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N -r-Ideals and Semi N -r-Ideals of Commutative Z2-Graded Rings

Rashid Abu-Dawwas and Anas Al-Jarrah

abstract: Let R be a commutative ring with nonzero unity 1. This article introduces and investigates
new classes of ideals in Z2-graded rings, building on the previously established notion of r-ideals. Using the
function N : R → R0, defined by N (x) = x2

0−x2
1 for x = x0+x1 ∈ R, we define and study N -r ideals and semi

N -r-ideals. A proper ideal I is N -r-ideal if xy ∈ I implies N (x) ∈ I or y ∈ zd(R), while it is semi N -r-ideal
if x2 ∈ I implies N (x) ∈ I or x ∈ zd(R), where zd(R) is the set of zero divisors of R. Fundamental properties
of these ideals are explored, including their relationships to existing structures in graded ring theory. These
results extend the understanding of ideal theory in the context of Z2-graded rings and offer new perspectives
for future research.
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1. Introduction

Recall that the set of all zero divisors of R is denoted by zd(R), and is defined by zd(R) = {x ∈
R : there exists a nonzero y ∈ R with xy = 0}. In [7], the concept of r-ideals has been established and
investigated. A proper ideal I of a ring R is said to be an r-ideal if whenever x, y ∈ R with xy ∈ I, then
either x ∈ I or y ∈ zd(R). On the other hand, the concept of semi r-ideals has been introduced and
studied in [5]. A proper ideal I of a ring R is said to be a semi r-ideal if whenever x ∈ R with x2 ∈ I,
then either x ∈ I or x ∈ zd(R).

The study of graded rings and their ideal structures has been a central theme in modern algebra,
offering a rich framework for exploring connections between ring theory, homological algebra, and alge-
braic geometry. A graded ring is a ring R that is decomposed into a direct sum R =

⊕
g∈G Rg with

RgRh ⊆ Rgh, for all g, h ∈ G, where G is a group and Rg is an additive subgroup of R, for all g ∈ G.
The elements of each component Rg are called homogeneous elements, and the set of all homogeneous
elements is ∪g∈GRg which is denoted by h(R). For more terminology, one can see [4,8]. In this con-
text, a Z2-graded ring is a graded ring where G is Z2 = {0, 1}, with each element of R being uniquely
decomposed as x = x0 + x1, where x0 ∈ R0 and x1 ∈ R1.

Among the most prominent classes of graded rings are Z2-graded rings, which have significant ap-
plications in areas such as representation theory and quantum mechanics. In this context, the interplay
between grading and ideal theory has inspired various extensions of classical notions, including the concept
of r-ideals and semi r-ideals.

In [1], the notion of N -prime ideals was introduced for Z2-graded rings using the norm function
NR : R → R0, defined by

NR(x) = x2
0 − x2

1,

where x = x0 + x1 is the homogeneous decomposition of x ∈ R. When no confusion occurs, we replace
NR by N . It is important to note that the function N was introduced for the first time in ( [3], Theorem
5.8). A proper ideal I is N -prime if xy ∈ I implies N (x) ∈ I or N (y) ∈ I. This novel approach connects
the grading structure with the functional mapping N , leading to a deeper understanding of graded prime
ideals. Not only in algebra, even in other branches of Mathematics, the norm function has a significance
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role in analyzing the algebraic structure or other mathematical structures of a Z2-graded ring like the
graphical structure as presented in [6]. The reader should pay attention to that the norm function can
be defined for graded rings which are not necessarily Z2-graded. For example, if R is a first strongly
Z4-graded ring (for first strongly graded rings and modules, we refer the reader to [9]) whose support is
⟨2⟩, then the norm function is defined on R by N (r) = r20 − r22, where r = r0 + r1 + r2 + r3 = r0 + r2 is
the unique decomposition of r in the Z4-graded ring R. The existence of the norm function for a wide
range of graded rings will definitely leads to new releases in this area of research.

