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Mammographic Breast Cancer Diagnosis
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abstract: Automated and accurate diagnosis of breast cancer from mammography images remains a criti-
cal challenge in medical imaging, necessitating advanced computational approaches to improve early detection
rates. This paper proposes a hybrid deep learning framework designed to enhance the diagnostic precision
of breast cancer. The methodology commences with a meticulous preprocessing pipeline, including Contrast
Limited Adaptive Histogram Equalization (CLAHE) with optimized Rayleigh distribution and clip limits, a
novel background cropping technique to focus on relevant tissue, pixel intensity adjustments for zero-valued
regions, and data augmentation through rotations, flips, and zooming. Feature extraction is subsequently
performed using a pre-trained ResNet-50 architecture, adapted via transfer learning with fine-tuning of its
terminal layers and a custom dense layer. The resultant high-dimensional feature vectors are then refined
using Linear Discriminant Analysis (LDA) to enhance class separability while reducing dimensionality. For
classification, a Bidirectional Gated Recurrent Unit (BiGRU) network is employed, with its crucial hyper-
parameters (number of hidden units, learning rate, decay factor, and batch size) systematically optimized
using the Grey Wolf Optimizer (GWO). The developed model demonstrates strong diagnostic performance,
achieving an accuracy of 98.44% on the INbreast dataset, highlighting its potential as an effective tool for
computer-aided breast cancer diagnosis.

Key Words: Breast Cancer, mammography, Grey Wolf optimizer, ResNet-50, BiLSTM, contrast
limited adaptive histogram equalization.
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1. Introduction

Breast cancer remains a leading cause of cancer-related mortality among women worldwide, under-
scoring the critical importance of early and accurate detection to improve patient prognosis and treatment
efficacy. Mammography is the most widely utilized screening modality for breast cancer; however, its
interpretation can be challenging due to the subtle nature of early malignant signs, high inter-observer
variability among radiologists, and the sheer volume of images requiring analysis, which can lead to diag-
nostic errors or delays. These inherent limitations in manual screening processes highlight an urgent need
for robust and reliable automated systems. Consequently, the development of advanced Computer-Aided
Diagnosis (CAD) tools, particularly those leveraging the sophisticated pattern recognition capabilities of
deep learning, has become an area of intense research, offering the potential to enhance diagnostic accu-
racy, reduce workload, and ultimately contribute to better clinical outcomes in the fight against breast
cancer. Recent research highlights the potential of deep learning techniques for breast cancer diagnosis
using mammographic images. Convolutional Neural Networks (CNNs) have shown promising results in
classifying breast lesions as benign or malignant [1,2,3]. These approaches can assist radiologists in early
detection and improve diagnostic accuracy. One study using a ResNet-50 CNN achieved 93% classifi-
cation accuracy on the INbreast dataset [2]. Various CNN architectures like VGG19, Inception-Net,
and ResNet50 have been applied successfully to this task [3]. The process typically involves image pre-
processing, segmentation, and post-processing steps [1]. By leveraging transfer learning and pre-trained
models, these deep learning methods can potentially reduce error rates in screening mammograms and
contribute to improved breast cancer diagnosis and patient outcomes [4]. These techniques have been
applied to multiple imaging modalities, including mammography, ultrasound, MRI, and nuclear medicine
imaging [5,6]. While deep learning shows potential to improve breast cancer screening workflows and
early detection, larger trials are needed to fully determine its clinical value, particularly for ultrasound
and MRI [5]. Additionally, legal and ethical considerations must be addressed before widespread clinical
implementation [5].

Lin et al. developed a two-stage model combining support vector machines and convolutional neural
networks (CNNs), achieving 94.20% accuracy on mammography images [7]. Chorianopoulos et al. eval-
uated various CNN architectures, reporting accuracies of 96.82% on ultrasounds and 88.23–91.04% on
histopathology images [8]. Suguna et al. compared CNN designs like VGG16 and ResNet50 to traditional
machine learning techniques using a large breast cancer dataset [9]. All three studies emphasized the
potential of deep learning methods to improve early detection and diagnosis of breast cancer. The high
accuracies achieved across different imaging modalities (mammography, ultrasound, and histopathology)
suggest that these approaches could serve as valuable tools to assist radiologists and pathologists in
clinical settings [7,8,9]. Gupta et al. (2022) compared four pre-trained Convolutional Neural Network
(CNN) models (VGG16, VGG19, Inception v3, and SqueezeNet) combined with various machine learning
classifiers for early detection of breast cancer in mammograms [10]. Their research aimed to provide an
overview of current diagnostic techniques to improve patient survival rates. Similarly, Noor Eldin et al.
(2021) investigated deep learning methods for breast cancer diagnosis using microscopy biopsy images
[11]. They evaluated several CNN architectures, with Densenet169, Resnet50, and Resnet101 achieving
the highest accuracies without preprocessing. The study demonstrated that data augmentation and seg-
mentation techniques could further improve model performance by up to 20%. By employing ensemble
learning, they achieved a peak accuracy of 92.5%. Both studies highlight the potential of deep learning
in enhancing breast cancer diagnosis through medical image analysis.

