkin finite element method is developed for a singularly perturbed differential
equation with mixed shifts. Fitted operator and fitted mesh approaches are utilized for discretization. Cubic
Hermite shape functions are chosen as basis functions in developing the method. Comparison of maximum
absolute errors for the solutions of test problems is done for the proposed methods. Graphs are plotted to
demonstrate the effect of shifts on the solution of the problem.
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1. Introduction

A singular perturbation problem (SPP) is a problem that depends on a small positive parameter
commonly known as the perturbation parameter (ϵ) and the solution to this problem behaves non-
uniformly as ϵ → 0. Furthermore, a class of differential-difference equations is characterized by the
presence of negative or positive shift terms and the highest-order derivative multiplied by ϵ. These
types of problems model various physiological phenomena, such as fluid dynamics, heat transfer, as
well as in specific structural mechanics problems that are modeled on thin domains. The solution of a
singularly perturbed differential-difference equation (SPDDE) typically includes boundary layers along
the boundary of the domain. These layers make the numerical study more difficult and hence need to be
carefully taylored to adapt to the layer behaviour of the solution.

Singular perturbation problems have been extensively studied and several numerical methods have
been proposed for the last few decades [1,2]. SPDDEs arise from mathematical models that hold practi-
cal significance, particularly in the fields of biology and physics [3,4]. Prathap and Rao [5] constructed
numerical methods that employ non-polynomial splines, particularly emphasizing spline in compression,
tension, and adaptive spline to tackle singularly perturbed boundary value problems with mixed shifts
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using fitted mesh. Ravi Kanth and Murali [6] proposed a numerical technique that utilizes the exponen-
tially fitted spline method to solve singularly perturbed convection delay problems. Ranjan and Prasad
[7] presented a new uniform mesh based exponentially fitted finite difference scheme, for a singularly per-
turbed differential-difference equation with delay and advance parameters. Vivek and Rao [8] developed
exponentially fitted numerical schemes based on spline in compression and adaptive spline methods to
solve a singularly perturbed differential-difference equation with mixed shifts. Kadalbajoo and Sharma
[9] devised an ϵ-uniform numerical scheme based on a fitted mesh approach for solving SPDDEs with
small shifts. Kadalbajoo et al. [10] discussed numerical solution of the problems arising from singularly
perturbed general differential-difference equation by fitted operator finite difference method and fitted
mesh finite difference method. Sirisha et al. [11] proposed a mixed finite difference method for solving a
singularly perturbed differential-difference equation with mixed shifts. Conor [12] extended the Petrov-
Galerkin upwind finite element method to variable coefficient problems in one dimension. In [13], the
authors Singh et al. developed a numerical algorithm using trigonometric B-spline functions to approxi-
mate the solution of singularly perturbed boundary value problems. Singh and Kumar [14] constructed
a numerical scheme comprising the quadratic B-splines on an exponentially graded mesh for the fourth-
order singularly perturbed boundary value problem of an ordinary differential equation. Singh et al. [15]
proposed a numerical method for solving fourth-order singularly perturbed linear and nonlinear bound-
ary value problems of convection-diffusion type. Ayalew et al. [16] introduced an exponentially fitted
fourth-order numerical approach for solving SPDDEs and investigated the effects of delay and advance
parameters on the solution profile. Kumar [17] employed B-spline collocation approach to approximate
the solution of SPDDEs with mixed shifts. Farshid and Seyede [18] worked out a computational method
for approximate solution of singularly perturbed differential-difference equations, based on the expansion
of the solution as a series of Fibonacci polynomials. Priyadarshana et al. [19] developed an efficient ap-
proximation technique known as the successive complementary expansion method (SCEM) for solving
singularly perturbed differential-difference equations with mixed shifts. Kadalbajoo et al. [20] presented
a comparative study of the fitted-mesh finite difference method, the B-spline collocation method, and the
finite element method for a general singularly perturbed two-point boundary value problem. Mushahary
et al. [21] constructed an upwind finite difference scheme on a Shishkin mesh for solving SPPDEs. To en-
hance convergence, the authors presented a hybrid finite difference scheme that employs the cubic spline
difference method in the fine mesh regions and a midpoint upwind scheme in the coarse mesh regions.
Rai and Sharma [22] developed an exponentially fitted finite difference approach to solving SPDDEs,
adopting the Il’in-Allen-Southwell fitting technique. Senthilkumar et al. [23] presented an asymptotic
streamline diffusion finite element method (SDFEM) for singularly perturbed convection-diffusion-type
differential-difference equations. Liu and Xu [24] developed Galerkin methods based on Hermite splines
for solving the singularly perturbed two-point boundary value problem of high-order elliptic differential
equations. Constantinou and Xenophontos [25] presented finite element analysis on singularly perturbed
problems. An exponentially graded mesh is initially implemented on reaction-diffusion problem with
Galerkin finite element method, followed by solution of the convection-diffusion problem. Swamy et al.
[26] adopted Galerkin method to solve singularly perturbed differential-difference equations with delay
and advance shifts using fitting factor.

The numerical methods for solving singular perturbation problems typical may not provide stable
solutions, due to the smaller values of the perturbation parameter ϵ. Hence, developing high accurate
numerical methods for such problems for smaller values of ϵ is a challenging task. It is known that the
finite element methods using exponential elements on non-uniform grids can condense in the boundary
layers and produce good results. In this paper, we present fitted operator numerical scheme based
on Galerkin finite element method with cubic Hermite shape functions for solving a boundary value
problem of a singularly perturbed differential-difference equation with both delay (δ) and advance (η)
parameters. Also we presented a finite element method on a piecewise-uniform mesh with cubic Hermite
shape functions. The solutions obtained by both these methods are compared and the efficiency of the
methods is illustrated.

The structure of the paper is as follows: In Section 2, we present the problem under consideration
and discuss some properties of the solution. In Section 3, we derive numerical schemes using the fitted
operator finite element method and the fitted mesh finite element method, employing cubic Hermite shape
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functions. Convergence analysis for these methods is detailed in Section 4. In Section 5, the computational
results and graphs for the test problems are shown. Discussion and conclusions are followed in Section 6.

2. Statement of the Problem

We consider the SPDDE that incorporates both types of shifts as defined by

ϵu ′′(t) + a(t)u ′(t) + α(t)u(t− δ) + ω(t)u(t) + β(t)u(t+ η) = f(t) (2.1)

on t ∈ (0, 1), 0 < ϵ ≪ 1, under the interval and boundary conditions

u(t) =

{
ϕ(t); t ∈ [−δ, 0],

χ(t); t ∈ [1, 1 + η],
(2.2)

where 0 < ϵ ≪ 1 is the perturbation parameter, a(t), α(t), ω(t), β(t), f(t), ϕ(t) and χ(t) are smooth
functions and δ is the delay (negative shift) parameter and η is the advance (positive shift) parameter.
As δ, η < ϵ, for a(t) ≥ M > 0, a(t)− δα(t) + ηβ(t) > 0, ∀ t ∈ [0, 1] the solution exhibits a boundary layer
near t = 0, while for a(t) ≤ M < 0, the solution exhibits a boundary layer near t = 1. Here we assume
that α(t) ≤ M1 and β(t) ≤ M2, α + ω + β ≤ −M and the function u(t) satisfies (2.1-2.2), it provides
a smooth solution for (2.1) and (2.2) as it is both continuously differentiable in (0, 1) and continuous in
the underlying interval [0, 1].