In this article, we extend this framework by introducing and studying two new classes of ideals: N -
r-ideals and semi N -r-ideals. These concepts generalize the classical notion of r-ideals in a way that
respects the grading structure. Specifically, A proper ideal I is N -r-ideal if xy ∈ I implies N (x) ∈ I or
y ∈ zd(R). A proper ideal I is semi N -r-ideal if x2 ∈ I implies N (x) ∈ I or x ∈ zd(R).

These definitions naturally arise from the graded structure of the ring and offer a new perspective on
ideal theory in Z2-graded rings. This work explores the fundamental properties of these new ideals, their
interrelations, and their connections to r-ideals.

This study not only enriches the theory of Z2-graded rings but also lays the groundwork for further
exploration of functional mappings in algebraic structures.

2. Preliminaries on the norm function N and N -prime ideals

Inrthis article, we focusron Z2-gradedrring R = R0

⊕
R1 withrRiRj ⊆ Ri+j , for allri, j ∈ Z2,

whererR0 and R1 are additive subgroupsrof R. Actually, R0 is a subringrof R andr1 ∈ R0. Now,
for everyrx ∈ R, x is written uniquely asrx = x0 + x1, for somerx0 ∈ R0 andrx1 ∈ R1. Then for
everyrx ∈ R, definerN (x) = x2

0 − x2
1.

Theorem 2.1 [1] LetrR be a Z2-gradedrring. Then

1. N (x) ∈ R0, for everyrx ∈ R. Hence, N is a function from R to R0.

2. N (0) = 0.

3. N (1) = 1.

4. N (xy) = N (x)N (y), for everyrx, y ∈ R.

Theorem 2.2 [1] LetrR be a Z2-gradedrring andrx ∈ h(R). Then

N (x) =

{
x2, x ∈ R0

−x2, x ∈ R1

Lemma 2.1 [1] LetrR be a Z2-gradedrring and I be an ideal of R. Then N (I) ⊆ I
⋂
R0 ⊆ I.

An ideal I of a graded ring R is said to be a graded ideal if I =
⊕

g∈G(I
⋂

Rg), i.e., whenever x ∈ I,
we have xg ∈ I, for all g ∈ G. Indeed, not every ideal of a graded ring is a graded ideal, see [8]. Moreover,
if I is a graded ideal of a graded ring R, then R/I is graded by (R/I)g = (Rg + I)/I, for all g ∈ G.

Lemma 2.2 [1] LetrR be a Z2-gradedrring and J be a gradedrideal of R. Then NR/J(x+J) = NR(x)+J ,
for everyrx ∈ R.

Definition 2.1 [1] LetrR be a Z2-gradedrring and I be arproper ideal of R. Then I is said to be an
N -primerideal of R if wheneverrx, y ∈ R such thatrxy ∈ I, then eitherrN (x) ∈ I orrN (y) ∈ I.

Theorem 2.3 [1] LetrR be a Z2-gradedrring and I be an ideal of R. If I is a primerideal of R, then I
is an N -primerideal of R.

Indeed, ( [1], Example 5) introduces an N -prime ideal that is not a prime ideal. So, therconverse
ofrTheorem 2.3 is notrnecessarily true.

By Theorem 2.1 (4), N is a multiplicative function. On the other hand, N is not additive function
by ( [1], Remark 4). However, we have the following in general:
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Theorem 2.4 [1] LetrR be a Z2-gradedrring andrx, y ∈ R. Then

N (x+ y) = N (x) +N (y) + 2(x0y0 − x1y1).

Note that, if R is of characteristic 2, N will be an additive function, and hence N is a ring homomor-
phism from R to R0. As a new result, we prove that if N is one to one, then R is of characteristic 2, and
the converse is not necessarily true.

Theorem 2.5 Let R be a Z2-graded ring. If N is one to one, then R is of characteristic 2.

Proof: Let x ∈ R. Then x = x0 + x1, for some x0 ∈ R0 and x1 ∈ R1, and then −x = −x0 − x1, which
gives that N (x) = x2

0 − x2
1 = N (−x), and hence x = −x that is 2x = 0. Thus, char(R) = 2. 2

As a counterexample to the converse of Theorem 2.5, we present the next example.