A U-net inspired network architecture was developed in reference [12], which demonstrated high sen-
sitivity and specificity in identifying breast abnormalities. Sannasi Chakravarthy et al. (2022) conducted
extensive experiments using various deep convolutional neural networks (CNNs) and feature fusion tech-
niques, achieving classification accuracies of 97.93% and 96.646% on the MIAS and INbreast datasets,
respectively [13]. Their study also investigated the use of principal component analysis to reduce com-
putational costs. Similarly, the researchers in [14] employed automated deep learning methods for breast
cancer diagnosis using biomedical mammogram images. Amrisha R R et al. (2023) developed a cus-
tomized CNN with data augmentation and transfer learning using the Inception Net model, achieving
over 94% accuracy across ultrasound, mammography, and histopathology datasets [15]. This approach
demonstrated improved accuracy compared to conventional methods. Similarly, reference [16] evaluated
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four deep CNN models (AlexNet, VGGNet, ResNet50, and GoogleNet) for breast cancer diagnosis using
infrared thermal images. Their study showed high performance in classifying malignant and benign can-
cers using thermography. Both studies highlight the potential of deep learning algorithms in enhancing
breast cancer detection across multiple imaging modalities, offering promising results for accurate and
efficient diagnosis. Researchers have employed various CNN architectures, including VGG19, ResNet50,
and DenseNet121, to analyze mammograms and classify lesions as benign or malignant [17,18].

Image augmentation techniques have been used to enhance model performance when working with
limited datasets [17]. The YCbCr color space has been explored to potentially improve image quality
and classification accuracy [18]. These deep learning approaches show promise in assisting radiologists,
potentially increasing the precision and timeliness of breast cancer diagnosis and, consequently, improving
survival rates [19]. Salman Zakareya et al. (2023) developed a model combining GoogLeNet, residual
blocks, and granular computing, achieving 93% and 95% accuracy on ultrasound and histopathology
images, respectively [20]. Liu et al. (2020) introduced DeepBC, integrating Inception, ResNet, and
AlexNet, which attained 96.43% accuracy in image classification [21]. A Deep Learning assisted Effi-
cient AdaBoost Algorithm (DLA-EABA) was proposed in reference [22] that achieved 97.2% accuracy,
98.3% sensitivity, and 96.5% specificity. Rajput et al. (2022) proposed a customized convolutional neural
network (CNN) with a novel activation function, achieving 99% accuracy and 0.97 precision in tumor
detection [23]. Ragab et al. (2021) presented a computer-aided diagnosis system using multiple deep
CNNs, comparing various approaches including pre-trained fine-tuned networks, deep feature extraction
with SVM classifiers, and feature fusion [24]. They achieved the highest accuracy using deep feature
fusion on two datasets (CBIS-DDSM and MIAS). These studies demonstrate the potential of deep learn-
ing techniques in improving breast cancer detection and classification, offering promising alternatives to
traditional diagnostic methods and potentially enhancing early detection rates. However, the reviewed
literature demonstrates significant strides in applying deep learning to mammographic breast cancer diag-
nosis; several avenues for further enhancement remain. Many studies have successfully employed various
Convolutional Neural Network (CNN) architectures; however, the synergistic potential of combining these
powerful spatial feature extractors with sequence-aware models like Recurrent Neural Networks (RNNs)
for mammogram classification is less explored. Furthermore, the performance of these complex models
is often highly sensitive to hyperparameter configurations, yet systematic metaheuristic optimization of
these parameters, particularly for the RNN component in such hybrid setups, is not consistently applied.
Additionally, while preprocessing is common, a tailored pipeline addressing specific mammographic chal-
lenges like low contrast and non-informative background regions in a multi-stage, optimized manner,
followed by supervised dimensionality reduction specifically aimed at enhancing class separability for
subsequent sequential analysis, could further boost diagnostic accuracy.

This study aims to bridge these gaps by proposing a meticulously designed hybrid deep learning
framework that leverages the strengths of ResNet-50 for feature extraction and a Bidirectional Gated
Recurrent Unit (BiGRU) for classification, with the BiGRU’s hyperparameters fine-tuned using the Grey
Wolf Optimizer (GWO), all built upon a comprehensive preprocessing and feature refinement strategy.
The main contributions of this paper are multi-fold and aim to advance the state-of-the-art in automated
breast cancer diagnosis. Firstly, we introduce a novel hybrid deep learning architecture that synergistically
combines a pre-trained ResNet-50 for robust feature extraction with a BiGRU network designed to capture
complex patterns and dependencies within these deep features. Secondly, we demonstrate the efficacy
of employing the Grey Wolf Optimizer for systematic and automated hyperparameter tuning of the
BiGRU classifier, leading to an optimized model tailored for the mammography task. Thirdly, our
work incorporates a specialized preprocessing pipeline, featuring optimized Contrast Limited Adaptive
Histogram Equalization (CLAHE) and an innovative background cropping technique, coupled with Linear
Discriminant Analysis (LDA) for effective dimensionality reduction and class discrimination enhancement.
Finally, through rigorous evaluation on the public INbreast dataset, our proposed framework achieves a
high diagnostic accuracy, showcasing its potential as a reliable and effective tool to assist clinicians in the
early detection of breast cancer.
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2. Basic Concepts

This section outlines the essential concepts and network architectures that form the foundation of the
proposed method.

2.1. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a type of Recurrent Neural Network (RNN) designed to effectively
model sequential dependencies while addressing the limitations of traditional RNNs, such as the vanishing
gradient problem. Introduced by Cho et al. (2014) [25], the GRU employs a gating mechanism to
adaptively control the flow of information, thereby enhancing the model’s ability to capture both short-
term and long-term temporal dependencies. A GRU cell operates based on two principal gates: the
update gate and the reset gate. The update gate determines the extent to which the previous hidden
state is carried forward to the current hidden state. It is computed as follows:

zt = σ(Wzxt + Uzht−1), (2.1)

where xt is the input at time step t, Wz and Uz are weight matrices, and σ denotes the sigmoid activation
function. The reset gate, calculated by:

rt = σ(Wrxt + Urht−1), (2.2)

controls how much of the previous hidden state should be forgotten before computing the candidate hidden
state. This mechanism allows the model to discard irrelevant historical information when necessary.