Since the solution of u(t) of (2.1) and (2.2) is sufficiently differentiable, we expand the terms u(t− δ)
and u(t− η) using taylor series to obtain:

u(t− δ) ≈ u(t)− δu ′(t) +
δ2

2
u ′′(t) +O(δ3),

u(t+ η) ≈ u(t) + ηu ′(t) +
η2

2
u ′′(t) +O(η3).

(2.3)

By substituting Eq. (2.3) in Eq.(2.1), we obtain

L (U(t)) ≡ µU′′(t) + p(t)U′(t) + q(t)U(t) = r(t), 0 ≤ t ≤ 1 (2.4)

subject to the conditions
U(0) = ϕ(0) = ϕ0,

U(1) = χ(1) = χ1.
(2.5)

where U(t) ≈ u(t), µ(t) = ϵ+ α(t) δ
2

2 + β(t)η
2

2 , p(t) = a(t)− δα(t) + ηβ(t),
q(t) = α(t) + ω(t) + β(t) and r (t) = f(t).

2.1. Some properties of the solution to the continuous problem.

The following lemma suggests that L in Eq. (2.4) follows minimum principle:

Lemma 2.1 Suppose U(t) is a sufficiently smooth function, satisfying {U(0),U(1) ≥ 0}, then U(t) ≥ 0,
0 ≤ t ≤ 1, whenever L (U(t)) ≤ 0, 0 ≤ t ≤ 1.

Proof: Reader can refer [8] for the proof. 2

Lemma 2.2 If U(t) is the solution of the problem (2.4) and (2.5), then we have ∥U∥ ≤ M−1∥r∥ +
max(|ϕ0|, |χ1|) , where ∥.∥ is the l∞ norm given by ∥U∥ = maxt∈[0,1] |U(t)|.
Proof: Reader can refer [8] for the proof. 2

Lemma 2.3 Let the zeroth order approximate solution to (2.4) and (2.5) be U(t) = Uo
0 +Ui

0, where Uo
0

is the approximate solution in the outer region of zeroth order and that in the layer region be Ui
0. Then

for a fixed positive integer j,

lim
h→0

U(jh) ≈ Uo
0(0) + (ϕ(0)− Uo

0(0))e
−p(0)jρ, ρ =

h

µ(0)

Proof: Reader can refer [8] for the proof. 2
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3. Numerical Methods

In this section, we propose the fitted operator and the fitted mesh finite element methods for the
problem (2.4)-(2.5).

3.1. Fitted Operator Finite Element Method [FOFEM] via cubic Hermite shape functions

The domain [0, 1] is divided into N + 1 non-overlapping intervals 0 = t0, t1 = h, t2 = 2h, · · · , tn =
jh, · · · , tN+1 = (N + 1)h = 1, with a uniform mesh of size h for each interval.

The grid points ti, i = 0, 1, · · ·N + 1 can be determined by selecting the set of basis functions γj(t),
where j = 0, 1, · · · , N . The cubic hermite shape functions are chosen to be li(t), which are given as below
for local coordinates −1 ≤ ϑ̌ ≤ 1:

l0 (ϑ̌) =
1

4

(
2− 3ϑ̌+ ϑ̌3

)
=

1

4
(1− ϑ̌)2(2 + ϑ̌),

l1 (ϑ̌) =
1

4

(
2 + 3ϑ̌− ϑ̌3

)
=

1

4
(1 + ϑ̌)2(2− ϑ̌),

l2 (ϑ̌) =
h

8

(
1− ϑ̌− ϑ̌2 + ϑ̌3

)
=

h

8
(1− ϑ̌2)(1− ϑ̌),

l3 (ϑ̌) =
h

8

(
−1− ϑ̌+ ϑ̌2 + ϑ̌3

)
= −h

8
(1− ϑ̌2)(1 + ϑ̌).

(3.1)

Using these shape functions, the solution U at the interior nodes t1, t2, · · · , tN can be obtained. At the
end nodes t0 and tN+1, the solution U(t) is determined by imposing the given boundary conditions.

The integral equations obtained using the Galerkin method, are given below:(
µ(t)U′′(t) + p(t)U′(t) + q(t)U(t), γj

)
= (r (t), γj) , j = 1, 2, · · · , N. (3.2)

This represents an integral equation∫ tN

t0

(
µ(t)U′′(t) + p(t)U′(t) + q(t)U(t)

)
γjdt =

∫ tN

t0

r (t)γjdt. (3.3)

Applying integrating by parts on (3.3) gives

−
(
µ
dU
dt

,
dγj
dt

)
+

(
p(t)dU

dt
+ q(t)U, γj

)
+

(
µ
dU
dt

γj

)1

0

= (r (t), γj) (3.4)

Substituting the trial function U(t) = γ0(t) +

N∑
i=1

Uiγj(t) into Eq. (3.4) yields

N∑
i=1

Ui

(
µ
dγi
dt

,
dγj
dt

)
−

N∑
i=1

Ui

(
p(t)dγi

dt
+ q(t)γi, γj

)
=

− ϕ0

(
dl0
dt

,
dγj
dt

)
− χ1

(
dlN+1

dt
,
dγj
dt

)
+ ϕ0

(
p(t)dl0

dt
+ q(t)l0 , γj

)
+

(
µ
dU
dt

, γj

)1

0

− (r (t), γj)

+ χ1

(
p(t)dlN+1

dt
+ q(t)lN+1, γj

)
, 1 ≤ j ≤ N.

(3.5)

The right side of Eq. (3.5) can be approximated with known boundary data, resulting N equations for
values ti that are not known at interior nodes.
Utilizing local coordinate system (ϑ̌), the integrals in equation Eq. (3.5) can be evaluated.
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Since t = h
2 ϑ̌+ 1