Example 2.1 Consider R = Z2[x]/⟨x2⟩. Let f(x) + ⟨x2⟩ ∈ R. Then by division algorithm, f(x) =
x2q(x) + r(x), for some q(x), r(x) ∈ Z2[x] with r(x) = 0 or deg(r(x)) = 1, that is r(x) = a + bx, for
some a, b ∈ Z2. So, f(x) + ⟨x2⟩ = a + bx + ⟨x2⟩. Now, R is Z2-graded by R0 = Z2 + ⟨x2⟩/⟨x2⟩ and
R1 = Z2x+⟨x2⟩/⟨x2⟩. So, for any f(x)+⟨x2⟩ ∈ R, (f(x)+⟨x2⟩)0 = a+⟨x2⟩ and (f(x)+⟨x2⟩)1 = bx+⟨x2⟩,
for some a, b ∈ Z2, and then N (f(x) + ⟨x2⟩) = a2 + ⟨x2⟩ = a+ ⟨x2⟩. Clearly, R is of characteristic 2 but
N is not one to one as N (x+ ⟨x2⟩) = 0 + ⟨x2⟩ = N (0 + ⟨x2⟩) with x+ ⟨x2⟩ ̸= 0 + ⟨x2⟩.

Corollary 2.1 Let R be a Z2-graded ring. If N is one to one, then N is a ring isomorphism between R
and R0. Moreover, if R is a finite ring, then R has the trivial gradation by Z2.

One can see that ( [1], Example 3) introduces a case where N is one to one.

3. N -r-Ideals

Definition 3.1 Let R be a Z2-graded ring and I be a proper ideal of R. Then I is said to be an
N -r- ideal of R if whenever x, y ∈ R such that xy ∈ I, then either N (x) ∈ I or y ∈ zd(R).

Theorem 3.1 Let R be a Z2-graded ring. If I is an r-ideal of R, then I is an N -r-ideal of R.

Proof: Let x, y ∈ R such that xy ∈ I. Then either x ∈ I or y ∈ zd(R). If x ∈ I, then by Lemma 2.1,
N (x) ∈ N (I) ⊆ I. Hence, I is an N -r-ideal of R. 2

The next example shows that an N -r-ideal is not necessarily an r-ideal.

Example 3.1 Consider R = K[x, y], where K is a field, and G = Z2. Then R is trivially G-graded
by R0 = R and R1 = {0}. Consider the graded ideal I = ⟨xy⟩ of R. Then R/I is a G-graded ring
by (R/I)n = (Rn + I)/I, for all n ∈ Z2. Consider the prime ideals P = ⟨x + I⟩ and Q = ⟨y + I⟩ of
R/I. We show that zd(R/I) = P

⋃
Q. Let f + I ∈ zd(R/I). Then, there exists g + I ∈ R/I such that

g + I ̸= 0 + I and (f + I)(g + I) = 0 + I. Thus, fg ∈ I with g /∈ I. So, fg = xyh, for some h ∈ R,
and hence x divides fg and y divides fg, which implies x divides f or x divides g, and y divides f or
y divides g. If x divides g and y divides g, then xy divides g, and then g ∈ I, which is a contradiction.
So, x divides f or y divides f , or only one of x or y divides g. If x only divides g, then g = µx for some
µ ∈ R. Thus, fg = xyh implies xµf = xyh. Canceling x from both sides of the last equality yields
µf = yh. Now, y divides µf and y does not divide µ (otherwise y will divide g, which contradicts that x
only divides g). Therefore, y divides f . In the same manner, we can show that if y only divides g, then
x divides f . So in either case, x or y divides f . This implies f + I ∈ P

⋃
Q. Thus, zd(R/I) ⊆ P

⋃
Q.