Subsequently, the candidate hidden state, which incorporates the new input and the selectively reset
past hidden state, is computed as:

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1)), (2.3)

where ⊙ represents element-wise multiplication, and tanh is the hyperbolic tangent activation function.
Finally, the new hidden state is derived as a linear interpolation between the previous hidden state and
the candidate hidden state, modulated by the update gate:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t. (2.4)

This formulation enables the GRU to dynamically balance between preserving past information and
incorporating new input, depending on the task’s temporal characteristics. Due to its relatively compact
architecture—requiring fewer parameters than LSTM networks—GRU is computationally efficient and
particularly well-suited for applications involving sequential data such as language modeling, speech
recognition, biomedical signal processing, and time-series classification [26].

2.2. Gray Wolf Optimization

The Gray Wolf Optimization (GWO) algorithm is a nature-inspired metaheuristic proposed by Mir-
jalili et al. (2014) [27], mimicking the leadership hierarchy and hunting strategy of gray wolves (Canis
lupus) in the wild. As a population-based optimization method, GWO has gained attention due to
its simplicity, flexibility, and strong global search capability, making it well-suited for solving complex
optimization problems in engineering, machine learning, and data mining.

In the social structure of gray wolves, the pack is led by four hierarchical levels: alpha (α), beta
(β), delta (δ), and omega (ω). The α wolf represents the best candidate solution, followed by β and δ,
which are the second and third best solutions, respectively, while the remaining wolves (ω) follow these
three leaders. The hunting process in GWO is mathematically modeled to simulate three main stages:
encircling prey, hunting, and attacking prey (exploitation).

The encircling behavior is modeled by updating the position of a search agent with respect to the
position of the prey using the following equations:

D⃗ = |C⃗ · X⃗p(t)− X⃗(t)|, (2.5)
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X⃗(t+ 1) = X⃗p(t)− A⃗ · D⃗. (2.6)

Here, X⃗p represents the position of the prey, X⃗ is the current position of the gray wolf, and A⃗ and C⃗ are
coefficient vectors calculated as:

A⃗ = 2a · r⃗1 − a, C⃗ = 2 · r⃗2, (2.7)

where a decreases linearly from 2 to 0 over the course of iterations, and r⃗1, r⃗2 are random vectors in [0,1].
To simulate the hunting mechanism, each search agent updates its position based on the positions of

the top three wolves (α, β, and δ):

D⃗ = |C⃗ · X⃗p(t)− X⃗(t)|, (2.8)

X⃗(t+ 1) = X⃗p(t)− A⃗ · D⃗, (2.9)

A⃗ = 2a · r⃗1 − a, C⃗ = 2 · r⃗2, (2.10)

X⃗(t+ 1) =
X⃗1 + X⃗2 + X⃗3

3
. (2.11)

This cooperative strategy balances exploration and exploitation, guiding the search agents toward the
global optimum. The reduction of the parameter a over time ensures a gradual shift from exploration to
exploitation, allowing for refined convergence near optimal solutions.

2.3. ResNet-50

ResNet-50 is a deep convolutional neural network (CNN) that belongs to the Residual Network
(ResNet) family, introduced by He et al. (2016) [28]. ResNet was developed to address the degra-
dation problem in deep neural networks, where increasing network depth leads to higher training error
due to vanishing gradients and optimization difficulties. The key innovation of ResNet is the introduction
of residual learning through skip connections, which allow the network to learn identity mappings and
thus facilitate the training of very deep architectures.

The ResNet-50 model consists of 50 layers, including one initial convolutional layer, followed by 16
residual blocks organized into four stages. Each residual block contains convolutional layers with batch
normalization and ReLU activations, along with a shortcut connection that bypasses one or more layers.
Formally, a residual block is expressed as:

y = F (x,Wi) + x, (2.12)

where x is the input to the block, F represents the residual mapping to be learned (typically a stack of
two or three convolutional layers), and Wi denotes the weights. The term x is added via identity mapping
(skip connection) to the output of F , ensuring that the gradient can flow directly through the network
without diminishing.

ResNet-50 adopts a bottleneck design within each residual block, where three convolutional layers
are used: a 1 × 1 convolution to reduce dimensionality, a 3 × 3 convolution, and a 1 × 1 convolution
to restore dimensionality. This design allows the network to be deep while maintaining computational
efficiency. The final structure of ResNet-50 includes an average pooling layer and a fully connected layer
for classification tasks. The architecture has demonstrated remarkable performance in large-scale visual
recognition benchmarks, particularly on the ImageNet dataset, where it significantly outperformed earlier
architectures without residual connections. The use of ResNet-50 is particularly advantageous in medical
and scientific imaging tasks due to its proven generalization ability and resistance to overfitting, even
when the training dataset is relatively limited.

3. Proposed Methodology

The methodology presented in this study introduces a robust deep learning pipeline for the automated
classification of breast cancer from mammographic imagery. Our framework is designed to systematically
process and analyze images, extracting salient features and performing classification with a focus on
computational efficiency and effective pattern recognition. This approach integrates a Convolutional
Neural Network (CNN) for its powerful spatial feature learning capabilities with a Gated Recurrent
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Unit (GRU) network, chosen for its proficiency in modeling sequential data with reduced complexity
compared to other recurrent architectures. The pipeline is meticulously structured into four distinct
phases: (1) mammogram image conditioning and dataset preparation, (2) hierarchical feature derivation
using a pre-trained CNN, (3) feature space refinement via dimensionality reduction, and (4) optimized
classification using a Bidirectional GRU network whose hyperparameters are tuned by the Grey Wolf
Optimizer. Figure 1 (not provided here, but you would include it) illustrates the sequential workflow of
our proposed system.