2 and dϑ̌
dt = 2

h
, we have, through simple integration,∫ 1

0

dγi
dt

dγj
dt

dt =

∫ 1

−1

dl0

dϑ̌

dϑ̌

dt

dl1

dϑ̌

dϑ̌

dt

h

2
dϑ̌+

∫ 1

−1

dl0

dϑ̌

dϑ̌

dt

dl2

dϑ̌

dϑ̌

dt

h

2
dϑ̌+

∫ 1

−1

dl0

dϑ̌

dϑ̌

dt

dl3

dϑ̌

dϑ̌

dt

h

2
dϑ̌

+

∫ 1

−1

dl1

dϑ̌

dϑ̌

dt

dl2

dϑ̌

dϑ̌

dt

h

2
dϑ̌+

∫ 1

−1

dl1

dϑ̌

dϑ̌

dt

dl3

dϑ̌

dϑ̌

dt

h

2
dϑ̌+

∫ 1

−1

dl2

dϑ̌

dϑ̌

dt

dl3

dϑ̌

dϑ̌

dt

h

2
dϑ̌

=
6µ

5h
+

µh

30
, for i = j − 1,∫ 1

0

dγi
dt

dγj
dt

dt =

∫ 1

−1

dl0

dϑ̌

dϑ̌

dt

dl0

dϑ̌

dϑ̌

dt

h

2
dϑ̌+

∫ 1

−1

dl1

dϑ̌

dϑ̌

dt

dl1

dϑ̌

dϑ̌

dt

h

2
dϑ̌+

∫ 1

−1

dl2

dϑ̌

dϑ̌

dt

dl2

dϑ̌

dϑ̌

dt

h

2
dϑ̌

+

∫ 1

−1

dl3

dϑ̌

dϑ̌

dt

dl3

dϑ̌

dϑ̌

dt

h

2
dϑ̌

=
−12µ

5h
− 4µh

15
, for i = j,∫ 1

0

dγi
dt

dγj
dt

dt =

∫ 1

−1

dl1

dϑ̌

dϑ̌

dt

dl0

dϑ̌

dϑ̌

dt

h

2
dϑ̌+

∫ 1

−1

dl2

dϑ̌

dϑ̌

dt

dl0

dϑ̌

dϑ̌

dt

h

2
dϑ̌+

∫ 1

−1

dl3

dϑ̌

dϑ̌

dt

dl0

dϑ̌

dϑ̌

dt

h

2
dϑ̌

+

∫ 1

−1

dl2

dϑ̌

dϑ̌

dt

dl1

dϑ̌

dϑ̌

dt

h

2
dϑ̌+

∫ 1

−1

dl3

dϑ̌

dϑ̌

dt

dl1

dϑ̌

dϑ̌

dt

h

2
dϑ̌+

∫ 1

−1

dl3

dϑ̌

dϑ̌

dt

dl2

dϑ̌

dϑ̌

dt

h

2
dϑ̌

=
6µ

5h
+

µh

30
, for i = j + 1,∫ 1

0

dγi
dt

dγj
dt

dt = 0 for |i− j| > 1.

Assuming p(t), q(t), and r (t) as constants, the integral equation Eq. (3.5) for a typical internal node j,
takes the form(

6µ

5h
+

µh

30
+

h2p
60

−
p
2
+

9qh
70

−
qh3

140

)
Uj−1 +

(
−12µ

5h
− 4µh

15
+

26qh
35

+
2qh3

105

)
Uj

+

(
6µ

5h
+

µh

30
−

h2p
60

+
p
2
+

9qh
70

−
qh3

140

)
Uj+1 = rjh.

(3.6)

Rearranging Eq. (3.6), we obtain the Galerkin difference scheme, which consists of difference equations,
and including a fitting factor σ, we obtain:

µσ

[
(36 + h2)Uj−1 − (72 + 8h2)Uj + (36 + h2)Uj+1

30h2

]
+ pj

[(
h

60
− 1

2h

)
Uj−1 −

(
h

60
− 1

2h

)
Uj+1

]
+ qj

[(
9

70
− h2

140

)
Uj−1 +

(
26

35
+

2h2

105

)
Uj +

(
9

70
− h2

140

)
Uj+1

]
= rj for 1 ≤ j ≤ N − 1.

(3.7)
As such, σ is a fitting factor that must to be chosen so that the solution of Eq. (3.7) converges uniformly.
Multiplying Eq. (3.7) by h and finding the limit as h → 0, we obtain

lim
h→0

[
σ

ρ

(
6

5
U(jh− h)− 12

5
U(jh) +

6

5
U(jh+ h)

)
−

pj
2
(U(jh− h)− U(jh+ h))

]
= 0. (3.8)

According to Lemma 2.3, Eq. (3.8) gives, σ = 5ρ
12p(0) coth

(
p(0)ρ

2

)
where ρ = h

µ(0) . which represents a

constant fitting factor. In general, we consider a variable fitting factor

σj =
5ρj
12

pj coth

(pjρj

2

)
where ρj =

h

µj
.
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Eq. (3.7) yields a three-term recurrence relation as

EjUj−1 + FjUj + GjUj+1 = Hj , 1 ≤ j ≤ N − 1, (3.9)

where

Ej =

(
6µσ

5h2
+

µσ

30
+

ph
60

−
p
2h

+
9q
70

−
qh2

140

)
,

Fj =

(
−12µσ

5h2
− 4µσ

15
+

26q
35

+
2qh2

105

)
,

Gj =

(
6µσ

5h2
+

µσ

30
−

ph
60

+
p
2h

+
9q
70

−
qh2

140

)
,

Hj =rj .

This tridiagonal system along with the boundary conditions (2.5) can be solved using Thomas Algorithm.

3.2. Fitted Mesh Finite Element Method [FMFEM] via cubic Hermite shape functions

The following section illustrates the grid-selection strategy for the computation of solution for the
SPBVP (2.4)-(2.5).

3.2.1. Piecewise-uniform mesh. Since the boundary layer appears towards the left side of the solution
domain D = [0, 1], it is split into two subdomains D1 and D2, ensuring that D = D1 ∪D2 = [0, τ ]∪ [τ, 1],
in which τ is the known as transition parameter that was placed around t = 0, given by

τ = min

{
1

2
, ϵτ0 ln(N)

}
(3.10)

where N is the number of grid points belonging to the domain D = [0, 1] and τ0 ≥ 1
|M | . It is clear that

for τ = 1
2 , the mesh is uniform, otherwise the mesh condenses near the left boundary. It is assumed that

N = 2m, where m ≥ 2 is an integer, which guarantees that there is atleast one point in the boundary
layer region.
So, each of the domains D1 and D2 contain same number of grid points, equispaced in the respective
subdomains and the grid points tw are defined as follows:

tw =

{
wh1 for 0 ≤ w ≤ N

2

τ + (w − N
2 )h2 for N

2 < w ≤ N
(3.11)

where h1 = 2τ
N and h2 = 2(1−τ)

N on the domains D1 and D2 respectively.
Similarly, in the case when the boundary layer occurs at the right end of the solution domain D, we
divide into subdomains D∗

1 and D∗
2 such that D = D∗

1 ∪ D∗
2 = [0, 1− τ ] ∪ [1− τ, 1], where τ is so-called

the transition parameter and is located near the point t = 1. We consider equal number of grid points in
each subdomain D1 and D2 and uniform partition over the respective subdomains with grid points tw,
defined by

tw =

{
wh2 for 0 ≤ w ≤ N

2

1− τ + (w − N
2 )h1 for N

2 < w ≤ N
. (3.12)

Now we show that L satisfies the discrete minimum principle:

Lemma 3.1 If the mesh function U(tw) satisfying U(t0),U(tN ) ≥ 0, then U(tw) ≥ 0, 0 ≤ tw ≤ 1 for
L (U(tw)) ≤ 0, 0 < tw < 1.

Proof: Reader can refer [5] for the proof. 2
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Lemma 3.2 Let Uw be any mesh function such that U0 = UN = 0. Then for all 0 ≤ w ≤ N ,

∥Uw∥ ≤ M−1 max
1≤w≤N−1

|L (Uw)|

.

Proof: Reader can refer [5] for the proof. 2

Lemma 3.3 e
−M (1−tw)/

(
ϵ+ δ2

2 M1+
η2

2 M2

)
≤

N∏
v=w+1

(
1 + M hv

ϵ+ δ2

2 M1+
η2

2 M2

)−1

for each w.

Proof: Reader can refer [5] for the proof. 2

Lemma 3.4 For w = 0, 1, · · · , N , we set Rw =
w∏

v=1

(
1 + M hv

ϵ+ δ2

2 M1+
η2

2 M2

)
, then for w = 0, 1, · · · , N − 1,

we have

LRw ≥ C

max{ϵ+ δ2

2 M1 +
η2

2 M2, hw}
Rw.

Proof: Reader can refer [5] for the proof. 2

Lemma 3.5 There exists a constant C such that
N∏

v=w+1

(
1 + M hv

ϵ+ δ2

2 M1+
η2

2 M2

)−1

≤ CN−4(1−w/N) for

N/2 ≤ w ≤ N .