Let f + I ∈ P
⋃
Q. Then f + I ∈ P or f + I ∈ Q. If f + I ∈ P , then f + I = (x+ I)(h+ I) = xh+ I, for

some h ∈ R, and then f − xh ∈ I which implies f − xh = xyt, for some t ∈ R, and hence f = xh+ xyt.
Now, yf = xy(h + yt) ∈ I, and thus (y + I)(f + I) = yf + I = 0 + I with y + I ̸= 0 + I as y /∈ I,
which means that f + I ∈ zd(R/I). Similarly, if f + I ∈ Q, then f + I ∈ zd(R/I). We conclude that,
zd(R/I) = P

⋃
Q. Now, we show that P 2 is an NR/I -r-ideal of R/I. Let f + I, g + I ∈ R/I such that
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(f + I)(g + I) ∈ P 2. Assume that g + I /∈ zd(R/I). Then g + I /∈ P . Since (f + I)(g + I) ∈ P 2 ⊆ P and
P is prime, we have f + I ∈ P , which implies NR/I(f + I) = NR(f)+ I = f2+ I = (f + I)2 ∈ P 2. Hence,
P 2 is an NR/I -r-ideal of R/I. On the other hand, P 2 is not an r-ideal of R/I since x+ I, x+y+ I ∈ R/I
such that (x+ I)(x+ y+ I) = x2+xy+ I = x2+ I = (x+ I)2 ∈ P 2, x+ I /∈ P 2 and x+ y+ I /∈ zd(R/I).

The ideals in the next two examples are r-ideals, so they are N -r-ideals by Theorem 3.1. However,
we introduce a classical proof using the definition.

Example 3.2 Let R be a Z2-graded ring. Then I = {0} is an N -r-ideal of R. Let x, y ∈ R such that
xy ∈ I and y /∈ zd(R). Then xy = 0. So, x = 0 because y /∈ zd(R), this implies N (x) = N (0) = 0 ∈ I.

Example 3.3 Let R be a Z2-graded ring and 0 ̸= x ∈ R. Then Ann(x) = {r ∈ R : rx = 0} is an
N -r-ideal of R. Let a, b ∈ R such that ab ∈ Ann(x) and b /∈ zd(R). Then abx = 0, and then ax = 0,
which implies a ∈ Ann(x), and hence N (a) ∈ N (Ann(x)) ⊆ Ann(x) by Lemma 2.1.

Even though the next result is an immediate consequence of the definition of N -r-ideals, it is an
important fact since it emphasizes that the components of the N -r-ideals are entirely consisting of zero
divisors.

Theorem 3.2 Let R a Z2-graded ring and I an N -r-ideal of R. Then, I ⊆ zd(R).

Proof: Let x ∈ I. Then 1.x = x ∈ I, and then since I is an N -r-ideal and N (1) = 1 /∈ I, we have that
x ∈ zd(R). Hence, I ⊆ zd(R). 2

The next two examples show that N -r-ideals and N -prime ideals are completely different concepts:

Example 3.4 Consider R = Z6[i]. Then R is Z2-graded by R0 = Z6 and R1 = iZ6. We have I = {0} is
an N -r-ideal by Example 3.2. However, I is not N -prime since 2, 3 ∈ R with 2 · 3 ∈ I but N (2) = 4 /∈ I
and N (3) = 3 /∈ I.

Example 3.5 Consider the graded ring given in ( [1], Example 5). I = pR, where p is a prime integer, is
an N -prime ideal. However, if I is an N -r-ideal, then by Theorem 3.2, I ⊆ zd(R) = {0}, a contradiction.
Hence, I is not an N -r-ideal.

Let R be a ring, I ⊆ R an ideal, and a ∈ R. The colon ideal or ideal quotient (I : a) is defined by
(I : a) = {r ∈ R | ra ∈ I}. For more details, one can look at ( [2], Chapter 1, Section 7).

Theorem 3.3 Let R a Z2-graded ring and I an N -r-ideal of R. Then for every a ∈ R, either N (a) ∈ I
or (I : a) ⊆ zd(R).

Proof: Let a ∈ R such that N (a) /∈ I. Assume that b ∈ (I : a). Then ab ∈ I, and then since I is an
N -r-ideal, we have that b ∈ zd(R). Hence, (I : a) ⊆ zd(R). 2

The element a ∈ R is said to be regular if it is not a zero divisor. The set of all regular elements of R
is denoted by r(R). So, R = zd(R)

⋃
r(R). In terms of the regular elements, we can reshape Definition

3.1 as follows: A proper ideal I of a Z2-graded ring R is an N -r-ideal if whenever ab ∈ I, and a is regular,
then N (b) ∈ I.