3.1. Mammogram Image Conditioning and Dataset Preparation

The initial phase is dedicated to standardizing the input mammography images to enhance the quality
of data fed into subsequent deep learning models, directly impacting their learning capacity and final
performance. Mammograms inherently possess characteristics that can impede model training, notably
poor contrast arising from dense, overlapping breast tissues and the presence of extensive zero-intensity
pixel regions (background areas), which provide no gradient information during backpropagation. To ad-
dress the challenge of poor visibility in crucial diagnostic regions, the contrast-limited adaptive histogram
equalization (CLAHE) is employed. This technique sharpens local details by performing histogram equal-
ization on contextual regions, thereby improving the discernibility of subtle lesions and calcifications, while
the clipping mechanism prevents the undue amplification of noise often associated with global histogram
equalization.

Following contrast enhancement, we tackle the issue of zero-valued pixels. These pixels can lead
to vanishing gradients, effectively stalling the learning process. To counteract this, a pixel intensity
adjustment is performed, where zero-valued pixels are systematically replaced with a minimal, non-zero
constant. This is formalized as:

I ′img(x, y) =

{
Iclahe(x, y) + o′, if Iclahe(x, y) = 0,

Iclahe(x, y), otherwise,

where I(x, y) is the pixel intensity at coordinates (x, y) of the CLAHE-processed image, and ϵ is a small
constant, empirically set to 1. This adjustment ensures that all pixels contribute, at least minimally, to the
gradient computation, fostering more stable and effective weight updates. To further bolster the model’s
ability to generalize from the available training data and to enhance its robustness against variations
typically encountered in clinical settings, we incorporate a suite of data augmentation techniques. These
transformations are applied on-the-fly during the training process. The augmentation strategies include
random rotations within a range of ±10◦ and horizontal mirroring (flips). These operations synthetically
expand the diversity of the training set by simulating minor differences in patient positioning, breast
compression, and imaging equipment calibration, thereby reducing the risk of the model overfitting to
specific characteristics of the original training samples.

Moreover, a cropping approach is also adopted to reduce the black area in the image, zooming in just
on the breast tissues. This is especially helpful for further resizing of images to be fed to the ResNet-50
network. The details of this cropping approach are presented in the Simulation Results section. Finally,
the dataset is divided using a stratified sampling method into training (80%) and testing (20%) sets,
ensuring that the class distribution is maintained across both splits, which is crucial for unbiased model
evaluation. Finally, all images are resized to match the input requirements of the subsequent feature
extraction network (ResNet-50) and normalized based on its ImageNet pretraining statistics.

3.2. Hierarchical Feature Derivation using Transfer Learning

For the feature extraction stage, we leverage the power of transfer learning by employing the ResNet-
50 architecture, a convolutional neural network renowned for its depth and effectiveness, largely due to
its residual connections which facilitate the training of very deep networks by alleviating the vanishing
gradient problem. Pre-trained on the large-scale ImageNet dataset, ResNet-50 has learned a rich hierarchy
of visual features, many of which are transferable to medical imaging tasks.

Our strategy for adapting ResNet-50 involves a cautious fine-tuning process. The majority of the
network’s earlier layers, responsible for learning generic features like edges and textures, are kept frozen
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to retain their robust, pre-learned weights. We unfreeze only the terminal three convolutional blocks and
the subsequent layers, allowing them to adapt specifically to the nuanced patterns found in mammograms,
such as mass morphologies and calcification clusters. The original classification head of ResNet-50 is
supplanted by a custom dense layer consisting of 2000 neurons with ReLU activation, designed to capture
high-level abstractions from the preceding convolutional features. This can be represented as:

h = ReLU(Whc+ bh), (3.1)

where c is the feature map output from the last unfrozen ResNet-50 block, Wh and bh are the weights
and biases of our custom dense layer, and h is the resulting feature vector. The fine-tuning process is
driven by the Adam optimizer. To balance knowledge retention with specialization, a differential learning
rate scheme is adopted. In this regard, a conservative rate of 1 × 10−5 is applied to the initial feature
extraction layers, while a more aggressive rate of 1×10−4 is used for the unfrozen terminal layers. Training
is conducted for 100 epochs with a batch size of 64, and the training data is shuffled at the beginning
of each epoch to prevent the model from learning any spurious sequential order. The feature vectors,
denoted by Ftrain and Ftest, are then extracted from the custom dense layer added to the network for
subsequent processing.

3.3. Feature Space Refinement via Dimensionality Reduction

The feature vectors obtained from the ResNet-50 are high-dimensional (2000 features according to our
design), which can lead to increased computational burden for the subsequent classifier and a heightened
risk of overfitting. To address this, we implement linear discriminant analysis (LDA) for dimensionality
reduction. LDA is a supervised technique chosen for its ability to project features onto a lower-dimensional
space while maximizing the separation between classes, making it particularly suitable for classification
tasks.

The LDA transformation seeks to find a projection matrix P that reshapes the feature space. This
matrix is derived by optimizing the ratio of between-class scatter to within-class scatter using the training
features Ftrain and their corresponding labels Ltrain. Eigenvectors corresponding to the largest eigen-
values of the scatter matrix computation define the new, lower-dimensional space. We set a reduction
target to retain 20% of the original feature dimensions, a coefficient determined through preliminary
experimentation to balance information preservation with computational efficiency. The transformation
is applied as:

F ′
train = FtrainPreduced, (3.2)

F ′
test = FtestPreduced, (3.3)

where Preduced contains the selected eigenvectors. This step not only makes the subsequent classifica-
tion more computationally tractable but also aims to enhance model generalization by filtering out less
discriminative feature components.

3.4. Optimized Classification using Bidirectional GRU

For the final classification task, we employ a Bidirectional Gated Recurrent Unit (BiGRU) network.
GRUs are a type of recurrent neural network with gating mechanisms that allow them to capture depen-
dencies in sequential data more effectively than simple RNNs, while being computationally more efficient
than LSTMs due to their simpler architecture (having two gates instead of three). The bidirectional na-
ture allows the network to process the input feature sequences in both forward and backward directions,
capturing contextual information from past and future elements within the sequence of features.