Proof: Reader can refer [5] for the proof. 2

3.2.2. Derivation of the Numerical Scheme. From 3.1, we have t = hw
2 ϑ̌ + 1

2 and dϑ̌
dt = 2

hw
, where

hw = tw − tw−1, so that from Eq. (3.5) by simple integration,∫ 1

0

dγi
dt

dγj
dt

dt =

∫ 1

−1

dl0

dϑ̌

dϑ̌

dt

dl1

dϑ̌

dϑ̌

dt

hw

2
dϑ̌+

∫ 1

−1

dl0

dϑ̌

dϑ̌

dt

dl2

dϑ̌

dϑ̌

dt

hw

2
dϑ̌+

∫ 1

−1

dl0

dϑ̌

dϑ̌

dt

dl3

dϑ̌

dϑ̌

dt

hw

2
dϑ̌

+

∫ 1

−1

dl1

dϑ̌

dϑ̌

dt

dl2

dϑ̌

dϑ̌

dt

hw

2
dϑ̌+

∫ 1

−1

dl1

dϑ̌

dϑ̌

dt

dl3

dϑ̌

dϑ̌

dt

hw

2
dϑ̌+

∫ 1

−1

dl2

dϑ̌

dϑ̌

dt

dl3

dϑ̌

dϑ̌

dt

hw

2
dϑ̌

=
6µ

5hw
+

µhw
30

, for i = j − 1,

∫ 1

0

dγi
dt

dγj
dt

dt =

∫ 1

−1

dl0

dϑ̌

dϑ̌

dt

dl0

dϑ̌

dϑ̌

dt

hw

2
dϑ̌+

∫ 1

−1

dl1

dϑ̌

dϑ̌

dt

dl1

dϑ̌

dϑ̌

dt

hw

2
dϑ̌+

∫ 1

−1

dl2

dϑ̌

dϑ̌

dt

dl2

dϑ̌

dϑ̌

dt

hw

2
dϑ̌

+

∫ 1

−1

dl3

dϑ̌

dϑ̌

dt

dl3

dϑ̌

dϑ̌

dt

hw

2
dϑ̌

=
−12µ

5hw
− 8µhw

30
, for i = j,∫ 1

0

dγi
dt

dγj
dt

dt =

∫ 1

−1

dl1

dϑ̌

dϑ̌

dt

dl0

dϑ̌

dϑ̌

dt

hw

2
dϑ̌+

∫ 1

−1

dl2

dϑ̌

dϑ̌

dt

dl0

dϑ̌

dϑ̌

dt

hw

2
dϑ̌+

∫ 1

−1

dl3

dϑ̌

dϑ̌

dt

dl0

dϑ̌

dϑ̌

dt

hw

2
dϑ̌

+

∫ 1

−1

dl2

dϑ̌

dϑ̌

dt

dl1

dϑ̌

dϑ̌

dt

hw

2
dϑ̌+

∫ 1

−1

dl3

dϑ̌

dϑ̌

dt

dl1

dϑ̌

dϑ̌

dt

hw

2
dϑ̌+

∫ 1

−1

dl3

dϑ̌

dϑ̌

dt

dl2

dϑ̌

dϑ̌

dt

hw

2
dϑ̌

=
6µ

5hw
+

µhw
30

, for i = j + 1,∫ 1

0

dγi
dt

dγj
dt

dt = 0 for |i− j| > 1.
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From Eq. (3.5), we obtain the Galerkin three-term recurrence relation

E jUj−1 + F jUj + G jUj+1 = H j , 1 ≤ j ≤ N − 1, (3.13)

where

E j =

(
6µ

5h2w
+

µ

30
+

phw
60

−
p

2hw
+

9q
70

−
qh2w
140

)
,

F j =

(
−12µ

5h2w
− 4µ

15
+

26q
35

+
2qh2w
105

)
,

G j =

(
6µ

5h2w
+

µ

30
−

phw
60

+
p

2hw
+

9q
70

−
qh2w
140

)
,

H j =rj .

4. Convergence Analysis

In this section, we perform the convergence analysis for the method outlined in Sect. 3.1.
The tridiagonal system Eq. (3.9) can be expressed in matrix form as follows:

AU = C , (4.1)

in which A = mij , 1 ≤ i, j ≤ N − 1 is a tridiagonal matrix of order N − 1, with the diagonals

mii+1 =
6µσ

5h
+

µσh

30
+

ph2

60
−

p
2
+

9qh
70

−
qh3

140
,

mii =
−12µσ

5h
− 4µσh

15
+

26qh
35

+
2qh3

105
,

mii−1 =
6µσ

5h
+

µσh

30
−

ph2

60
+

p
2
+

9qh
70

−
qh3

140
,

(4.2)

and column vector form, C = hHi, for i = 1, 2, · · ·N − 1. The local truncation error associated with the
above scheme is

ιi = h2
[

qi Ui +
29pi

30
U′

i +
17qi

140
U′′

i

]
+O(h3). (4.3)

and U = (u0, u1, · · · , uN ).
Additionally, we have

AU − T (h) = C , (4.4)

where U = (u0, u1, · · · , uN ) represents the actual solution, whereas T (h) = (T0(h0),T1(h1), · · · ,TN (hN ))
T

has a local truncation error.
From (4.1) and (4.4), we get

A(U − U) = T (h), (4.5)

Accordingly, the error equation becomes
AE = T (h), (4.6)

where E = U − U = (e0, e1, · · · , eN ) .
Assuming Si, has to be the ith row sum of matrix A , we obtain

Si =
N−1∑
j=1

mij = −6µσ

5h
− 7µσh

30
−

ph2

30
+

p
2
+

61qh
70

+
qh3

84
, for i = 1,

Si =
N−1∑
j=1

mij = h

(
−6µσ

30
+ q +

q2

210

)
= Bi0 , for i = 2, 3, · · · , N − 2,

Si =
N−1∑
j=1

mij = −6µσ

5h
− 7µσh

30
+

ph2

30
−

p
2
+

61qh
70

+
qh3

84
, for i = N − 1.

(4.7)
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Choosing a sufficiently small h proves the irreducibility and monotonicity of matrix A ( [27], [28]). This
leads to the existence of A−1 and the nonnegative character of its elements.
Accordingly, we derive from Eq. (4.6),

E = A−1T (h),

∥E∥ = ∥A−1∥ · ∥T (h)∥. (4.8)

In addition, matrix theory provides

N−1∑
i=1

mk,iSi = 1, k = 1(1)N − 1, (4.9)

in which for any i that ranges from 1 to N − 1, mk,i is (k, i) element associated with matrix A−1.
Thus,

N−1∑
i=1

mk,i =
1

min
1≤i≤N−1

Si
=

1

Bi0

≤ 1

|Bi0 |
. (4.10)

We specify ∥A−1∥ = max
1≤k≤N−1

N−1∑
i=1

|mk,i| and ∥T (h)∥ = max
1≤i≤N−1

|Ti(h)|.