Theorem 3.4 Let R be a Z2-graded ring. If P is an N -r-ideal of R, then N (aR
⋂
P ) ⊆ N (a)P , for

every regular a ∈ R.

Proof: Let a ∈ R be regular. Assume that y ∈ N (aR
⋂
P ). Then there exists x ∈ aR

⋂
P such that

N (x) = y. Now, x = az ∈ P , for some z ∈ R. Since za ∈ P with a is regular, we get N (z) ∈ P . Thus,
y = N (x) = N (az) = N (a)N (z) ∈ N (a)P . 2

The next theorem gives a partial converse of Theorem 3.4.
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Theorem 3.5 Let R a Z2-graded ring and P a proper ideal of R. Suppose that N (aR
⋂

P ) ⊆ N (a)P ,
for every regular a ∈ R. If N (r(R)) ⊆ r(R), then P is an N -r-ideal of R.

Proof: Let a, b ∈ R such that ab ∈ P and a is regular. Then ab ∈ aR
⋂
P , this gives N (a)N (b) ∈

N (aR
⋂
P ) ⊆ N (a)P . Thus, N (a)N (b) = N (a)z, for some z ∈ P . So, N (a)(N (b) − z) = 0, which

implies N (b) = z ∈ P since N (a) is regular. Consequently, P is an N -r-ideal of R. 2

The next example shows that the assumption N (r(R)) ⊆ r(R) in Theorem 3.5 does not hold in
general. For a Z2-graded ring R, ℵ = {x ∈ R : N (x) = 0} [1].

Example 3.6 Consider R = M2(R) (the ring of all 2×2 matrices with real entries). Then R is Z2-graded
by:

R0 =

[
R 0

0 R

]
and R1 =

[
0 R

R 0

]
. Let A =

[
a b

c d

]
∈ R. Then A0 =

[
a 0

0 d

]
and A1 =[

0 b

c 0

]
, and then N (A) = A2

0 − A2
1 =

[
a2 − bc 0

0 d2 − bc

]
. Now, choose A =

[
2 2

2 1

]
. Then,

A ∈ r(R) as A is invertible. On the other hand, N (A) =

[
0 0

0 −3

]
/∈ r(R) as

[
α 0

β 0

][
0 0

0 −3

]
=[

0 0

0 0

]
, for all α, β ∈ R. Hence, N (r(R)) ⊈ r(R). Note that, ℵ =

{[
a b

c d

]
: a2 = bc = d2

}
̸=[

0 0

0 0

]
as

[
6 9

4 6

]
∈ ℵ.

Lemma 3.1 Let R be a Z2-graded ring such that ℵ = {0}. Then N (r(R)) ⊆ r(R).

Proof: Let y ∈ N (r(R)). Then there exists x ∈ r(R) such that N (x) = y. Let z ∈ R such that yz = 0.
Then N (x)z = 0. So, 0 = N (0) = N (N (x)z) = N (N (x))N (z) = N (x2)N (z) = N (x2z). Therefore,
x2z ∈ ℵ = {0}. Since x ∈ r(R), we obtain z = 0. Hence, y ∈ r(R). 2

Now, we can state the following result whose proof comes from Theorems 3.4 and 3.5, and Lemma
3.1.

Theorem 3.6 Let R be a Z2-graded ring such that ℵ = {0} and P be a proper ideal of R. Then P is an
N -r-ideal of R if and only if N (aR

⋂
P ) ⊆ N (a)P , for every regular a ∈ R.

Proposition 3.1 Let R be a Z2-graded ring. Then,

N (r(R)
⋂

h(R)) ⊆ r(R)
⋂

h(R).

Proof: Let y ∈ N (r(R)
⋂
h(R)). Then there exists x ∈ r(R)

⋂
h(R) such thatN (x) = y. Since x ∈ h(R),

y = N (x) = x2 or −x2. Assume that y = x2. Let z ∈ Ann(y). Then 0 = zy = zx2 = zx.x, which gives
zx ∈ Ann(x) = {0}. So, zx = 0. Again, z ∈ Ann(x) = {0}, i.e., z = 0. Hence, Ann(y) = {0}, i.e.,
y ∈ r(R). Similarly, if y = −x2, then y ∈ r(R). On the other hand, N (x) ∈ h(R). So, y ∈ r(R)

⋂
h(R).