The performance of a BiGRU network is heavily dependent on its architectural hyperparameters. To
find an optimal configuration, we utilize the Grey Wolf Optimizer (GWO), a meta-heuristic algorithm
inspired by the hunting behavior and social hierarchy of grey wolves. GWO was selected for its reported
strong global search capabilities and convergence speed in various optimization problems. We aim to
optimize four critical hyperparameters: the number of hidden units in each GRU layer (Nunits ∈ [20, 200]),
the initial learning rate (η ∈ [1 × 10−5, 1 × 10−2]), the learning rate decay factor (γdecay ∈ [0.55, 0.99]),
and the mini-batch size (Sbatch ∈ [32, 256]). The GWO is configured with a population of 10 wolves and
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run for 50 iterations. The fitness function guiding the GWO is the classification accuracy on a dedicated
validation set (comprising 20% of the training data):

Maximize : Accuracy(Ψ) =
1

| Dval |
∑

(xi,yi)∈Dval

I[gΨ(xi) = yi], (3.4)

where Ψ = [Nunits, η, γdecay, Sbatch] is the vector of hyperparameters, gΨ is the BiGRU classifier pa-
rameterized by Ψ, (xi, yi) is the validation dataset, and I(.) is the indicator function. While GWO is
a powerful optimizer, its effectiveness can be sensitive to its own parameter settings (population size,
iterations), and the search landscape for deep learning hyperparameters remains complex. The optimized

Figure 1: Block diagram of the proposed method.

BiGRU architecture comprises a first BiGRU layer with Nunits units, a dropout layer with a fixed rate of
0.25 (to mitigate overfitting, a persistent challenge in models with many parameters), a second BiGRU
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layer also with Nunits units, followed by a fully connected layer that maps the BiGRU outputs to the
number of classes, and a softmax activation function for probabilistic output and final classification of
data. The network is trained using the Adam optimizer with the hyperparameters identified by GWO,
for a maximum of 200 epochs, with early stopping implemented based on validation accuracy to prevent
overfitting and select the best-performing model. The model’s ultimate performance is then assessed
on the independent test set. This comprehensive approach, leveraging refined features and optimized
recurrent neural networks, aims to provide an effective solution for mammography-based breast cancer
diagnosis. The block diagram of the proposed method has been illustrated in Figure 1.

4. Dataset

This study utilized the INbreast dataset, a publicly available and high-quality full-field digital mam-
mography (FFDM) database widely used in breast cancer research. The dataset was selected due to its
superior resolution, detailed annotations, and comprehensive representation of real-world clinical scenar-
ios, making it suitable for developing and validating deep learning models for breast cancer detection
and classification. The INBreast dataset was created by the Breast Research Group of the Institute for
Systems and Computer Engineering, Technology and Science (INESC TEC), and is composed of 115 cases
comprising 410 mammography images in DICOM format. Each case includes both mediolateral oblique
(MLO) and craniocaudal (CC) views of the left and right breasts, covering a broad range of diagnostic
categories. The images are annotated by expert radiologists with BI-RADS assessment scores (ranging
from 1 to 5), as well as lesion contours and mass classification (such as calcifications, asymmetries, and
architectural distortions).

For the purpose of this study, the dataset was preprocessed to focus specifically on the binary classi-
fication of normal versus breast cancer cases. Images were converted from DICOM to a standard image
format, resized for computational efficiency, and normalized to enhance contrast. Labeling was guided
by the BI-RADS scores and lesion annotations, where BI-RADS categories 1, 2, and 3 were considered
normal, and categories 4 and 5 were considered indicative of breast cancer.

5. Evaluation Metrics

To quantitatively evaluate the performance of the proposed breast cancer classification framework,
a set of standard evaluation metrics was employed, including Accuracy, Precision, Recall, and F1-score.
These metrics are widely used in medical image analysis to assess the diagnostic capability of machine
learning models, particularly in binary classification tasks such as distinguishing between normal and
breast cancer cases. The evaluation relies on four key quantities derived from the confusion matrix: True
Negatives (TN) correspond to correctly identified normal cases, False Positives (FP) refer to normal cases
misclassified as breast cancer, and False Negatives (FN) are breast cancer cases incorrectly labeled as
normal.

Accuracy: The Accuracy metric evaluates the overall correctness of the model by measuring the
ratio of correctly classified instances to the total number of instances:

Accuracy =
TP + TN

TP + TN + FP + FN
. (5.1)

Precision: Precision, also referred to as the positive predictive value, quantifies the proportion of
correctly predicted Breast Cancer cases among all cases classified as Breast Cancer:

Precision =
TP

TP + FP
. (5.2)

Recall: Recall, or sensitivity, reflects the model’s ability to correctly identify actual Breast Cancer
cases, representing the proportion of true Breast Cancer cases that were correctly classified:

Recall =
TP

TP + FN
. (5.3)
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F1-score: The F1-score is the harmonic mean of Precision and Recall, providing a single metric that
balances both false positives and false negatives, which is particularly important in medical diagnostics
where both types of errors carry significant consequences:

F1 score = 2× Precision×Recall

Precision+Recall
. (5.4)

Together, these metrics offer a comprehensive assessment of the proposed model’s performance, en-
suring not only its overall accuracy but also its reliability and robustness in correctly identifying Breast
Cancer cases while minimizing diagnostic errors.