From Eqs (4.3), (4.6), (4.8) and (4.10), we get ej =

N−1∑
i=1

|mk,i|Ti(h), j = 1(1)N − 1, which show that

ej ≤
k(h2)

|Bi0 |
, j = 1(1)N − 1,

where k =
(

qi Ui +
29pi
30 U′

i +
17qi
140 U′′

i

)
.

Hence ∥E∥ = O(h). That is, when dealing with uniform mesh, our approach simplifies to a first-order
convergent scheme (3.9).
Note: To validate the accuracy of the fitted mesh finite element method described in Sect. 3.2, we can
adopt a convergence strategy as in [5], given by the following theorem:

Theorem 4.1 a(t), α(t), ω(t), β(t), f(t), ϕ(t) and χ(t) be sufficiently smooth functions so that U(t) ∈
C3[0, 1]. Let Uw, w = 0(1)N be the approximate solution of (2.4), obtained using fitted mesh finite
element method (3.13) with the conditions (2.5). Then, there is a constant M independent of ϵ and the
mesh size such that

sup
0<ϵ<<1

max
1≤w≤N−1

|Ûw − Uw| ≤ M N−2 ln2 N.

5. Numerical Results

To analyze the efficacy of current methods, four problems of singularly perturbed linear differential
equations with mixed shifts are examined. Two problems with solutions exhibiting boundary layer to the
left of the interval [0,1] and two problems with right layer. Since the exact solutions for such problems
with for various values of δ and η are unknown, the double mesh principle, as given below, is used to
determine the maximum absolute errors:

EN = max
0≤i≤N

|UN
i − U2N

2i |.

Tables 1-8 provide the maximum absolute errors and rate of convergence for the test problems that were
considered with δ = η = 0.5ϵ. The graphical solutions for the examples, corresponding to various values
of the shifts, are presented in Figs. (1-8). The numerical rate of convergence for all examples has been
calculated using the formula

RN =
log|EN/E2N |

log2
.
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Example 5.1 ϵu ′′(t) + u ′(t) − 2u(t − δ) + u(t) − u(t + η) = −1, subject to the interval and boundary
conditions u(t) = 1;−δ ≤ t ≤ 0, u(t) = 1, 1 ≤ t ≤ 1 + η.

Example 5.2 ϵu ′′(t)+2.5u ′(t)− 2etu(t− δ)− u(t)− tu(t+ η) = 1, subject to the interval and boundary
conditions u(t) = 1;−δ ≤ t ≤ 0, u(t) = 1, 1 ≤ t ≤ 1 + η.

Example 5.3 ϵu ′′(t) − u ′(t) − 2u(t − δ) + u(t) − 2u(t + η) = 0, subject to the interval and boundary
conditions u(t) = 1;−δ ≤ t ≤ 0, u(t) = −1, 1 ≤ t ≤ 1 + η.

Example 5.4 ϵu ′′(t)− (1+e−t2)u ′(t)− tu(t−δ)− t2u(t)− (1.5−e−t)u(t+η) = 0, subject to the interval
and boundary conditions u(t) = 1;−δ ≤ t ≤ 0, u(t) = 1, 1 ≤ t ≤ 1 + η.

6. Discussion and Conclusions

In this paper, numerical approaches based on the fitted operator finite element method [FOFEM]
and the fitted mesh finite element method [FMFEM] via the Galerkin method are proposed for solving
singularly perturbed boundary value problems for second-order ordinary differential equation with mixed
shifts.The maximum absolute errors for the solution of the test problems are tabulated in Tables 1-
4 and the rate of convergence for the problems for different values of ϵ are tabulated in Tables 5-8.
From these numerical computations, it can be observed that the methods work well for problems with
shifts smaller than the perturbation parameter. Also, the method [FOFEM] shows a first-order uniform
rate of convergence, while method [FMFEM] shows an almost second-order uniform rate of convergence
irrespective of the size of the perturbation parameter ϵ. The results are compared to that in [7] in tables
9-12, which show that the methods presented in this paper are in good agreement. The graphs for the
solution of the test problems, for various values of δ and η are depicted in Figs. 1-8. These figures indicate
that as the shifts increase in magnitude, the thickness of the boundary layer decreases when the solution
demonstrates layer behavior near the left side of the underlying interval. Conversely, in the case of the
right-end boundary layer, the thickness increases. The log-log plots depicted in Figs. 9 - 12 illustrate
the expected numerical order of convergence for Examples 5.1-5.4. With the support of the extensive
numerical results, we conclude that the approaches given in this paper provide a major contribution
towards the solution of singularly perturbed linear boundary value problems with mixed shifts.
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Table 1: Maximum absolute errors for Example 5.1 when δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 100 200 300 400 500
FOFEM
10−1 1.6064E-05 4.0100E-06 1.7817E-06 1.0021E-06 6.4133E-07
10−2 2.4228E-04 5.4008E-05 2.3609E-05 1.3410E-05 8.5827E-06
10−3 7.8771E-04 3.4219E-04 1.8403E-04 1.2151E-04 8.8285E-05
10−4 7.9846E-04 4.0366E-04 2.7011E-04 2.0295E-04 1.6253E-04
10−5 7.9846E-04 4.0366E-04 2.7011E-04 2.0296E-04 1.6255E-04
10−6 7.9846E-04 4.0366E-04 2.7011E-04 2.0296E-04 1.6255E-04
10−7 7.9846E-04 4.0366E-04 2.7011E-04 2.0296E-04 1.6255E-04
10−8 7.9846E-04 4.0366E-04 2.7011E-04 2.0296E-04 1.6255E-04
10−9 7.9846E-04 4.0366E-04 2.7011E-04 2.0296E-04 1.6255E-04
10−10 7.9846E-04 4.0366E-04 2.7011E-04 2.0296E-04 1.6255E-04
FMFEM
10−1 8.5746E-05 2.1422E-05 9.5209E-06 5.3550E-06 3.4270E-06
10−2 7.8031E-03 1.7930E-03 7.8525E-04 4.4281E-04 2.8342E-04
10−3 2.0990E-02 6.0111E-03 2.9792E-03 1.8125E-03 1.2271E-03
10−4 2.0890E-02 5.9630E-03 2.9474E-03 1.7900E-03 1.2080E-03
10−5 2.0896E-02 5.9688E-03 2.9496E-03 1.7893E-03 1.2066E-03
10−6 2.0892E-02 5.9685E-03 2.9531E-03 1.7937E-03 1.2114E-03
10−7 2.0891E-02 5.9678E-03 2.9522E-03 1.7930E-03 1.2109E-03
10−8 2.0891E-02 5.9677E-03 2.9520E-03 1.7928E-03 1.2106E-03
10−9 2.0891E-02 5.9677E-03 2.9520E-03 1.7928E-03 1.2106E-03
10−10 2.0891E-02 5.9677E-03 2.9520E-03 1.7928E-03 1.2106E-03