2

Theorem 3.7 Let R a Z2-graded ring and P a proper ideal of R. Then P is an N -r-ideal of R if and
only if N ((P : a)) ⊆ P , for every regular a ∈ R.
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Proof: Suppose that P is an N -r-ideal of R. Let a ∈ r(R) and y ∈ N ((P : a)). Then there exists
x ∈ (P : a) such that N (x) = y. Now, xa ∈ P , so y = N (x) ∈ P . Conversely, let a, b ∈ R such that
ab ∈ P and a is regular. Then b ∈ (P : a). Since N (b) ∈ N ((P : a)) ⊆ P , we have P is an N -r-ideal of
R. 2

By Lemma 2.1, N (P ) ⊆ P , for every ideal P of R. Moreover, if P is an N -r-ideal of R, then we can
put something between N (P ) and P :

Corollary 3.1 Let R be a Z2-graded ring. If P is an N -r-ideal of R, then N (P ) ⊆ N ((P : a)) ⊆ P , for
every regular a ∈ R.

Proof: Let a ∈ r(R). Then P ⊆ (P : a), and then N (P ) ⊆ N ((P : a)) ⊆ P by Theorem 3.7. 2

Theorem 3.8 Let R a Z2-graded ring and P a proper ideal of R. Then P is an N -r-ideal of R if and
only if whenever I and J are ideals of R such that IJ ⊆ P and J

⋂
r(R) ̸= ∅, then N (I) ⊆ P .

Proof: Suppose that P is an N -r-ideal of R. Let I and J be two ideals of R such that IJ ⊆ P and
J
⋂
r(R) ̸= ∅. Without loss of generality, suppose I ̸= {0}. Then there exists b ∈ J

⋂
r(R). Let y ∈ N (I).

Then there exists a ∈ I such that y = N (a). Now, ab ∈ P , so y = N (a) ∈ P . Conversely, let a, b ∈ R
such that ab ∈ P and b ∈ r(R). Set I = Ra and J = Rb. Then I and J are ideals of R such that
IJ ⊆ P and J

⋂
r(R) ̸= ∅, which implies N (I) ⊆ P . In particular, N (a) ∈ P . We conclude that, P is an

N -r-ideal of R. 2

Theorem 3.9 Let R be a Z2-graded ring. If R is an integral domain, then {0} is the only N -r-ideal of
R.

Proof: As stated in Example 3.2, {0} is an N -r-ideal of R. Let P be a nonzero N -r-ideal of R. Then
there exists 0 ̸= b ∈ P . Since R is an integral domain, b ∈ r(R). Now, 1.b ∈ P , so we have N (1) = 1 ∈ P ,
a contradiction. 2

Theorem 3.10 LetrR be a Z2-gradedrring. IfrP1 andrP2 are N -r-ideals ofrR, thenrP1

⋂
P2 is an N -r-

ideal ofrR.

Proof: Letra, b ∈ R such thatrab ∈ P1

⋂
P2 andra ∈ r(R). Thenrab ∈ P1. SincerP1 is an N -r-ideal,

N (b) ∈ P1. Similarly, N (b) ∈ P2rand hencerN (b) ∈ P1

⋂
P2. Therefore, P1

⋂
P2ris an N -r-ideal ofrR. 2

Definition 3.2 Let R be a Z2-graded ring and P be a proper ideal of R. Then P is said to be a semi
N -r-ideal of R if whenever x ∈ R such that x2 ∈ P , then either N (x) ∈ P or x ∈ zd(R).
Clearly, every N -r-ideal is a semi N -r-ideal. On the other hand, the next example shows that a semi

N -r-ideal is not necessarily an N -r-ideal.