6. Simulation Results

This section presents and analyzes the simulation results obtained from the implementation of the
proposed hybrid deep learning framework for breast cancer diagnosis. The evaluation is structured to pro-
vide a comprehensive understanding of the model’s performance, beginning with a stage-wise assessment
of key pipeline components, followed by an in-depth analysis of the overall diagnostic capabilities. The
initial part examines the outcomes of critical preprocessing steps, such as the tuning of Contrast Limited
Adaptive Histogram Equalization (CLAHE) and the effectiveness of the background cropping technique,
the impact of Linear Discriminant Analysis (LDA) on feature separability, and the convergence behavior
of the Grey Wolf Optimizer (GWO) during the hyperparameter optimization of the Bidirectional GRU
(BiGRU) network. Subsequently, the overall diagnostic performance of the complete framework on the
INbreast dataset is rigorously evaluated using standard metrics including accuracy, precision, recall, F1-
score, as well as detailed visualizations through confusion matrices and Receiver Operating Characteristic
(ROC) curves. All experiments were conducted on a system configured with an Intel® Core™ i7-12700H
processor, 32GB of RAM, and an NVIDIA GeForce RTX 3070 Laptop GPU with 8GB of dedicated
memory, utilizing MATLAB 2024b for implementation.

6.1. Pipeline Component Performance

This subsection details the experimental results and analyses pertaining to the key stages of our
proposed mammography image processing and feature engineering pipeline, leading up to the final clas-
sification. We present the outcomes of critical preprocessing steps, including the empirical tuning of
Contrast Limited Adaptive Histogram Equalization (CLAHE) and the application of our background
cropping technique. Furthermore, we evaluate the efficacy of Linear Discriminant Analysis (LDA) in
transforming the feature space for enhanced class separability. Finally, this section covers the hyperpa-
rameter optimization process for the Bidirectional Gated Recurrent Unit (BiGRU) classifier, showcasing
the convergence behavior of the Grey Wolf Optimizer (GWO) and the resulting optimal hyperparameters.
The systematic evaluation of these components is crucial for validating their individual contributions and
ensuring that each stage effectively prepares the data for robust and accurate breast cancer diagnosis by
the subsequent classification model.

Figure 2 presents a comparative visual analysis of various Contrast Limited Adaptive Histogram
Equalization (CLAHE) settings applied to a representative mammogram from the dataset. This inves-
tigation was conducted to empirically determine the optimal CLAHE parameters for enhancing image
contrast, crucial for improving the visibility of subtle pathological indicators. The figure displays the
outcomes of applying three distinct histogram distributions—uniform, Rayleigh, and exponential—each
tested with clip limits of 0.01, 0.02, and 0.03. Visual inspection reveals noticeable differences in image
quality and feature discernibility across these configurations. For instance, the exponential distribution
(right column) tends to produce overly bright regions and potentially harsh contrast shifts, which could
obscure finer details. Conversely, the uniform distribution (left column) provides a more moderate en-
hancement. After careful evaluation, the Rayleigh distribution with a clip limit of 0.02 (center image in
the second row) was selected for subsequent preprocessing steps. This specific combination was deemed
to offer the most balanced enhancement, effectively improving the definition of internal breast structures
and tissue variations while preserving smooth gradients in fatty areas. It provides a discernible im-
provement in clarity over the Rayleigh 0.01 setting without introducing the potential over-enhancement
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Figure 2: Comparing different histogram distributions and clip limit adjustments for CLAHE.

Figure 3: The proposed cropping results for one mammography sample from the dataset.

or artifact introduction observed at the higher clip limit of 0.03, thereby ensuring that diagnostically
relevant information is made more accessible for the feature extraction phase.

Figure 3 illustrates the outcome of the proposed background cropping stage, a critical step in our
preprocessing pipeline designed to isolate the relevant breast tissue from non-informative background
regions. The figure presents a side-by-side comparison of a sample mammogram before (left) and after
(right) the application of this technique, visually confirming the effective removal of the extraneous black
background. This process involves an initial analysis to identify the side of the image predominantly
containing breast tissue by comparing the cumulative pixel intensities, thereby accommodating both left
and right-sided mammograms. Subsequently, a predetermined horizontal crop is applied to standardize
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Figure 4: The class discriminability using the first three extracted features before and after applying
LDA.

the image width while ensuring no significant tissue information is lost. The primary advantage of
this targeted cropping is particularly evident when preparing images for the fixed input dimensions
(e.g., 224×224 pixels) of the ResNet architecture. By eliminating large swathes of background, this
step ensures that the subsequent resizing operation preserves a higher resolution of the actual breast
tissue, concentrating the feature extraction capabilities of the CNN on diagnostically pertinent areas and
optimizing the quality of input data for the deep learning model.

Figure 4 provides a visual assessment of the Linear Discriminant Analysis (LDA) stage by display-
ing 3D scatter plots of the dataset’s first three feature dimensions, both prior to and following LDA
application. The left panel illustrates the distribution of the two classes (represented by distinct red
and cyan markers) in the original feature space derived from ResNet-50, where a considerable degree
of overlap between the classes is evident, indicating limited inherent separability based solely on these
initial features. In contrast, the right panel depicts the same data points projected onto the first three
components derived from LDA. A noticeable improvement in class discriminability is observed in this
transformed space; the clusters of red (normal class) and cyan (cancerous class) points appear more dis-
tinctly separated, with reduced inter-class mingling compared to the original feature representation. This
enhanced separation underscores LDA’s effectiveness in identifying a subspace that maximizes inter-class
variance while minimizing intra-class variance. While these plots offer a visualization based on only three
dimensions, and complete class separation typically relies on the full set of retained LDA components, the
improved visual distinction strongly suggests that LDA successfully enhances the feature representation
for the subsequent GRU-based classification, thereby contributing to a more robust diagnostic model.