Table 2: Maximum absolute errors for Example 5.2 when δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 100 200 300 400 500
FOFEM
10−1 1.7664E-04 4.4234E-05 1.9666E-05 1.1063E-05 7.0808E-06
10−2 1.8317E-03 5.0358E-04 2.2811E-04 1.2918E-04 8.2937E-05
10−3 3.3232E-03 1.6786E-03 1.0942E-03 7.7708E-04 5.7660E-04
10−4 3.3233E-03 1.6851E-03 1.1287E-03 8.4857E-04 6.7983E-04
10−5 3.3233E-03 1.6851E-03 1.1287E-03 8.4857E-04 6.7983E-04
10−6 3.3233E-03 1.6851E-03 1.1287E-03 8.4857E-04 6.7983E-04
10−7 3.3233E-03 1.6851E-03 1.1287E-03 8.4857E-04 6.7983E-04
10−8 3.3233E-03 1.6851E-03 1.1287E-03 8.4857E-04 6.7983E-04
10−9 3.3233E-03 1.6851E-03 1.1287E-03 8.4857E-04 6.7983E-04
10−10 3.3233E-03 1.6851E-03 1.1287E-03 8.4857E-04 6.7983E-04
FMFEM
10−1 1.1821E-03 2.9391E-04 1.3069E-04 7.3504E-05 4.7032E-05
10−2 3.5310E-02 9.9038E-03 5.1690E-03 3.1485E-03 2.1599E-03
10−3 3.4347E-02 9.5052E-03 4.9202E-03 2.9545E-03 2.0133E-03
10−4 3.4318E-02 9.4730E-03 4.8947E-03 2.9341E-03 1.9980E-03
10−5 3.4310E-02 9.4980E-03 4.9115E-03 2.9449E-03 2.0026E-03
10−6 3.4305E-02 9.4930E-03 4.9106E-03 2.9482E-03 2.0083E-03
10−7 3.4304E-02 9.4919E-03 4.9094E-03 2.9467E-03 2.0069E-03
10−8 3.4304E-02 9.4918E-03 4.9093E-03 2.9465E-03 2.0067E-03
10−9 3.4304E-02 9.4918E-03 4.9093E-03 2.9465E-03 2.0067E-03
10−10 3.4304E-02 9.4918E-03 4.9093E-03 2.9465E-03 2.0067E-03
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Table 3: Maximum absolute errors for Example 5.3 when δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 100 200 300 400 500
FOFEM
10−1 1.0129E-04 2.5300E-05 1.1243E-05 6.3242E-06 4.0475E-06
10−2 1.3656E-03 3.1902E-04 1.4002E-04 7.8415E-05 5.0083E-05
10−3 5.0251E-03 2.3009E-03 1.3203E-03 8.4083E-04 5.7166E-04
10−4 5.0667E-03 2.5535E-03 1.7069E-03 1.2819E-03 1.0263E-03
10−5 5.0667E-03 2.5535E-03 1.7069E-03 1.2819E-03 1.0264E-03
10−6 5.0667E-03 2.5535E-03 1.7069E-03 1.2819E-03 1.0264E-03
10−7 5.0667E-03 2.5535E-03 1.7069E-03 1.2819E-03 1.0264E-03
10−8 5.0667E-03 2.5535E-03 1.7069E-03 1.2819E-03 1.0264E-03
10−9 5.0667E-03 2.5535E-03 1.7069E-03 1.2819E-03 1.0264E-03
10−10 5.0667E-03 2.5535E-03 1.7069E-03 1.2819E-03 1.0264E-03
FMFEM
10−1 2.3180E-04 5.7887E-05 2.5722E-05 1.4468E-05 9.2591E-06
10−2 1.9203E-02 4.4110E-03 1.9317E-03 1.0876E-03 6.9631E-04
10−3 2.0886E-02 6.3087E-03 3.1377E-03 1.9222E-03 1.3153E-03
10−4 2.0767E-02 6.2654E-03 3.1113E-03 1.9029E-03 1.3001E-03
10−5 2.0758E-02 6.2640E-03 3.1099E-03 1.9014E-03 1.2988E-03
10−6 2.0756E-02 6.2636E-03 3.1106E-03 1.9023E-03 1.2997E-03
10−7 2.0756E-02 6.2633E-03 3.1103E-03 1.9021E-03 1.2996E-03
10−8 2.0756E-02 6.2633E-03 3.1103E-03 1.9021E-03 1.2995E-03
10−9 2.0756E-02 6.2633E-03 3.1103E-03 1.9021E-03 1.2995E-03
10−10 2.0756E-02 6.2633E-03 3.1102E-03 1.9021E-03 1.2995E-03

Table 4: Maximum absolute errors for Example 5.4 when δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 100 200 300 400 500
FOFEM
10−1 1.0078E-04 2.5188E-05 1.1195E-05 6.2959E-06 4.0295E-06
10−2 1.3298E-03 2.9515E-04 1.3565E-04 7.5869E-05 4.8151E-05
10−3 2.6654E-03 1.3195E-03 8.4129E-04 5.9236E-04 4.3850E-04
10−4 2.6676E-03 1.3514E-03 9.0491E-04 6.8020E-04 5.4489E-04
10−5 2.6676E-03 1.3514E-03 9.0491E-04 6.8020E-04 5.4489E-04
10−6 2.6676E-03 1.3514E-03 9.0491E-04 6.8020E-04 5.4489E-04
10−7 2.6676E-03 1.3514E-03 9.0491E-04 6.8020E-04 5.4489E-04
10−8 2.6676E-03 1.3514E-03 9.0491E-04 6.8020E-04 5.4489E-04
10−9 2.6676E-03 1.3514E-03 9.0491E-04 6.8020E-04 5.4489E-04
10−10 2.6676E-03 1.3514E-03 9.0491E-04 6.8020E-04 5.4489E-04
FMFEM
10−1 3.6160E-04 9.0388E-05 4.0157E-05 2.2587E-05 1.4455E-05
10−2 3.3804E-02 7.2761E-03 3.1548E-03 1.7683E-03 1.1337E-03
10−3 8.9037E-02 2.8322E-02 1.3142E-02 8.1947E-03 5.6710E-03
10−4 8.8699E-02 2.8554E-02 1.3302E-02 8.3783E-03 5.8062E-03
10−5 8.8500E-02 2.8126E-02 1.3096E-02 8.2561E-03 5.7652E-03
10−6 8.8598E-02 2.8177E-02 1.3069E-02 8.1452E-03 5.6338E-03
10−7 8.8611E-02 2.8195E-02 1.3088E-02 8.1730E-03 5.6572E-03
10−8 8.8612E-02 2.8197E-02 1.3090E-02 8.1772E-03 5.6618E-03
10−9 8.8612E-02 2.8198E-02 1.3091E-02 8.1776E-03 5.6623E-03
10−10 8.8612E-02 2.8197E-02 1.3091E-02 8.1776E-03 5.6623E-03
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Table 5: Rate of convergence for Example 5.1 when δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 100 200 300 400 500
FOFEM
10−1 2.0022E+00 2.0005E+00 2.0002E+00 2.0001E+00 2.0001E+00
10−2 2.1654E+00 2.0098E+00 1.9889E+00 2.0098E+00 2.0066E+00
10−3 1.2029E+00 1.4938E+00 1.4796E+00 1.6250E+00 1.8076E+00
10−4 9.8408E-01 9.9199E-01 9.9533E-01 1.0015E+00 1.0161E+00
10−5 9.8408E-01 9.9198E-01 9.9464E-01 9.9597E-01 9.9677E-01
10−6 9.8408E-01 9.9198E-01 9.9464E-01 9.9597E-01 9.9677E-01
10−7 9.8408E-01 9.9198E-01 9.9464E-01 9.9597E-01 9.9677E-01
10−8 9.8408E-01 9.9198E-01 9.9464E-01 9.9597E-01 9.9677E-01
10−9 9.8408E-01 9.9198E-01 9.9464E-01 9.9597E-01 9.9677E-01
10−10 9.8408E-01 9.9198E-01 9.9464E-01 9.9597E-01 9.9677E-01
FMFEM
10−1 2.0010E+00 2.0001E+00 2.0002E+00 2.0001E+00 2.0000E+00
10−2 2.1217E+00 2.0176E+00 1.9972E+00 2.0033E+00 2.0042E+00
10−3 1.8040E+00 1.7297E+00 1.7299E+00 1.7410E+00 1.7503E+00
10−4 1.8087E+00 1.7360E+00 1.7392E+00 1.7547E+00 1.7666E+00
10−5 1.8077E+00 1.7380E+00 1.7425E+00 1.7573E+00 1.7687E+00
10−6 1.8075E+00 1.7344E+00 1.7382E+00 1.7547E+00 1.7696E+00
10−7 1.8076E+00 1.7348E+00 1.7380E+00 1.7524E+00 1.7639E+00
10−8 1.8076E+00 1.7350E+00 1.7383E+00 1.7530E+00 1.7648E+00
10−9 1.8076E+00 1.7350E+00 1.7383E+00 1.7531E+00 1.7650E+00
10−10 1.8076E+00 1.7350E+00 1.7384E+00 1.7531E+00 1.7650E+00