Example 3.7 Consider R = Z[i]. Then R is Z2-graded by R0 = Z and R1 = iZ. Consider the
ideal P = 6R of R. Let x ∈ R such that x2 ∈ P . Then x2 = 6(a + ib), for some a, b ∈ Z. Thus,
(N (x))2 = N (x2) = 36(a2 + b2). Now, 2, 3 divide (N (x))2, so 2, 3 divide N (x) which implies 6 divides
N (x). That is, N (x) ∈ P . Hence, P is a semi N -r-ideal of R. On the other hand, P is not an N -r-ideal
of R since 2 · 3 ∈ P but N (2) = 4 /∈ P , N (3) = 9 /∈ P , 2 /∈ zd(R) and 3 /∈ zd(R).

Theorem 3.11 Let R be a Z2-graded ring. If P is a semi r-ideal of R, then P is a semi N -r-ideal of R.

Proof: Let x ∈ R such that x2 ∈ P . Then either x ∈ P or x ∈ zd(R). If x ∈ P , then N (x) ∈ N (P ) ⊆ P
by Lemma 2.1. Hence, P is a semi N -r-ideal of R. 2

On the other hand, the next example shows that a semi N -r-ideal is not necessarily a semi r-ideal.
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Example 3.8 Consider the Z2-graded ring given in Example 3.7. Let P = 2R and x ∈ R such that
x2 ∈ P . Then x2 = 2(a + ib), for some a, b ∈ Z, and then (N (x))2 = N (x2) = 4(a2 + b2). Now, 2
divides (N (x))2 which implies 2 divides N (x) that is N (x) ∈ 2R = P . Hence, P is a semi N -r-ideal. On
therother hand, P isrnot arsemirr-ideal sincer1+ i ∈ R withr(1+ i)2 ∈ P , 1 + i /∈ zd(R) andr(1+ i) /∈ P .

Theorem 3.12 LetrP be arproper ideal of a Z2-gradedrring R. ThenrP is a semirN -r-ideal of R if
andronly if wheneverrx ∈ R withr0 ̸= x2 ∈ P andrx ∈ r(R), thenrN (x) ∈ P .

Proof: Supposerthat wheneverrx ∈ R withr0 ̸= x2 ∈ P andrx ∈ r(R), then N (x) ∈ P . Letrx ∈ R
withrx2 ∈ P andrx ∈ r(R). Ifrx2 = 0, thenrx = 0 asrx ∈ r(R), and then N (x) = 0 ∈ P . Ifrx2 ̸= 0,
thenrN (x) ∈ P byrassumption. Hence, P is a semirN -r-ideal of R. The converseris clear. 2

Theorem 3.13 LetrP andrQ bertwo semirN -r-ideals ofra Z2-gradedrring R. ThenrP
⋂

Q isra semirN -
r-ideal ofrR.

Proof: Letrx ∈ R suchrthat x2 ∈ P
⋂
Q andrx ∈ r(R). Thenrx2 ∈ P andrx2 ∈ Q. SincerP isra semirN -

r-ideal, N (x) ∈ P . Similarly, N (x) ∈ Q. Hence,rN (x) ∈ P
⋂

Q. Thus, P
⋂

Q isra semirN -r-ideal
ofrR.

2

Lemma 3.2 LetrR and S bertwo Z2-gradedrrings. Then
NR×S(x, y) = (NR(x),NS(y)), for everyr(x, y) ∈ R× S.

Proof: Letr(x, y) ∈ R × S. Thenr(x, y) = (x, y)0 + (x, y)1 = (x0, y0) + (x1, y1). Now,rN (x, y) =
(x0, y0)

2 − (x1, y1)
2 = (x2

0, y
2
0)− (x2

1, y
2
1) = (x2

0 − x2
1, y

2
0 − y21) = (NR(x),NS(y)).

2

Theorem 3.14 LetrR andrS bertwo Z2-gradedrrings andrT = R × S. IfrP isra semirNR-r-ideal ofrR,
thenrP × S is a semirNT -r-ideal ofrT .

Proof: Letr(x, y) ∈ T suchrthat (x, y)2 ∈ P × S andr(x, y) ∈ r(R × S). Thenrx2 ∈ P . IfrAnnR(x) ̸=
{0R}, thenrthere existsra nonzerort ∈ R suchrthat tx = 0R. Since (t, 0R)(x, y) = (0R, 0S), we get
t = 0R, which is arcontradiction. So, AnnR(x) = {0R}. SincerP is a semirN -r-ideal, NR(x) ∈ P , and
hencerNT ((x, y)) ∈ P × S. Thus, P × S isra semirN -r-ideal ofrT .