The efficacy of the GWO in fine-tuning the Bidirectional GRU network’s hyperparameters is demon-
strated in Figure 5 and Table 1. Figure 5 illustrates the convergence curve of the GWO algorithm over
40 iterations, plotting the minimization of the objective loss function. The curve exhibits a characteristic
stepwise reduction in loss, with significant improvements achieved in the initial iterations—most notably
around the 4th and 14th iterations—followed by periods of stability. This behavior indicates that the
GWO effectively explored the search space and rapidly converged towards an optimal set of hyperpa-
rameter values. By approximately the 15th iteration, the algorithm had identified a solution yielding a
low loss value of approximately 0.013, which remained largely unchanged for the subsequent iterations,
signifying stable convergence. Table 1 enumerates the specific hyperparameter values identified by this
GWO process as optimal for the BiGRU classifier. These include 86 hidden units per GRU layer, an
initial learning rate of 0.0044, a learning rate decay factor (drop factor) of 0.97, and a mini-batch size of
33. This systematic optimization is paramount, as it tailors the BiGRU architecture and training dynam-
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Figure 5: The convergence curve of the GWO algorithm.

ics to the specific characteristics of the mammography feature data, thereby maximizing the classifier’s
potential for accurate breast cancer diagnosis in the subsequent evaluation phase.

Figure 6: The confusion matrix of the proposed method evaluation.
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Table 1: The obtained optimal hyperparameters of the BiGRU network.
Parameter Value
Number of Hidden Units 86
Learning Rate 0.0044
Learning Rate Drop Factor 0.97
Mini-Batch Size 33

6.2. Breast Cancer Diagnosis Performance Evaluation

Having established the performance of individual components and the optimized configuration of the
BiGRU classifier in the preceding subsection, we now turn to the comprehensive evaluation of the end-
to-end breast cancer diagnosis system. This section quantifies the diagnostic capabilities of the fully
developed hybrid deep learning model when applied to the unseen independent test set. The model’s
ability to accurately distinguish between benign and malignant cases is assessed through several key per-
formance indicators. Specifically, we will present a detailed breakdown of classification metrics—namely,
accuracy, precision, recall (sensitivity), and F1-score—summarized in Table 2. Furthermore, a visual
analysis of the classification results will be provided through the confusion matrix (Figure 6), offering
insights into the specific types of correct and incorrect predictions. Finally, the model’s discriminative
power across various diagnostic thresholds will be illustrated by its Receiver Operating Characteristic
(ROC) curve (Figure 7), from which the Area Under the Curve (AUC) can also be determined. Together,
these results will provide a robust measure of the proposed system’s diagnostic performance.

Figure 7: The ROC curve of the proposed method evaluation.

Figure 6 presents the confusion matrix detailing the proposed model’s classification performance on
the independent test set. This provides a clear view of the specific outcomes for each class. According
to the matrix, the model correctly identified all 23 actual ‘Cancer’ cases as ‘Cancer’ (True Positives =
23), and critically, there were no ‘Cancer’ cases misclassified as ‘Normal’ (False Negatives = 0). This
achievement of zero false negatives is of paramount clinical importance, as it indicates the model did not
miss any actual instances of cancer within this test cohort, thereby avoiding potentially fatal consequences
associated with missed diagnoses. On the other side, out of the cases that were actually ‘Normal,’ 40
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Table 2: Performance metrics of the proposed model on the test set.
Metric Value
Accuracy 98.44%
Precision 97.92%
Recall 98.78%
F1-Score 98.35%

were correctly identified as ‘Normal’ (True Negatives = 40), while only 1 ‘Normal’ case was misclassified
as ‘Cancer’ (False Positives = 1). While a false positive may lead to unnecessary follow-up examinations
and patient anxiety, it is clinically preferable to a false negative. These raw counts (TP=23, FN=0,
FP=1, TN=40) demonstrate a strong diagnostic capability, particularly highlighting the model’s perfect
sensitivity in detecting cancer cases within this specific test set.

Figure 7 displays the Receiver Operating Characteristic (ROC) curve for the proposed breast cancer
diagnostic model, illustrating its discriminative ability across the spectrum of decision thresholds. The
curve plots the True Positive Rate (Sensitivity) against the False Positive Rate (1-Specificity). The Area
Under the Curve (AUC) for detecting the ‘Cancer’ class is an excellent 0.9873, approaching the ideal
value of 1.0. This high AUC value signifies the model’s outstanding capacity to distinguish between
malignant and benign cases effectively. Visually, the ROC curve rises sharply towards the top-left corner
of the plot, indicating that the model achieves high sensitivity while maintaining a low false positive rate
across various thresholds. The specific operating point chosen for the ‘Cancer’ class (indicated by the
blue dot) further highlights this strong performance, corresponding to a True Positive Rate approaching
1.0 (perfect sensitivity for cancer detection) at a False Positive Rate of approximately 0.024 (Specificity of
approximately 97.6%). This specific point aligns well with the results presented in the confusion matrix
(FN=0, FP=1). In a nutshell, the ROC analysis provides robust evidence of the model’s high diagnostic
accuracy and reliability.

6.3. Comparison

To evaluate the effectiveness of the proposed method, we compare its performance with recent state-
of-the-art approaches for breast cancer classification using mammographic images. Among the latest
contributions, the study by Hameedur Rahman et al. (2023) [1] presents a deep learning framework
based on ResNet-50 pretrained on ImageNet, used to classify the INbreast dataset into benign and
malignant categories. Their model achieved an accuracy of 93%, demonstrating the capability of deep
convolutional networks in extracting discriminative features from mammograms and supporting early
detection in clinical settings.

Table 3: Comparative table of the proposed method with other reviewed references.
References Method Dataset Accuracy (%)
[1] ResNet-50 INbreast 93
[13] Multi-deep CNNs, SVM, PCA MIAS, INbreast MIAS: 97.93, INbreast: 96.646
Proposed method ResNet-50, GRU, GWO INbreast 98.44

Another noteworthy study is by Sannasi Chakravarthy et al. (2023) [13], which explored multiple
classification strategies using deep learning. Their research included experiments with deep CNNs, SVM
classifiers on extracted features, fusion techniques, and PCA, evaluated on both MIAS and INbreast
datasets. The best results on the INbreast dataset were obtained using fused deep features, yielding an
accuracy of 96.646%, while PCA reduced computational cost without improving accuracy. This study
emphasizes the importance of hybrid methods that integrate feature learning and optimization to enhance
diagnostic precision.