Table 6: Rate of convergence for Example 5.2 when δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 100 200 300 400 500
FOFEM
10−1 1.9976E+00 1.9994E+00 1.9997E+00 1.9999E+00 1.9999E+00
10−2 1.8629E+00 1.9628E+00 1.9832E+00 1.9905E+00 1.9939E+00
10−3 9.8534E-01 1.1111E+00 1.3098E+00 1.4824E+00 1.6097E+00
10−4 9.7977E-01 9.8972E-01 9.9310E-01 9.9481E-01 9.9585E-01
10−5 9.7977E-01 9.8972E-01 9.9310E-01 9.9481E-01 9.9584E-01
10−6 9.7977E-01 9.8972E-01 9.9310E-01 9.9481E-01 9.9584E-01
10−7 9.7977E-01 9.8972E-01 9.9310E-01 9.9481E-01 9.9584E-01
10−8 9.7977E-01 9.8972E-01 9.9310E-01 9.9481E-01 9.9584E-01
10−9 9.7977E-01 9.8972E-01 9.9310E-01 9.9481E-01 9.9584E-01
10−10 9.7977E-01 9.8972E-01 9.9310E-01 9.9481E-01 9.9584E-01
FMFEM
10−1 2.0079E+00 1.9995E+00 2.0009E+00 2.0005E+00 2.0003E+00
10−2 1.8340E+00 1.6533E+00 1.7067E+00 1.7012E+00 1.7106E+00
10−3 1.8534E+00 1.6858E+00 1.7583E+00 1.7628E+00 1.7934E+00
10−4 1.8571E+00 1.6909E+00 1.7643E+00 1.7701E+00 1.8028E+00
10−5 1.8529E+00 1.6894E+00 1.7673E+00 1.7760E+00 1.8079E+00
10−6 1.8535E+00 1.6870E+00 1.7595E+00 1.7652E+00 1.7980E+00
10−7 1.8536E+00 1.6876E+00 1.7605E+00 1.7659E+00 1.7972E+00
10−8 1.8536E+00 1.6877E+00 1.7607E+00 1.7664E+00 1.7980E+00
10−9 1.8536E+00 1.6877E+00 1.7608E+00 1.7664E+00 1.7981E+00
10−10 1.8536E+00 1.6877E+00 1.7608E+00 1.7664E+00 1.7981E+00
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Table 7: Rate of convergence for Example 5.3 when δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 100 200 300 400 500
FOFEM
10−1 2.0013E+00 2.0002E+00 2.0000E+00 2.0000E+00 2.0000E+00
10−2 2.0978E+00 2.0245E+00 2.0109E+00 2.0053E+00 2.0018E+00
10−3 1.1269E+00 1.4523E+00 1.6973E+00 1.8827E+00 2.0262E+00
10−4 9.8855E-01 9.9419E-01 9.9652E-01 1.0004E+00 1.0094E+00
10−5 9.8855E-01 9.9419E-01 9.9610E-01 9.9707E-01 9.9765E-01
10−6 9.8855E-01 9.9419E-01 9.9610E-01 9.9707E-01 9.9765E-01
10−7 9.8855E-01 9.9419E-01 9.9610E-01 9.9707E-01 9.9765E-01
10−8 9.8855E-01 9.9419E-01 9.9610E-01 9.9707E-01 9.9765E-01
10−9 9.8855E-01 9.9419E-01 9.9610E-01 9.9707E-01 9.9765E-01
10−10 9.8855E-01 9.9419E-01 9.9610E-01 9.9707E-01 9.9765E-01
FMFEM
10−1 2.0016E+00 2.0004E+00 2.0002E+00 2.0001E+00 2.0001E+00
10−2 2.1222E+00 2.0200E+00 1.9988E+00 2.0022E+00 2.0042E+00
10−3 1.7271E+00 1.7146E+00 1.7152E+00 1.7327E+00 1.7563E+00
10−4 1.7288E+00 1.7192E+00 1.7221E+00 1.7414E+00 1.7669E+00
10−5 1.7285E+00 1.7200E+00 1.7234E+00 1.7426E+00 1.7681E+00
10−6 1.7285E+00 1.7192E+00 1.7223E+00 1.7420E+00 1.7683E+00
10−7 1.7285E+00 1.7193E+00 1.7223E+00 1.7415E+00 1.7671E+00
10−8 1.7285E+00 1.7194E+00 1.7223E+00 1.7416E+00 1.7673E+00
10−9 1.7285E+00 1.7194E+00 1.7224E+00 1.7417E+00 1.7673E+00
10−10 1.7285E+00 1.7193E+00 1.7223E+00 1.7417E+00 1.7673E+00

Table 8: Rate of convergence for Example 5.4 when δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 100 200 300 400 500
FOFEM
10−1 2.0005E+00 2.0002E+00 2.0002E+00 2.0000E+00 2.0001E+00
10−2 2.1717E+00 1.9599E+00 2.0195E+00 2.0109E+00 1.9997E+00
10−3 1.0144E+00 1.1555E+00 1.3295E+00 1.5115E+00 1.6758E+00
10−4 9.8115E-01 9.9039E-01 9.9356E-01 9.9537E-01 9.9734E-01
10−5 9.8115E-01 9.9039E-01 9.9355E-01 9.9514E-01 9.9611E-01
10−6 9.8115E-01 9.9039E-01 9.9355E-01 9.9514E-01 9.9611E-01
10−7 9.8115E-01 9.9039E-01 9.9355E-01 9.9514E-01 9.9611E-01
10−8 9.8115E-01 9.9039E-01 9.9355E-01 9.9514E-01 9.9611E-01
10−9 9.8115E-01 9.9039E-01 9.9355E-01 9.9514E-01 9.9611E-01
10−10 9.8115E-01 9.9039E-01 9.9355E-01 9.9514E-01 9.9611E-01
FMFEM
10−1 2.0002E+00 2.0006E+00 2.0002E+00 2.0001E+00 2.0001E+00
10−2 2.2159E+00 2.0408E+00 2.0031E+00 2.0010E+00 2.0065E+00
10−3 1.6525E+00 1.7892E+00 1.6807E+00 1.6660E+00 1.6657E+00
10−4 1.6352E+00 1.7689E+00 1.6506E+00 1.6469E+00 1.6348E+00
10−5 1.6538E+00 1.7684E+00 1.6315E+00 1.6217E+00 1.6181E+00
10−6 1.6527E+00 1.7905E+00 1.6820E+00 1.6610E+00 1.6455E+00
10−7 1.6520E+00 1.7865E+00 1.6765E+00 1.6639E+00 1.6632E+00
10−8 1.6519E+00 1.7859E+00 1.6746E+00 1.6610E+00 1.6580E+00
10−9 1.6519E+00 1.7858E+00 1.6744E+00 1.6606E+00 1.6573E+00
10−10 1.6519E+00 1.7858E+00 1.6744E+00 1.6606E+00 1.6572E+00
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Table 9: Example 5.1 with δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 25 26 27 28 29 210