2

Similarly, we can prove the following theorem.

Theorem 3.15 LetrR andrS bertwo Z2-gradedrrings andrT = R × S. IfrQ isra semirNS-r-ideal ofrS,
thenrR×Q isra semirNT -r-ideal ofrT .

The converses of Theorems 3.14 and 3.15 hold true.

Theorem 3.16 LetrR andrS bertwo Z2-gradedrrings andrT = R × S. IfrP × S isra semirNT -r-ideal
ofrT , thenrP isra semirNR-r-ideal ofrR.

Proof: Letrx ∈ R suchrthat x2 ∈ P and x ∈ r(R). Then (x, 1) ∈ T withr(x, 1)2 ∈ P × S.
IfrAnnT ((x, 1)) ̸= {(0R, 0S)}, thenrthere existsra nonzero (t, s) ∈ T suchrthat (x, 1)(t, s) = (0R, 0S),
whichrimpliesrxt = 0R and s = 0S , sort ∈ AnnR(x) = {0R} andrs = 0S . Hence, (t, s) = (0R, 0S), which
is arcontradiction. So, AnnT ((x, 1)) = {(0R, 0S)}. SincerP × S isra semirN -r-ideal, NT ((x, 1)) ∈ P × S,
andrhence NR(x) ∈ P . Thus, P isra semirNR-r-ideal ofrR.

2

Similarly, the following Theorem is demonstrated.
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Theorem 3.17 LetrR andrS bertwo Z2-gradedrrings andrT = R × S. IfrR × Q isra semirNT -r-ideal
ofrT , thenrQ isra semirNS-r-ideal ofrS.

Theorem 3.18 LetrR andrS bertwo Z2-gradedrrings andrT = R × S. IfrP andrQ are semirNR-r-ideal
ofrR and NS-r-ideal of S, respectively, thenrP ×Q isra semirNT -r-ideal ofrT .

Proof: Letr(x, y) ∈ T suchrthat (x, y)2 ∈ P ×Q andr(x, y) ∈ r(R×S). A same argument as in the proof
of Theorem 3.14 leads to that x ∈ r(R), and then sincerP isra semirNR-r-ideal, NR(x) ∈ P . Similarly,
y ∈ r(S). Therefore, NS(y) ∈ Q. Hence, NT ((x, y)) ∈ P ×Q. Thus, P ×Q is a semirNT -r-ideal ofrT .

2

Theorem 3.19 LetrR andrS bertwo Z2-gradedrrings andrT = R×S. Supposerthat P and Q arerproper
ideals ofrR andrS, respectively. IfrP ×Q isra semirNT -r-ideal ofrT , then eitherrP isra semirNR-r-ideal
ofrR or Q isra semirNS-r-ideal ofrS.

Proof: Supposerthat P is notra semirNR-r-ideal of R and Q is notra semirNS-r-ideal ofrS. Then,rthere
existrx ∈ R andry ∈ S suchrthat x2 ∈ P , y2 ∈ Q, AnnR(x) = {0R}, AnnS(y) = {0S}, NR(x) /∈ P ,
NS(y) /∈ Q. So, (x, y)2 ∈ P × Q. IfrAnnT ((x, y)) ̸= {(0R, 0S)}, then there existsra nonzero (t, s) ∈ T
suchrthat (x, y)(t, s) = (0R, 0S), whichrimpliesrxt = 0R andrys = 0S . Sort ∈ AnnR(x) = {0R} andrs ∈
AnnS(y) = {0S}. Hence, (t, s) = (0R, 0S), which is arcontradiction. Thus, AnnT ((x, y)) = {(0R, 0S)}.
SincerP ×Q is a semirNT -r-ideal, we have NT ((x, y)) ∈ P ×Q, which is arcontradiction. Hence, eitherrP
isra semirNR-r-ideal ofrR or Q isra semirNS-r-ideal ofrS.

2
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