Building upon these foundations, our proposed method utilizes ResNet-50 for feature extraction,
followed by a GRU for classification, whose parameters are optimized using the GWO algorithm. This
hybrid approach achieved an accuracy of 98.44% on the INbreast dataset, surpassing both previous
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frameworks. The integration of deep spatial feature extraction and optimized sequential classification
enables more robust learning and enhances diagnostic accuracy, thereby offering a promising solution
for computer-aided diagnosis systems in breast cancer detection. Table 3 provides a comparison of the
reviewed studies.

7. Conclusion

This paper addressed the critical challenge of enhancing automated breast cancer diagnosis from mam-
mography images by proposing and evaluating a meticulously designed hybrid deep learning framework.
The primary objective was to develop a robust system capable of high diagnostic accuracy. Our method-
ology integrated several key stages: comprehensive image preprocessing involving optimized CLAHE, a
novel background cropping technique, pixel value adjustments, and data augmentation; feature extraction
via a fine-tuned ResNet-50 model; dimensionality reduction using Linear Discriminant Analysis (LDA) to
refine feature representation; and finally, classification employing a Bidirectional Gated Recurrent Unit
(BiGRU) network whose hyperparameters were rigorously optimized using the Grey Wolf Optimizer
(GWO). The proposed framework, when evaluated on the publicly available INbreast dataset, demon-
strated exceptional performance. It achieved an overall accuracy of 98.44%, a precision of 97.92%, recall
(sensitivity) of 98.78%, and an F1-score of 98.35%. Notably, the confusion matrix analysis highlighted
the model’s strength in correctly identifying all cancer cases in the test set breakdown (False Negatives
= 0), a crucial factor for clinical reliability, alongside a high AUC value of 0.9873. These results under-
score the efficacy of the synergistic combination of advanced image processing, deep feature learning, and
optimized recurrent neural networks. The significance of this work lies in the successful application of
a GWO-tuned BiGRU classifier on LDA-refined ResNet-50 features for mammography analysis, show-
casing a promising avenue for developing highly accurate Computer-Aided Diagnosis (CAD) tools. The
careful pipeline construction, particularly the preprocessing steps and the meta-heuristic optimization,
contributed significantly to the final performance. While the results are promising, potential limitations
include the evaluation being conducted on a single, albeit challenging, dataset. The computational cost
associated with meta-heuristic optimization, such as GWO, could also be a consideration for broader
implementation. Future research could focus on validating the model’s robustness and generalization
capabilities across larger and more diverse multi-center datasets. Further investigations might also ex-
plore alternative deep learning architectures, other optimization algorithms, and the incorporation of
explainable AI (XAI) techniques to enhance transparency and clinical trust. In conclusion, the hybrid
deep learning framework presented in this study offers a highly effective and accurate approach for breast
cancer detection in mammograms, holding considerable potential to support radiologists and improve
patient outcomes through earlier and more reliable diagnosis.
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25. Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y., Learning phrase
representations using RNN encoder-decoder for statistical machine translation, arXiv preprint arXiv:1406.1078, (2014).

26. Chung, J., Gulcehre, C., Cho, K., and Bengio, Y., Empirical evaluation of gated recurrent neural networks on sequence
modeling, arXiv preprint arXiv:1412.3555, (2014).

27. Mirjalili, S., Mirjalili, S. M., and Lewis, A., Grey wolf optimizer, Adv. Eng. Softw. 69, 46-61, (2014).

28. He, K., Zhang, X., Ren, S., and Sun, J., Deep residual learning for image recognition, Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 770-778, (2016).

Mustafa Raad Ali,

Institute of Energy Infrastructure (IEI),

Department of Civil Engineering, College of Engineering,

Universiti Tenaga Nasional (UNITEN),

Putrajaya Campus, Jalan IKRAM-UNITEN,

43000 Kajang, Selangor, Malaysia

E-mail address: m99448910@gmail.com



18 M. R. Ali, N. N. A. Razak, R. Jan

and

Normy Norfiza Abdul Razak,

Institute of Energy Infrastructure (IEI),

Department of Civil Engineering, College of Engineering,

Universiti Tenaga Nasional (UNITEN),

Putrajaya Campus, Jalan IKRAM-UNITEN,

43000 Kajang, Selangor, Malaysia

E-mail address: normy@uniten.edu.my

and

Rashid Jan1,2,3,∗,
1Department of Mathematics,

Saveetha School of Engineering (SIMATS),

Thandalam 600124, Chennai, Tamil Nadu, India.
2Department of Mathematics,

Khazar University, AZ1096, Baku Azerbaijan.
3Institute of Energy Infrastructure (IEI),

Department of Civil Engineering, College of Engineering,

Universiti Tenaga Nasional (UNITEN),

Putrajaya Campus, Jalan IKRAM-UNITEN,

43000 Kajang, Selangor, Malaysia

E-mail address: Corresponding author: rashid ash2000@yahoo.com


	Introduction
	Basic Concepts
	Gated Recurrent Unit
	Gray Wolf Optimization
	ResNet-50

	Proposed Methodology
	Mammogram Image Conditioning and Dataset Preparation
	Hierarchical Feature Derivation using Transfer Learning
	Feature Space Refinement via Dimensionality Reduction
	Optimized Classification using Bidirectional GRU

	Dataset
	Evaluation Metrics
	Simulation Results
	Pipeline Component Performance
	Breast Cancer Diagnosis Performance Evaluation
	Comparison

	Conclusion