Maximum absolute errors using FOFEM
2−1 1.7258E-05 4.3103E-06 1.0778E-06 2.6944E-07 6.7375E-08 1.6731E-08
2−3 1.1911E-04 2.9637E-05 7.4069E-06 1.8510E-06 4.6277E-07 1.1570E-07
2−5 6.9521E-04 1.5340E-04 3.8675E-05 9.5949E-06 2.3941E-06 5.9858E-07
2−7 1.8014E-03 6.5753E-04 1.9109E-04 4.2642E-05 1.0571E-05 2.6273E-06
2−9 2.3814E-03 1.1876E-03 4.7642E-04 1.7126E-04 4.9043E-05 1.0974E-05
EN 2.3814E-03 1.1876E-03 4.7642E-04 1.7126E-04 4.9043E-05 1.0974E-05
RN 1.0038 1.3177 1.4761 1.8041 1.9993 1.9306
EN [7] 2.7451E-03 1.3536E-03 5.4069E-04 1.6480E-04 4.3735E-05 1.1107E-05
RN [7] 1.0201 1.3239 1.7141 1.9139 1.9941

Table 10: Example 5.2 with δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 25 26 27 28 29 210

Maximum absolute errors using FOFEM
2−1 1.2195E-04 3.0464E-05 7.6145E-06 1.9036E-06 4.7590E-07 1.1899E-07
2−3 7.5874E-04 1.8993E-04 4.7413E-05 1.1849E-05 2.9620E-06 7.4050E-07
2−5 4.0403E-03 9.3834E-04 2.3035E-04 5.7327E-05 1.4315E-05 3.5786E-06
2−7 1.2796E-02 4.3355E-03 1.0737E-03 2.5098E-04 6.1699E-05 1.5376E-05
2−9 1.5328E-02 7.6725E-03 3.3247E-03 1.1117E-03 2.7327E-04 6.3985E-05
EN 1.5328E-02 7.6725E-03 3.3247E-03 1.1117E-03 2.7327E-04 6.3985E-05
RN 0.9984 1.2065 1.5804 1.9998 1.9997 1.9652
EN [7] 1.0119E-02 5.2286E-03 2.6240E-03 1.1382E-03 3.7365E-04 1.0212E-04
RN [7] 0.9526 0.9947 1.2050 1.6070 1.8714

Table 11: Example 5.3 with δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 25 26 27 28 29 210

Maximum absolute errors using FMFEM
2−1 7.5721E-04 1.8952E-04 4.7322E-05 1.1827E-05 2.9565E-06 7.3913E-07
2−3 7.7441E-03 1.9027E-03 4.7249E-04 1.1806E-04 2.9498E-05 7.3744E-06
2−5 1.2902E-01 3.2238E-02 7.0805E-03 1.7190E-03 4.2750E-04 1.0682E-04
2−7 1.8115E-01 7.2172E-02 2.2604E-02 6.6904E-03 2.0359E-03 6.1478E-04
2−9 1.7937E-01 7.1109E-02 2.2157E-02 6.4944E-03 1.9442E-03 5.6545E-04
EN 1.8387E-01 7.3646E-02 2.3232E-02 6.9711E-03 2.0359E-03 6.1478E-04
RN 1.4290 1.7593 1.6596 1.6839 1.7234 1.7508
EN [7] 8.0732E-03 4.0199E-03 1.6136E-03 4.9272E-04 1.3083E-04 3.3230E-05
RN [7] 1.0060 1.3169 1.7114 1.9131 1.9771
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Table 12: Example 5.4 with δ = 0.5ϵ, η = 0.5ϵ.
ϵ ↓ N → 25 26 27 28 29 210

Maximum absolute errors using FMFEM
2−1 2.5318E-04 6.3214E-05 1.5801E-05 3.9500E-06 9.8748E-07 2.4687E-07
2−3 2.4397E-03 6.0290E-04 1.5029E-04 3.7546E-05 9.3855E-06 2.3463E-06
2−5 3.6145E-02 7.7019E-03 1.8908E-03 4.6934E-04 1.1727E-04 2.9301E-05
2−7 3.3363E-01 1.3057E-01 3.3566E-02 7.2328E-03 1.7558E-03 4.3895E-04
2−9 3.4741E-01 1.6329E-01 6.0267E-02 1.7701E-02 5.3215E-03 1.6464E-03
EN 3.4741E-01 1.6329E-01 6.0267E-02 1.7701E-02 5.3215E-03 1.6464E-03
RN 1.0892 1.4360 1.7675 1.7340 1.6925 1.6847
EN [7] 1.3101E-01 1.3727E-01 1.2122E-01 6.7667E-02 2.1221E-02 5.4258E-03
RN [7] -0.0673 0.1794 0.8411 1.6730 1.9676
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Figure 1: Numerical solution for Example 5.1 with ϵ = 0.1 and δ = 0.5ϵ using FMFEM.
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Figure 2: Numerical solution for Example 5.1 with ϵ = 0.1 and η = 0.5ϵ using FMFEM.
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Figure 3: Numerical solution for Example 5.2 with ϵ = 0.1 and δ = 0.5ϵ using FOFEM.
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Figure 4: Numerical solution for Example 5.2 with ϵ = 0.1 and η = 0.5ϵ using FOFEM.
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Figure 5: Numerical solution for Example 5.3 with ϵ = 0.1 and δ = 0.5ϵ using FMFEM.
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Figure 6: Numerical solution for Example 5.3 with ϵ = 0.1 and η = 0.5ϵ using FMFEM.
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Figure 7: Numerical solution for Example 5.4 with ϵ = 0.1 and δ = 0.5ϵ using FOFEM.
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Figure 8: Numerical solution for Example 5.4 with ϵ = 0.1 and η = 0.5ϵ using FOFEM.
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Figure 9: Log-log plot of maximum absolute errors for Example 5.1.
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(a) Example 5.2 using FMFEM
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(b) Example 5.2 using FOFEM

Figure 10: Log-log plot of the maximum absolute errors for Example 5.2.
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(a) Example 5.3 using FMFEM
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(b) Example 5.3 using FOFEM

Figure 11: Log-log plot of the maximum absolute errors for Example 5.3.
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(a) Example 5.4 using FMFEM
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(b) Example 5.4 using FOFEM

Figure 12: Log-log plot of the maximum absolute errors for Example 5.4.
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